1
|
Lu CL, Fang ZF, Che LQ, Lin Y, Xu SY, Zhuo Y, Hua L, Li J, Jiang XM, Sun MM, Huang YZ, Wu D, Feng B. Dietary sodium butyrate supplementation during mid-to-late gestation enhances reproductive performance and antioxidant capability in sows. Animal 2025; 19:101516. [PMID: 40334573 DOI: 10.1016/j.animal.2025.101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025] Open
Abstract
Sodium butyrate (NaB) has been used as a feed additive in livestock production due to its antioxidant and anti-inflammatory properties. However, the effect of dietary NaB supplementation during mid- to late gestation on the reproductive performance of sows remains unclear. Thirty-two pregnant sows (Landrace × Yorkshire) at two or three parities were divided into two groups based on similar BW and backfat thickness on day 30 of pregnancy. The control group received a normal gestational diet, while the NaB group was fed a NaB-supplemented diet, of which 2 g/kg corn was replaced with an equal weight of NaB. Sows were fed an experimental diet from day 30 to day 114 of gestation and the same diet during lactation. The reproductive performance, antioxidant, and anti-inflammatory capabilities of sows were analysed. Gestational supplementation of NaB tended to increase the total litter size (P = 0.069) and the number of piglets born alive (P = 0.052), significantly improve placental efficiency (P = 0.049), and increase feed intake during lactation (P = 0.004). Additionally, the stillbirth rate (P = 0.051) tended to be decreased by gestational NaB supplementation. NaB supplementation enhanced the antioxidant capacity of sows, as evidenced by increasing serum T-SOD activity on day 60 of gestation (P < 0.01) and CAT activity on the day of farrowing (P < 0.05), along with reduced serum malondialdehyde concentration on day 90 of gestation (P < 0.05), as compared to control group. Additionally, NaB supplementation tended to decrease serum 8-OHDG concentration on day 60 of gestation (P = 0.064), and increased serum concentrations of short-chain fatty acids (P < 0.05). Taken together, gestational sodium butyrate supplementation might enhance reproductive performance and antioxidant capability in sows. Thus, NaB is a potential additive for improving reproductive performance in sows.
Collapse
Affiliation(s)
- C L Lu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - Z F Fang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; College of Food Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - L Q Che
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - Y Lin
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - S Y Xu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - Y Zhuo
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - L Hua
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - J Li
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - X M Jiang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - M M Sun
- College of Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Y Z Huang
- Xuzhou Xinao Biotechnology Co., Xinyi 221400, PR China
| | - D Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - B Feng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China.
| |
Collapse
|
2
|
Inabu Y, Horike H, Yamano H, Taguchi Y, Okada S, Etoh T, Shiotsuka Y, Fujino R, Takahashi H. Effect of feeding sodium butyrate to beef female cows during pre- and post-partum period on concentrations of glucagon-like peptides in plasma and colostrum. Anim Sci J 2024; 95:e13961. [PMID: 38769804 DOI: 10.1111/asj.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
The objective of this study was to evaluate the effect of feeding beef cows with sodium butyrate during the late pregnancy and early post-partum periods on concentrations of glucagon-like peptide (GLP)-1 and 2 in plasma, colostrum, and transition milk. Twelve Japanese Black female cows were fed concentrate feed without (CON; n = 6) or with (BUTY; n = 6) sodium butyrate supplementation at 1.1% of dietary dry matter from -60 d relative to the expected parturition date to 4 d after parturition. Plasma total cholesterol concentration was higher for the BUTY than for the CON (P = 0.04). In addition, plasma GLP-1 concentration was higher for the BUTY than for the CON at 3 d after calving (P < 0.05). This study showed for the first time that GLP-1 is present in the colostrum of Japanese Black cows at higher concentrations as compared to in plasma (P < 0.01). On the other hand, no treatment effect was observed for concentrations of metabolite and hormone in colostrum and transition milk. In summary, feeding beef cows with sodium butyrate during the late gestation and early post-partum period likely increases plasma GLP-1 concentrations post-partum without affecting the components of colostrum and transition milk.
