1
|
Messina M, Barnes S, Setchell KD. Perspective: Isoflavones-Intriguing Molecules but Much Remains to Be Learned about These Soybean Constituents. Adv Nutr 2025; 16:100418. [PMID: 40157603 DOI: 10.1016/j.advnut.2025.100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/20/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Isoflavones are naturally occurring compounds found in a wide range of plants, but among commonly consumed foods are especially abundant in soybeans and foods derived from this legume. Much of the substantial amount of research conducted on soy protein and soy foods over the past 30 y is because of their isoflavone content. Research interest in isoflavones increased dramatically beginning in the early 1990s as evidence highlighted their possible role in the prevention of a wide range of cancers, including breast, prostate, and colon cancer. Recognition that isoflavones preferentially bind to estrogen receptor (ER)β in comparison with ERα provided a conceptual basis for classifying these diphenolic molecules as selective ER modulators (SERMs). Isoflavone research soon greatly expanded beyond cancer to include areas such as coronary artery disease, bone health, cognitive function, and vasomotor symptoms of menopause. Nevertheless, safety concerns about isoflavones, based primarily on the results of rodent studies and presumed estrogenic effects, also arose. However, recent work challenges the traditional view of the estrogenicity of isoflavones. Furthermore, safety concerns have largely been refuted by intervention and population studies. On the other hand, investigation of the proposed benefits of isoflavones has produced inconsistent data. The small sample size and short duration common to many intervention trials, combined with marked interindividual differences in isoflavone metabolism, likely contribute to the conflicting findings. Also, many different intervention products have been employed, which vary not only in the total amount, but also in the relative proportion of the 3 soybean isoflavones, and the form in which they are delivered (glycoside compared with aglycone). For those interested in exploring the proposed benefits of isoflavones, studies justify an intake recommendation of ∼50 mg/d, an amount provided by ∼2 servings of traditional Asian soy foods.
Collapse
Affiliation(s)
- Mark Messina
- Nutrition Science and Research, Soy Nutrition Institute Global, Washington, DC, United States.
| | - Stephen Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kenneth Dr Setchell
- Clinical Mass Spectrometry, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
2
|
Shea Z, Ogando do Granja M, Fletcher EB, Zheng Y, Bewick P, Wang Z, Singer WM, Zhang B. A Review of Bioactive Compound Effects from Primary Legume Protein Sources in Human and Animal Health. Curr Issues Mol Biol 2024; 46:4203-4233. [PMID: 38785525 PMCID: PMC11120442 DOI: 10.3390/cimb46050257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The global demand for sustainable and nutritious food sources has catalyzed interest in legumes, known for their rich repertoire of health-promoting compounds. This review delves into the diverse array of bioactive peptides, protein subunits, isoflavones, antinutritional factors, and saponins found in the primary legume protein sources-soybeans, peas, chickpeas, and mung beans. The current state of research on these compounds is critically evaluated, with an emphasis on the potential health benefits, ranging from antioxidant and anticancer properties to the management of chronic diseases such as diabetes and hypertension. The extensively studied soybean is highlighted and the relatively unexplored potential of other legumes is also included, pointing to a significant, underutilized resource for developing health-enhancing foods. The review advocates for future interdisciplinary research to further unravel the mechanisms of action of these bioactive compounds and to explore their synergistic effects. The ultimate goal is to leverage the full spectrum of benefits offered by legumes, not only to advance human health but also to contribute to the sustainability of food systems. By providing a comprehensive overview of the nutraceutical potential of legumes, this manuscript sets a foundation for future investigations aimed at optimizing the use of legumes in the global pursuit of health and nutritional security.
