1
|
Kabpha A, Phonsiri K, Pasomboon P, Boonanuntanasarn S. Effects of dietary supplementation of estradiol-17β during fry stage on growth, physiological and immune parameters and gonadal gene expression in adult snakeskin gourami. Animal 2023; 17:100950. [PMID: 37660411 DOI: 10.1016/j.animal.2023.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 09/05/2023] Open
Abstract
In snakeskin gourami (Trichopodus pectoralis), females are generally larger than males, and estradiol-17β (E2)-sex reversal to produce female monosex has gained interest in this species. In this study, we aimed to investigate the effects of E2-induced sex reversal on growth, physiological and immune parameters, and gonadal gene expression in adult snakeskin gourami. Fry (7 days posthatching) were divided into different experimental groups based on the dose of E2: control (no E2 (0 mg kg-1) supplementation), E2-100 (100 mg kg-1), E2-200 (200 mg kg-1), and E2-300 (300 mg kg-1), fed with the E2 doses for 90 d and cultured for 11 months (adult stage). The findings revealed that E2 supplementation produced 88.89-100% of female population. After 11 months of culture, the effects of sexual dimorphism on the growth performance of the E2-100 group were not significant compared to that on the growth performance of the control male and female groups; however, it improved significantly in the E2-200 and E2-300 groups (P < 0.05). E2 elevated the CP and fat contents in body in E2-200 and E2-300 groups (P < 0.05) compared to that in the control group. No sex differences in blood metabolites, haematological values, or immune parameters were identified. Nevertheless, E2-200 and E2-300 groups showed increased blood glucose, triglyceride, haemoglobin, and total immunoglobulin (P < 0.05) compared to control male fish. In addition, all concentrations of E2 increased alternative complement 50 (P < 0.05). Several genes, including bHLH, cyp19a1, daz, deadend, esrb, esrrg, gnrhr, gpa, gsg1l, hsd17β, mospd1, nanos2, p53, piwi2, rerg, rps6ka, tgfb, and vgr, showed differential expression between testis and ovary in control female and E2-treated groups. The expression patterns of the genes were similar in the ovary of the control female and E2-200-treated fish. In conclusion, the findings demonstrate that a feminisation duration of 7-97 days and two doses of E2 at 200 or 300 mg kg-1 successfully produced all-female stocks in snakeskin gourami. Furthermore, the findings showed that E2-treated females were maintained throughout adulthood and exhibited several superior characteristics to male fish. Together with the information generated on differentially expressed sex-related genes, these findings could enable the culturing of faster-growing sex to increase productivity and contribute to the development of intensive snakeskin gourami farming.
Collapse
Affiliation(s)
- A Kabpha
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand
| | - K Phonsiri
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand
| | - P Pasomboon
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand
| | - S Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
2
|
Kim YM, Shim JH, Park JS, Choi HJ, Jung KM, Lee KY, Park KJ, Han JY. Sequential verification of exogenous protein production in OVA gene-targeted chicken bioreactors. Poult Sci 2022; 102:102247. [PMID: 36335737 PMCID: PMC9640325 DOI: 10.1016/j.psj.2022.102247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
The chicken has potential as an efficient bioreactor system because of its outstanding protein production capacity and low cost. The CRISPR/Cas9-mediated gene-editing system enables production of highly marketable exogenous proteins in transgenic chicken bioreactors. However, because it takes approximately 18 mo to evaluate the recombinant protein productivity of the bioreactor due to the generation interval from G0 founders to G1 egg-laying hens, to verification of the exogenous protein at the early stage is difficult. Here we propose a system for sequential validation of exogenous protein production in chicken bioreactors as in hatching female chicks as well as in egg-laying hens. We generated chicken OVALBUMIN (OVA) EGFP knock-in (KI) chicken (OVA EGFP KI) by CRISPR/Cas9-mediated nonhomologous end joining at the chicken OVA gene locus. Subsequently, the estrogen analog, diethylstilbestrol (DES), was subcutaneously implanted in the abdominal region of 1-wk-old OVA EGFP KI female chicks to artificially increase OVALBUMIN expression. The oviducts of DES-treated OVA EGFP KI female chicks expressed OVA and EGFP at the 3-wk-old stage (10 d after DES treatment). We evaluated the expression of EGFP protein in the oviduct, along with the physical properties of eggs and egg white from OVA EGFP KI hens. The rapid identification and isolation of exogenous protein can be confirmed at a very early stage and high-yield production is possible by targeting the chicken oviduct.