Collapse
Affiliation(s)
- Yudai Inabu
- Kuju Agricultural Research Center, Graduate School of Agriculture, Kyushu University, Oita, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiroshi Horike
- Kuju Agricultural Research Center, Graduate School of Agriculture, Kyushu University, Oita, Japan
| | - Haruki Yamano
- Kuju Agricultural Research Center, Graduate School of Agriculture, Kyushu University, Oita, Japan
| | - Yutaka Taguchi
- Kuju Agricultural Research Center, Graduate School of Agriculture, Kyushu University, Oita, Japan
| | - Shunnosuke Okada
- Kuju Agricultural Research Center, Graduate School of Agriculture, Kyushu University, Oita, Japan
| | - Tetsuji Etoh
- Kuju Agricultural Research Center, Graduate School of Agriculture, Kyushu University, Oita, Japan
| | - Yuji Shiotsuka
- Kuju Agricultural Research Center, Graduate School of Agriculture, Kyushu University, Oita, Japan
| | - Ryoichi Fujino
- Kuju Agricultural Research Center, Graduate School of Agriculture, Kyushu University, Oita, Japan
| | - Hideyuki Takahashi
- Kuju Agricultural Research Center, Graduate School of Agriculture, Kyushu University, Oita, Japan
| |
Collapse
|
3
|
He Z, Dong H. The roles of short-chain fatty acids derived from colonic bacteria fermentation of non-digestible carbohydrates and exogenous forms in ameliorating intestinal mucosal immunity of young ruminants. Front Immunol 2023; 14:1291846. [PMID: 38149240 PMCID: PMC10750390 DOI: 10.3389/fimmu.2023.1291846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Abstract
Short-chain fatty acids (SCFA) are a class of organic fatty acids that consist of 1 to 6 carbons in length. They are primary end-products which arise from non-digestible carbohydrates (NDC) fermentation of colonic bacteria. They are the fundamental energy sources for post-weaning ruminants. SCFA represent the major carbon flux of diet through the gut microbiota to the host. They also play a vital role in regulating cell expansion and gene expression of the gastrointestinal tract (GIT). Recently, remarkable progresses have been made in understanding the immunomodulatory effects of SCFA and their interactions with the host. The processes involved in this study encompassed inflammasome activation, proliferation of lymphocytes, and maturation of intestinal mucosal immunity maturation. It is important to note that the establishment and maturation of intestinal mucosal immune system are intricately connected to the barrier function of intestinal epithelial cells (IEC) and the homeostasis of gut microbiota. Thus, insights into the role of SCFA in enteric mucosal immunoreaction of calves will enhance our understanding of their various regulatory functions. This review aims to analyze recent evidence on the role of SCFA as essential signaling molecules between gut microbiota and animal health. Additionally, we provide a summary of current literature on SCFA in intestinal mucosal immune responses of dairy calves.
Collapse
Affiliation(s)
| | - Hong Dong
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
4
|
Kovács L, Pajor F, Bakony M, Fébel H, Edwards JE. Prepartum Magnesium Butyrate Supplementation of Dairy Cows Improves Colostrum Yield, Calving Ease, Fertility, Early Lactation Performance and Neonatal Vitality. Animals (Basel) 2023; 13:ani13081319. [PMID: 37106882 PMCID: PMC10135157 DOI: 10.3390/ani13081319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Butyrate promotes rumen epithelium growth and function; however, the effect of prepartum butyrate supplementation on dairy cow productivity, health and their offspring has not been extensively studied. Furthermore, no studies have investigated the effect of magnesium butyrate (MgB), which is also a source of magnesium. A trial was performed to test the hypothesis that prepartum MgB supplementation (105 g/cow/day) would increase colostrum quality and improve calving, newborn calf vitality and cow health. Multiparous Holstein cows were randomly assigned to MgB supplemented (n = 107) and Control groups (n = 112). Colostrum yield and the total yield of IgG, protein and lactose were higher (p ≤ 0.05) in the supplemented group. The calving assistance rate was lower (p ≤ 0.012), and the neonatal vitality score was higher (p ≤ 0.001) in the MgB group. Improved parameters related to cow health and fertility were observed in the supplemented group. The MgB group also had higher milk yield during the first week of lactation (p ≤ 0.001), and a higher (p ≤ 0.05) body condition score from 3 to 9 weeks after calving. In conclusion, prepartum MgB supplementation provides a wide range of benefits for dairy cows, as well as their newborn calves.