Collapse
Affiliation(s)
- Zachary Shea
- United States Department of Agriculture–Agricultural Research Service, Raleigh Agricultural Research Station, Raleigh, NC 27606, USA;
| | - Matheus Ogando do Granja
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Elizabeth B. Fletcher
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Yaojie Zheng
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Patrick Bewick
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Zhibo Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
- Donald Danforth Plant Science Center, Olivette, MO 63132, USA
| | - William M. Singer
- Center for Advanced Innovation in Agriculture, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| |
Collapse
|
3
|
Shao Y, Xu J, Wang M, Ren Y, Wei M, Tian B, Luo J, Loor JJ, Shi H. Preliminary Results on the Effects of Soybean Isoflavones on Growth Performance and Ruminal Microbiota in Fattening Goats. Animals (Basel) 2024; 14:1188. [PMID: 38672337 PMCID: PMC11047704 DOI: 10.3390/ani14081188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Soybean isoflavones (SIFs), a group of secondary metabolites, have antioxidant, anti-inflammatory, and hormone-like activities. Supplementation with SIFs in the diet was reported to promote lactation performance in ruminants. The present study was performed to further decipher the effect of various concentrations of SIFs on growth and slaughter performance, serum parameters, meat quality, and ruminal microbiota in fattening goats. After a two-week acclimation, a total of 27 5-month-old Guanzhong male goats (18.29 ± 0.44 kg) were randomly assigned to control (NC), 100 mg/d SIF (SIF1), or 200 mg/d SIF (SIF2) groups. The experimental period lasted 56 days. The weight of the large intestine was greater (p < 0.05) in the SIF1 and SIF2 groups compared with the NC group. Meat quality parameters indicated that SIF1 supplementation led to lower (p < 0.05) cooking loss and shear force (0.05 < p < 0.10). The 16S rRNA sequencing analysis demonstrated that SIF1 supplementation led to lower (p < 0.05) proportions of Papillibacter and Prevotellaceae_UCG-004 but greater (p < 0.05) CAG-352 abundance in the rumen; these responses might have contributed to the improvement in production performance. In conclusion, meat quality and ruminal microbiome could be manipulated in a positive way by oral supplementation with 100 mg/d of SIFs in fattening goats. Thus, this study provides new insights and practical evidence for the introduction of SIFs as a novel additive in goat husbandry.
Collapse
Affiliation(s)
- Yuexin Shao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Junhong Xu
- Weinan Agricultural Products Quality and Safety Inspection and Testing Center, Weinan 714000, China;
| | - Mengyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Yalun Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Manhong Wei
- College of Animal Engineering, Yangling Vocational & Technical College, Yangling 712100, China;
| | - Bowen Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Jun Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Huaiping Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.S.); (M.W.); (Y.R.); (B.T.)
| |
Collapse
|
4
|
Li Y, Cai L, Bi Q, Sun W, Pi Y, Jiang X, Li X. Genistein Alleviates Intestinal Oxidative Stress by Activating the Nrf2 Signaling Pathway in IPEC-J2 Cells. Vet Sci 2024; 11:154. [PMID: 38668421 PMCID: PMC11053601 DOI: 10.3390/vetsci11040154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
In the weaning period, piglets often face oxidative stress, which will cause increased diarrhea and mortality. Genistein, a flavonoid, which is extracted from leguminous plants, possesses anti-inflammatory and antioxidative bioactivities. However, little is known about whether genistein could attenuate the oxidative stress that occurs in porcine intestinal epithelial cells (IPEC-J2). Herein, this experiment was carried out to investigate the protective effects of genistein in the IPEC-J2 cells oxidative stress model. Our results disclosed that H2O2 stimulation brought about a significant diminution in catalase (CAT) activity and cell viability, as well as an increase in the levels of reactive oxygen species (ROS) in IPEC-J2 cells (p < 0.05), whereas pretreating cells with genistein before H2O2 exposure helped to alleviate the reduction in CAT activity and cell viability (p < 0.05) and the raise in the levels of ROS (p = 0.061) caused by H2O2. Furthermore, H2O2 stimulation of IPEC-J2 cells remarkably suppressed gene level Nrf2 and CAT expression, in addition to protein level Nrf2 expression, but pretreating cells with genistein reversed this change (p < 0.05). Moreover, genistein pretreatment prevented the downregulation of occludin expression at the gene and protein level, and ZO-1 expression at gene level (p < 0.05). In summary, our findings indicate that genistein possesses an antioxidant capacity in IPEC-J2 cells which is effective against oxidative stress; the potential mechanism may involve the Nrf2 signaling pathway. Our findings could offer a novel nutritional intervention strategy to enhance the intestinal health of piglets during the weaning process.
Collapse
Affiliation(s)
- Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (L.C.); (Q.B.); (W.S.); (X.J.)
| | - Long Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (L.C.); (Q.B.); (W.S.); (X.J.)
| | - Qingyue Bi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (L.C.); (Q.B.); (W.S.); (X.J.)