Collapse
|
3
|
Cádiz MI, López ME, Díaz-Domínguez D, Cáceres G, Marin-Nahuelpi R, Gomez-Uchida D, Canales-Aguirre CB, Orozco-terWengel P, Yáñez JM. Detection of selection signatures in the genome of a farmed population of anadromous rainbow trout (Oncorhynchus mykiss). Genomics 2021; 113:3395-3404. [PMID: 34339816 DOI: 10.1016/j.ygeno.2021.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 11/26/2022]
Abstract
Domestication processes and artificial selection are likely to leave signatures that can be detected at a molecular level in farmed rainbow trout (Oncorhynchus mykiss). These signatures of selection are genomic regions that contain functional genetic variants conferring a higher fitness to their bearers. We genotyped 749 rainbow trout from a commercial population using a rainbow trout Axiom 57 K SNP array panel and identified putative genomic regions under selection using the pcadapt, Composite Likelihood Ratio (CLR) and Integrated Haplotype Score (iHS) methods. After applying quality-control pipelines and statistical analyses, we detected 12, 96 and 16 SNPs putatively under selection, associated with 96, 781 and 115 candidate genes, respectively. Several of these candidate genes were associated with growth, early development, reproduction, behavior and immune system traits. In addition, some of the SNPs were found in interesting regions located in autosomal inversions on Omy05 and Omy20. These findings could represent a genome-wide map of selection signatures in farmed rainbow trout and could be important in explaining domestication and selection for genetic traits of commercial interest.
Collapse
Affiliation(s)
- María I Cádiz
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, La Pintana, 8820808 Santiago, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - María E López
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | | | - Giovanna Cáceres
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, La Pintana, 8820808 Santiago, Chile
| | - Rodrigo Marin-Nahuelpi
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, La Pintana, 8820808 Santiago, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - Daniel Gomez-Uchida
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - Cristian B Canales-Aguirre
- Centro i~Mar, Universidad de Los Lagos, Camino Chinquihue 6 km, Puerto Montt, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | | | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, La Pintana, 8820808 Santiago, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile.
| |
Collapse
|
4
|
Lu L, Xu X, Du X, Zeng T, Yang T, Chen Y, Tao Z, Zhong S, Wen J, Zhou C. Transcriptome analyses to reveal the dynamic change mechanism of pigeon magnum during one egg-laying cycle. Mol Reprod Dev 2020; 87:1141-1151. [PMID: 33084116 DOI: 10.1002/mrd.23428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022]
Abstract
We analyzed the transcriptome of pigeon magnum in three stages (C1: pre-ovulation, C2: post-ovulation, C3: 5-6 days after ovulation) to elucidate the molecular and cellular events associated with morphological changes during the laying cycle. We observed that C1 was highly developed, apoptosis rate was highest in C2, and C3 attained the smallest size. Through RNA-sequencing, we obtained 54,764,938 (97.2%) high-quality clean reads that aligned to 20,767 genes. Gene expression profile analysis showed the greatest difference between C1 and C3; 3966 differentially expressed genes (DEGs) were identified, of which 2250 genes were upregulated and 1716 genes were downregulated in C1. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that protein processing and transport activities were prominent in C1, and upregulated genes included those related to signal recognition particle (SRP), signal recognition particle receptor (SRPR), translocon, GRP78, RRBP1, TRAP, TRAM1, and OST. Egg white protein-related gene expression was highest, with OVALY being the most highly expressed. In C2, apoptosis-related gene expression was higher than in C1, and fatty acid metabolism was active, which may be correlated with magnum tissue regression. Collagen- and laminin-related gene expression was prominent in C1 and C3, indicating roles in egg white protein generation and magnum reconstruction. PR gene expression was highest and exhibited drastic change in the three groups, indicating that PR and its regulation may be involved in changes in magnum morphology and function. Through the identification and functional analysis of DEGs and other crucial genes, this may contribute to understand the egg white protein production, magnum tissue regression, and magnum regeneration mechanisms.