Collapse
Affiliation(s)
- Levente Kovács
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary
- Bona Adventure Ltd., 2100 Gödöllő, Hungary
| | - Ferenc Pajor
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary
| | - Mikolt Bakony
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Hedvig Fébel
- Nutrition Physiology Research Group, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, 2053 Herceghalom, Hungary
| | - Joan E Edwards
- Palital Feed Additives B.V., 5334 LH Velddriel, The Netherlands
| |
Collapse
|
5
|
You C, Xu Q, Chen J, Xu Y, Pang J, Peng X, Tang Z, Sun W, Sun Z. Effects of Different Combinations of Sodium Butyrate, Medium-Chain Fatty Acids and Omega-3 Polyunsaturated Fatty Acids on the Reproductive Performance of Sows and Biochemical Parameters, Oxidative Status and Intestinal Health of Their Offspring. Animals (Basel) 2023; 13:ani13061093. [PMID: 36978634 PMCID: PMC10044250 DOI: 10.3390/ani13061093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of the study was to investigate the comparative effects of different combinations of sodium butyrate (SB), medium-chain fatty acids (MCFAs), and omega-3 polyunsaturated fatty acids (n-3 PUFAs) on the reproductive performances of sows, as well as on the biochemical parameters, oxidative statuses, and intestinal health of the sucking piglets. A total of 30 sows were randomly allocated to five treatments: (1) control diet (CON); (2) CON with 1 g/kg of coated SB and 7.75 g/kg of coated MCFAs (SM); (3) CON with 1 g/kg of coated SB and 68.2 g/kg of coated n-3 PUFAs (SP); (4) CON with 7.75 g/kg of coated MCFAs and 68.2 g/kg of coated n-3 PUFAs (MP); (5) CON with 1 g/kg of coated SB, 7.75 g/kg of coated MCFAs and 68.2 g/kg of coated n-3 PUFA (SMP). The results showed that sows fed the SP, MP, and SMP diets had shorter weaning-to-estrus intervals than those fed the CON diet (p < 0.01). The piglets in the SM, SP, and MP groups showed higher increases in the plasma catalase and glutathione peroxidase activities than those of the CON group (p < 0.01). The diarrhea incidence of piglets in the SM, SP and SMP groups was lower than that of piglets in the CON group (p < 0.01). Additionally, the addition of SM, SP, MP, and SMP to the sow diets increased the contents of immunoglobulin A, immunoglobulin G, fat, and proteins in the colostrum (p < 0.01), as well as the plasma total superoxide dismutase activities (p < 0.01) in the suckling piglets, whereas it decreased the mRNA expressions of tumor necrosis factor-α, interleukin-1β, and toll-like receptor 4 in the jejunum mucosa of the piglets. The relative abundances of Prevotella, Coprococcus, and Blautia in the colonic digesta of the piglets were increased in the SM group (p < 0.05), and the relative abundances of Faecalibacterium increased in the SMP group (p < 0.05), compared with the CON group. The relative abundances of Collinsella, Blautia, and Bulleidia in the MP group were higher than those in the CON group (p < 0.05). Collectively, dietary combinations of fatty acids with different chain lengths have positive effects on the growth performances and intestinal health of suckling piglets.
Collapse
Affiliation(s)
- Caiyun You
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Qingqing Xu
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Jinchao Chen
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Yetong Xu
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Xie Peng
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Weizhong Sun
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Zhihong Sun
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Zeng X, Li S, Liu L, Cai S, Ye Q, Xue B, Wang X, Zhang S, Chen F, Cai C, Wang F, Zeng X. Role of functional fatty acids in modulation of reproductive potential in livestock. J Anim Sci Biotechnol 2023; 14:24. [PMID: 36788613 PMCID: PMC9926833 DOI: 10.1186/s40104-022-00818-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/04/2022] [Indexed: 02/16/2023] Open
Abstract
Fatty acids are not only widely known as energy sources, but also play important roles in many metabolic pathways. The significance of fatty acids in modulating the reproductive potential of livestock has received greater recognition in recent years. Functional fatty acids and their metabolites improve follicular development, oocyte maturation and embryo development, as well as endometrial receptivity and placental vascular development, through enhancing energy supply and precursors for the synthesis of their productive hormones, such as steroid hormones and prostaglandins. However, many studies are focused on the impacts of individual functional fatty acids in the reproductive cycle, lacking studies involved in deeper mechanisms and optimal fatty acid requirements for specific physiological stages. Therefore, an overall consideration of the combination and synergy of functional fatty acids and the establishment of optimal fatty acid requirement for specific stages is needed to improve reproductive potential in livestock.
Collapse
Affiliation(s)
- Xiangzhou Zeng
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Siyu Li
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Lu Liu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Shuang Cai
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Qianhong Ye
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei China
| | - Bangxin Xue
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Xinyu Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Shihai Zhang
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Fang Chen
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Chuanjiang Cai
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Fenglai Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193, Beijing, P. R. China. .,Beijing Key Laboratory of Bio feed Additives, 100193, Beijing, P. R. China.
| |
Collapse
|
7
|
Lin Y, Li D, Ma Z, Che L, Feng B, Fang Z, Xu S, Zhuo Y, Li J, Hua L, Wu D, Zhang J, Wang Y. Maternal tributyrin supplementation in late pregnancy and lactation improves offspring immunity, gut microbiota, and diarrhea rate in a sow model. Front Microbiol 2023; 14:1142174. [PMID: 37168115 PMCID: PMC10165498 DOI: 10.3389/fmicb.2023.1142174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/15/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Several studies have evaluated the effects of tributyrin on sow reproductive performance; however, none of these studies have investigated the effects of tributyrin on sow gut microbiota and its potential interactions with immune systems and milk composition. Therefore, we speculated that tributyrin, the combination of butyrate and mono-butyrin without odor, would reach the hindgut and affect the intestinal microbiota composition and play a better role in regulating sow reproductive performance, gut flora, and health. Methods Thirty sows (Landrace × Yorkshire) were randomly divided into two groups: the control group (CON) and the tributyrin group (TB), which received basal diet supplemented with 0.05% tributyrin. The experimental period lasted for 35 days from late pregnancy to lactation. Results The results showed that TB supplementation significantly shortened the total parturition time and reduced the diarrhea rate in suckling piglets. On day 20 of lactation, the milk fat and protein levels increased by 9 and 4%, respectively. TB supplementation significantly improved the digestibility of dry material, gross energy, and crude fat in the sow diet, but had no significant effect on crude protein digestibility. Furthermore, TB supplementation increased the levels of IL-10, IL-6, and IgA in the blood of weaned piglets, but had no effect on maternal immunity. Analysis of the fecal microbial composition revealed that the addition of TB during late gestation and lactation increased the microbiota diversity in sows and piglets. At the phylum level, sows in the TB group had a slight increase in the relative abundance of Bacteroidota and Spirochaetota and a decrease in Firmicutes. At the order level, the relative abundance of Lactobacillales was increased in piglets and sows, and the TB group showed increased relative abundance of Enterobacterales and significantly decreased relative abundance of Oscillospirales in piglets. At family level, the relative abundance of Lactobacillaceae, Oscillospiraceae, and Christensenellaceae increased in sows, and the relative abundance of Enterobacteriaceae and Lactobacillaceae increased in piglets. At genus level, the relative abundance of Lactobacillus increased in sows and piglets, but the relative abundance of Subdoligranulum and Eubacterium_fissicatena_group decreased in piglets in the TB group. Discussion In conclusion, tributyrin supplementation shortened the farrowing duration and reduced the diarrhea rate of piglets by improving the inflammatory response and composition of gut microbiota in piglets and sows.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
- *Correspondence: Yan Lin,
| | - Dan Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Zhao Ma
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Lun Hua
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yuanxiao Wang
- Perstorp (Shanghai) Chemical Trading Co., Ltd., Shanghai, China
| |
Collapse
|
8
|
Zeng X, Li S, Ye Q, Cai S, Quan S, Liu L, Zhang S, Chen F, Cai C, Wang F, Qiao S, Zeng X. The Combined Use of Medium- and Short-Chain Fatty Acids Improves the Pregnancy Outcomes of Sows by Enhancing Ovarian Steroidogenesis and Endometrial Receptivity. Nutrients 2022; 14:nu14204405. [PMID: 36297089 PMCID: PMC9607977 DOI: 10.3390/nu14204405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acids play important roles in maintaining ovarian steroidogenesis and endometrial receptivity. Porcine primary ovarian granulosa cells (PGCs) and endometrial epithelial cells (PEECs) were treated with or without medium- and short-chain fatty acids (MSFAs) for 24 h. The mRNA abundance of genes was detected by fluorescence quantitative PCR. The hormone levels in the PGCs supernatant and the rate of adhesion of porcine trophoblast cells (pTrs) to PEECs were measured. Sows were fed diets with or without MSFAs supplementation during early gestation. The fecal and vaginal microbiomes were identified using 16S sequencing. Reproductive performance was recorded at parturition. MSFAs increased the mRNA abundance of genes involved in steroidogenesis, luteinization in PGCs and endometrial receptivity in PEECs (p < 0.05). The estrogen level in the PGC supernatant and the rate of adhesion increased (p < 0.05). Dietary supplementation with MSFAs increased serum estrogen levels and the total number of live piglets per litter (p < 0.01). Moreover, MSFAs reduced the fecal Trueperella abundance and vaginal Escherichia-Shigella and Clostridium_sensu_stricto_1 abundance. These data revealed that MSFAs improved pregnancy outcomes in sows by enhancing ovarian steroidogenesis and endometrial receptivity while limiting the abundance of several intestinal and vaginal pathogens at early stages of pregnancy.