Collapse
Affiliation(s)
- Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, China
| | - Xiaoqin Xu
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
| | - Xue Du
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, China
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, China
| | - Tingbang Yang
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
| | - Yao Chen
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
| | - Zhengrong Tao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, China
| | - Shengliang Zhong
- PingYang XingLiang Pigeon Farming Co. Ltd., Wenzhou, Zhejiang, China
| | - Jihui Wen
- PingYang AoFeng Pigeon Farming Co. Ltd., Wenzhou, Zhejiang, China
| | - Caiquan Zhou
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
5
|
Yin L, Yu L, Zhang L, Ran J, Li J, Yang C, Jiang X, Du H, Hu X, Liu Y. Transcriptome analysis reveals differentially expressed genes and pathways for oviduct development and defense in prelaying and laying hens. Am J Reprod Immunol 2019; 82:e13159. [PMID: 31206849 DOI: 10.1111/aji.13159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/01/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023] Open
Abstract
PROBLEM The oviduct plays an indispensable role in the formation of eggs, especially the magnum and uterus. The identification of oviduct development in different stages will help to target candidate genes and pathways in regulation of albumen and eggshell formation, as well as defense mechanism in oviduct and egg. METHODS To identify the function differences and the molecular defense mechanism of the oviduct and egg, we performed transcriptome sequencing analysis of the magnum and uterus in 120-d-old and 300-d-old Lohmann layers, three birds in each group. RESULTS With fold changes (log2 ratio) ≥ 2 and false discovery rate (FDR) < 0.01, RNA-Seq revealed 1,040 genes expressed differentially in the magnum and 595 genes in the uterus. By combining GO enrichment and KEGG pathway analysis, it served to show that gene activities of the magnum and uterus in prelaying chickens were more likely to concentrate on growth and development, and after egg-laying, they were mainly inclined to enhance the substances transmembrane transport and secretion activities. We further characterized 1579 new genes, while only 803 of them were functionally annotated. A complex mixture of proteins related to defense was measured in this study. A subset of avian β-defensins (AvBDs) and ovodefensins (OvoDs), that is, AvBD12, AvBD11, AvBD10, OvoDA1, OvoDB1, OvoDA2, OvoDA3, and OvoDBβ, was detected to express in the magnum of laying hens at high levels. CONCLUSION Collectively, the identification and functional analysis of these differentially expressed genes (DEGs), as well as specific expression of avian defensins, may contribute to understand the development and defense mechanisms of oviduct and eggs.
Collapse
Affiliation(s)
- Lingqian Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Lintian Yu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Guangxi Agricultural Vocational College, Nanning, China
| | - Long Zhang
- Institute of Ecology, Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Jinshan Ran
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jingjing Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chaowu Yang
- Sichuan Animal Science Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaosong Jiang
- Sichuan Animal Science Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Huarui Du
- Sichuan Animal Science Academy, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaofang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Abstract
In humans, hormonal regulation is crucial for the preparation of uterine environment leading to either successful implantation or menstrual cycle. Estrogen is a pivotal female steroid hormone that regulates the uterine dynamics along with progesterone in the estrous and menstrual cycles in humans. Estrogen signals act via nuclear estrogen receptor or membrane-bound receptor. The membrane-bound estrogen receptor plays a crucial role in the rapid response of estrogen in the uterine epithelium. Recently, RASD1 has received attention as a novel signal transducer of estrogen in various systems including female reproductive organs. In this review, we discuss the regulation of estrogen and RASD1 signaling in the uterus and also provide insights into RAS as a novel signaling molecule in repeated implantation failure.
Collapse
Affiliation(s)
- Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Youngsok Choi
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea
| |
Collapse
|