Collapse
Affiliation(s)
- Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Siyu Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Qianhong Ye
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Shuang Quan
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Lu Liu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F University, Xi’an 712100, China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Biofeed Additives, Beijing 100193, China
- Correspondence:
| |
Collapse
|
9
|
Mohamed MY, Saba FE, Gomaa AAAI, Desoky ALI, Almwafy AA, AbdEl-Salam OM, Ibrahim EMM. Reproductive tract development and histomorphometric analysis of testes in neonatal Zaraibi kids raised on milk replacer supplemented with sodium butyrate. J Anim Physiol Anim Nutr (Berl) 2020; 104:812-822. [PMID: 32115763 DOI: 10.1111/jpn.13334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 01/04/2023]
Abstract
This study aimed to determine the effect of sodium butyrate (SB) on reproductive tract development and histomorphometric analysis of testes in neonatal kids, as well as on their growth, antioxidant status and some blood metabolites. Thirty-six neonatal Zaraibi kids were divided immediately after 4-5 days from birth into three equal groups (12 kids/ each). The first group (G1) received milk replacer (MR) at a rate of 10% of the body weight until the weaning. The second group (G2) received 9.7% MR supplemented with 0.3% SB. The third group (G3) received whole milk and served as a control. The results revealed that there was significant (p < .001) increase in total and daily gain between the G2 and G1 groups, whereas there was no significant change between G2 and G3 groups. Body condition score was slightly increased (p > .05) in G2 compared with G1. Serum total protein and cholesterol levels were significantly decreased in treated groups compared with the G3 group, on reverse globulin and glucose levels had no significant changes. Also, T3 and testosterone concentrations were significantly (p < .0001 & p < .05) higher in G3 and G2 than G1. Antioxidant status was enhanced through decreasing the oxidative marker and increasing antioxidant enzymes activity in G2. Testis parameters in G3 and G2 kids had the highest values, compared with G1. G1 and G2 had thin basement membrane of seminiferous tubules with few Leydig cells and pyknotic germinal epithelium, while G3 showed thick basement membrane, mild wide interstitial spaces with many Leydig cells. The tubular diameter was also significantly larger in the G3 and G2. It could be concluded that MR supplemented with SB can be used as alternative whole milk in suckling goat kids for maintaining reproductive tract and kids' performance through improving the antioxidant status.
Collapse
Affiliation(s)
- Mahmoud Yassin Mohamed
- Animal Physiology Division, Sheep and Goat Research Department, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Giza, Egypt
| | - Fatma E Saba
- Animal Husbandry Division, Sheep and Goat Research Department, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Giza, Egypt
| | - Abdelhameed A A I Gomaa
- Animal Husbandry Division, Sheep and Goat Research Department, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Giza, Egypt
| | - Ahmed L I Desoky
- Animal Husbandry Division, Sheep and Goat Research Department, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Giza, Egypt
| | - Ayman A Almwafy
- Toxicology Division, Veterinary Services Department, Animal Production Research Institute (APRI), Agricultural Research center (ARC), Giza, Egypt
| | - Omnia M AbdEl-Salam
- Animal Physiology Division, Sheep and Goat Research Department, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Giza, Egypt
| | - Eid M M Ibrahim
- Animal Husbandry Division, Sheep and Goat Research Department, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Giza, Egypt
| |
Collapse
|
10
|
Wang H, Ren E, Xiang X, Su Y, Zhu W. Dynamic Changes in Serum Metabolomic Profiles of Growing Pigs Induced by Intravenous Infusion of Sodium Butyrate. Metabolites 2020; 10:metabo10010020. [PMID: 31906303 PMCID: PMC7023161 DOI: 10.3390/metabo10010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022] Open
Abstract
This study aimed to explore the dynamic changes in metabolite profiles and metabolism pathways in the serum of growing pigs by intravenous infusion of sodium butyrate (SB). Fourteen crossbred growing barrows (BW = 23.70 ± 1.29 kg) fitted with jugular cannula were randomly allocated to the SB and control (Con) groups, each group consisted of seven replicates (pens), with one pig per pen. At 9:00 of each day during the experimental period, pigs in the SB group were infused with 10 mL of SB (200 mmol/L, pH 7.4, 37 °C) via precaval vein, while the Con group was treated with the same volume of physiological saline. On day 4, the blood of each pig was collected at 0, 30, 60, and 120 min after the intravenous infusion. Metabolites in the serum were detected by gas chromatograph-mass spectrometry analysis. Pathway analysis of metabolomic profiles showed that the differential metabolites mainly enriched in amino acid metabolism, lipid-related metabolism, and the tricarboxylic acid (TCA) cycle. More importantly, the relative concentrations of all eight essential amino acids, five non-essential amino acids, and two amino acid derivatives were decreased by the parenteral SB. In addition, SB significantly increased the relative concentrations of eicosanoic acid and octadecanoic acid and decreased the relative concentration of glycerol-3-phosphate at 0 min (three days after intravenous infusion of SB), which suggests that parenteral SB may increase stearates mobilization and decrease the biosynthesis of stearates. In conclusion, intravenous infusion of SB may induce more amino acids to synthesize proteins and affect fat metabolism through increasing fat mobilization and decreasing the biosynthesis of stearates. However, a further study is needed to understand the mechanism of extensive metabolic pathway changes induced by parenteral SB.
Collapse
Affiliation(s)
- Hongyu Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (E.R.); (W.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Erdu Ren
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (E.R.); (W.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoe Xiang
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (E.R.); (W.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-25-84395523
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (E.R.); (W.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Li JW, Fang B, Pang GF, Zhang M, Ren FZ. Age- and diet-specific effects of chronic exposure to chlorpyrifos on hormones, inflammation and gut microbiota in rats. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:68-79. [PMID: 31400786 DOI: 10.1016/j.pestbp.2019.05.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/15/2019] [Accepted: 05/24/2019] [Indexed: 05/28/2023]
Abstract
Chlorpyrifos is a pesticide frequently detected in food and has been reported to disturb endocrine and gut health, which was regulated by gut microbiota and enteroendocrine cells. In this study, newly weaned (3 week) and adult (8 week) male rats fed a normal- or high- fat diet were chronically exposed to 0.3 mg chlorpyrifos/kg bodyweight/day. The effects of chlorpyrifos exposure on serum hormone levels, proinflammatory cytokines and gut microbiota were evaluated. Chronic exposure to chlorpyrifos significantly decreased the concentrations of luteinizing hormone, follicule stimulating hormone and testosterone, which was found only in the normal-fat diet. The counteracted effect of high-fat diet was also found in gut hormones and proinflammatory cytokines. Significantly higher concentrations of glucagon-like peptide-1, pancreatic polypeptide, peptide tyrosine tyrosine (PYY), ghrelin, gastric inhibitory poly-peptide, IL-6, monocyte chemoattractant protein-1, and TNF-α were found in rats exposed to chlorpyrifos beginning at newly weaned, whereas only the PYY, ghrelin and IL-6 concentrations increased significantly in rats exposed in adulthood. Furthermore, a decrease in epinephrine induced by chlorpyrifos exposure was found in rats exposed to chlorpyrifos beginning at newly weaned, regardless of their diet. Chlorpyrifos-induced disturbances in the microbiome community structure were more apparent in rats fed a high-fat diet and exposed beginning at newly weaned. The affected bacteria included short-chain fatty acid-producing bacteria (Romboutsia, Turicibacter, Clostridium sensu stricto 1, norank_f_Coriobacteriaceae, Faecalibaculum, Parasutterella and norank_f__Erysipelotrichaceae), testosterone-related genus (Turicibacter, Brevibacterium), pathogenic bacteria (Streptococcus), and inflammation-related bacteria (unclassified_f__Ruminococcaceae, Ruminococcaceae_UCG-009, Parasutterella, Oscillibacter), which regulated the endocrine system via the hypothalamic-pituitary-adrenal axis, as well as the immune response and gut barrier. Early exposure accelerated the endocrine-disturbing effect and immune responses of chlorpyrifos, although these effects can be eased or recovered by a high-fat diet. This study helped clarify the relationship between disrupted endocrine function and gut microbiota dysbiosis induced by food contaminants such as pesticides.
Collapse
Affiliation(s)
- Jin-Wang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bing Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Guo-Fang Pang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Zhang
- School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Fa-Zheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing 100083, China
| |
Collapse
|
12
|
Alhaj HW, Li Z, Shan T, Dai P, Zhu P, Li Y, Alsiddig MA, Abdelghani E, Li C. Effects of dietary sodium butyrate on reproduction in adult breeder roosters. Anim Reprod Sci 2018; 196:111-119. [PMID: 30037703 DOI: 10.1016/j.anireprosci.2018.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 06/28/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022]
Abstract
Sodium butyrate (SB) is a novel feed additive in poultry production. This study aimed to evaluate the effects of dietary supplementation of SB on the reproductive performance of the rooster. Three hundred 22-week-old roosters were randomly divided into 2 dietary treatment groups of 6 pen replicates, a basal diet (control) group and a basal diet with SB gruop. The supplementation of SB was carried out through 23 consecutive weeks from 22 to 45 weeks of age. During this period, the live-weight was measured weekly while semen samples were collected every two weeks. Three time-points were chosen for analysis (30, 35 and 45 weeks of age). The results showed that SB improved the semen volume and sperm motility at 30 and 35 weeks of age (P < 0.05), increased the sperm concentration and decreased the abnormal sperm percentage during the whole experimental period (P < 0.05). These improvements were accompanied by increased testosterone levels at 30 and 35 weeks of age (P < 0.05). Moreover, dietary supplementation of SB also increased the enzyme activities of glutathione peroxidase (GPx) at 30 and 35 weeks of age and superoxide dismutase (SOD) at 45 weeks of age in the testes of roosters (P < 0.05). These results suggest that SB may promote testicular growth by increasing the antioxidant capacity and testosterone hormone secretion in adult roosters.
Collapse
Affiliation(s)
- Hind Widaa Alhaj
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tipeng Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengyuan Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiji Zhu
- Jiangsu Lihua Animal Husbandry Stock Co., LTD, Changzhou 213168, China
| | - Yansen Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Murtada A Alsiddig
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ezaldeen Abdelghani
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Brenmoehl J, Walz C, Spitschak M, Wirthgen E, Walz M, Langhammer M, Tuchscherer A, Naumann R, Hoeflich A. Partial phenotype conversion and differential trait response to conditions of husbandry in mice. J Comp Physiol B 2017; 188:527-539. [PMID: 29214347 PMCID: PMC5920005 DOI: 10.1007/s00360-017-1138-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 01/07/2023]
Abstract
Functional genome analysis usually is performed on the level of genotype–phenotype interaction. However, phenotypes also depend on the relations between genomes and environment. In our experimental system, we observed differential response to environmental factors defined by different conditions of husbandry in a semi-barrier unit or in a SPF (specific pathogen free) barrier unit, which resulted in partial reversal of phenotypes previously observed under semi-barrier conditions. To provide an update of basic phenotypes in unselected and randomly mated controls (DUC) and long-term selected DUhTP (Dummerstorf high treadmill performance) mice in the SPF facility, we compared growth parameters, reproductive performance, the accretion of muscle and fat mass, physical activity, and running performance as well as food intake in all experimental groups. For selected parameters, the comparative analysis spans more than 30 generations. In DUC mice, under SPF conditions a more than threefold (P < 0.0001) higher subcutaneous fat mass, higher muscle mass by about 25% (P < 0.0001), but lower epididymal fat mass in DUhTP mice by about 20% (P < 0.0001) were observed. In SPF husbandry, body weight increased to a stronger extent in adult DUC mice (≈ 20%; P < 0.0001) than in DUhTP mice (≈ 8%; P = 0.001). The concentrations of IGF-1 and IGFBPs in the serum as well as the liver weights were similar in all experimental groups, indicating growth effects independent of the somatotropic axis. Under SPF conditions the litter size at birth increased in DUC mice (P < 0.001) but not in DUhTP mice. The differential effect of husbandry on body weights at day 21 and concentrations of triglycerides in the serum of our model were due to the different diets used in the semi-barrier and in the SPF facility. Our results demonstrate differential trait response to environmental factors resulting in partial phenotype conversion in our experimental system. The existence of conditional phenotypes as a result of genotype–environment interactions points to the importance of environmental factors in functional genome analysis.
Collapse
Affiliation(s)
- Julia Brenmoehl
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Christina Walz
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Marion Spitschak
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Elisa Wirthgen
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Michael Walz
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Martina Langhammer
- Institute Biometry and Genetics, Leibniz-Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute Biometry and Genetics, Leibniz-Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany
| | - Andreas Hoeflich
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
14
|
He B, Guo H, Gong Y, Zhao R. Lipopolysaccharide-induced mitochondrial dysfunction in boar sperm is mediated by activation of oxidative phosphorylation. Theriogenology 2017; 87:1-8. [DOI: 10.1016/j.theriogenology.2016.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/08/2016] [Accepted: 07/27/2016] [Indexed: 12/13/2022]
|
15
|
Dong W, Jia Y, Liu X, Zhang H, Li T, Huang W, Chen X, Wang F, Sun W, Wu H. Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC. J Endocrinol 2017; 232:71-83. [PMID: 27799462 DOI: 10.1530/joe-16-0322] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 10/25/2016] [Indexed: 01/04/2023]
Abstract
Oxidative stress contributes to the pathogenesis of diabetic nephropathy (DN). Nuclear factor erythroid 2-related factor 2 (NRF2) plays a key role in cellular defense against oxidative stress. NRF2 activators have shown promising preventive effects on DN. Sodium butyrate (NaB) is a known activator of NRF2. However, it is unknown whether NRF2 is required for NaB protection against DN. Therefore, streptozotocin-induced diabetic C57BL/6 Nrf2 knockout and their wild-type mice were treated in the presence or absence of NaB for 20 weeks. Diabetic mice, but not NaB-treated diabetic mice, developed significant renal oxidative damage, inflammation, apoptosis, fibrosis, pathological changes and albuminuria. NaB inhibited histone deacetylase (HDAC) activity and elevated the expression of Nrf2 and its downstream targets heme oxygenase 1 and NAD(P)H dehydrogenase quinone 1. Notably, deletion of the Nrf2 gene completely abolished NaB activation of NRF2 signaling and protection against diabetes-induced renal injury. Interestingly, the expression of Kelch-like ECH-associated protein 1, the negative regulator of NRF2, was not altered by NaB under both diabetic and non-diabetic conditions. Moreover, NRF2 nuclear translocation was not promoted by NaB. Therefore, the present study indicates, for the first time, that NRF2 plays a key role in NaB protection against DN. Other findings suggest that NaB may activate Nrf2 at the transcriptional level, possibly by the inhibition of HDAC activity.
Collapse
Affiliation(s)
- Wenpeng Dong
- Dialysis CenterDaqing Oilfield General Hospital, Daqing, Heilongjiang, People's Republic of China
- Department of NephrologyThe Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Ye Jia
- Department of NephrologyThe First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xiuxia Liu
- Department of Clinical LaboratoryThe Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Huan Zhang
- Operating theatreChina-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Tie Li
- Department of Acupuncture and TuinaChangchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Wenlin Huang
- School of Science and TechnologyGeorgia Gwinnett College, Lawrenceville, Georgia, USA
| | - Xudong Chen
- Gastroenterology Department No. 1Jilin Central General Hospital, Jilin, Jilin, People's Republic of China
| | - Fuchun Wang
- Department of Acupuncture and TuinaChangchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
| | - Weixia Sun
- Department of NephrologyThe First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Hao Wu
- Department of Acupuncture and TuinaChangchun University of Chinese Medicine, Changchun, Jilin, People's Republic of China
- Department of NephrologyThe Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|