- College of Agriculture, Yanbian University, Yanji 133000, China
| | - Wenjuan Sun
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (L.C.); (Q.B.); (W.S.); (X.J.)
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (L.C.); (Q.B.); (W.S.); (X.J.)
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (L.C.); (Q.B.); (W.S.); (X.J.)
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.L.); (L.C.); (Q.B.); (W.S.); (X.J.)
| |
Collapse
|
5
|
Erkanli ME, El-Halabi K, Kim JR. Exploring the diversity of β-glucosidase: Classification, catalytic mechanism, molecular characteristics, kinetic models, and applications. Enzyme Microb Technol 2024; 173:110363. [PMID: 38041879 DOI: 10.1016/j.enzmictec.2023.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/04/2023]
Abstract
High-value chemicals and energy-related products can be produced from biomass. Biorefinery technology offers a sustainable and cost-effective method for this high-value conversion. β-glucosidase is one of the key enzymes in biorefinery processes, catalyzing the production of glucose from aryl-glycosides and cello-oligosaccharides via the hydrolysis of β-glycosidic bonds. Although β-glucosidase plays a critical catalytic role in the utilization of cellulosic biomass, its efficacy is often limited by substrate or product inhibitions, low thermostability, and/or insufficient catalytic activity. To provide a detailed overview of β-glucosidases and their benefits in certain desired applications, we collected and summarized extensive information from literature and public databases, covering β-glucosidases in different glycosidase hydrolase families and biological kingdoms. These β-glucosidases show differences in amino acid sequence, which are translated into varying degrees of the molecular properties critical in enzymatic applications. This review describes studies on the diversity of β-glucosidases related to the classification, catalytic mechanisms, key molecular characteristics, kinetics models, and applications, and highlights several β-glucosidases displaying high stability, activity, and resistance to glucose inhibition suitable for desired biotechnological applications.
Collapse
Affiliation(s)
- Mehmet Emre Erkanli
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, United States
| | - Khalid El-Halabi
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, United States
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, United States.
| |
Collapse
|
6
|
White CS, Froebel LE, Dilger RN. A review on the effect of soy bioactive components on growth and health outcomes in pigs and broiler chickens. J Anim Sci 2024; 102:skae261. [PMID: 39234891 PMCID: PMC11452720 DOI: 10.1093/jas/skae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024] Open
Abstract
While soy products have long been included in animal diets for their macronutrient fractions, more recent work has focused on the immunomodulatory potential of bioactive components of this feedstuff. This comprehensive review aims to identify the current state of knowledge on minor soy fractions and their impact on the health and growth of pigs and broiler chickens to better direct future research. A total of 7,683 publications were screened, yet only 151 were included in the review after exclusion criteria were applied, with the majority (n = 87) of these studies conducted in pigs. In both species, antinutritional factors and carbohydrates, like stachyose and raffinose, were the most frequently studied categories of bioactive components. For both categories, most publications were evaluating ways to decrease the prevalence of the examined components in soy products, especially when fed at earlier ages. Overall, most studies evaluated the effect of the bioactive component on performance-related outcomes (n = 137), followed by microbial analysis (n = 38) and intestinal structure and integrity measures (n = 37). As they were analyzed in the majority of publications, antinutritional factors were also the most frequently investigated category in relation to each specific outcome. This trend did not hold true for microbiota- or antioxidant-associated outcomes, which were most often studied with carbohydrates or polyphenols, respectively. Changes to the host microbiota have the potential to modulate the immune system, feed intake, and social behaviors through the microbiota-gut-brain axis, though few publications measured behavior and brain characteristics as an outcome. Other identified gaps in research included the study of soy saponins, as most research focused on saponins derived from other plants, the study of phytosterols outside of their role in cardiovascular or reproductive outcomes, and the general examination of bioactive peptides. Overall, given soy's popularity as a current constituent of animal feed, additional research into these bioactive components may serve to define the value of soy products through their potential ability to support the productivity, health, and well-being of animals.
Collapse
Affiliation(s)
- Cameron S White
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Laney E Froebel
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
7
|
Shao Y, Huang J, Wei M, Fan L, Shi H, Shi H. Soybean isoflavone promotes milk yield and milk fat yield through the ERα-mediated Akt/mTOR pathway in dairy goats. J Anim Sci 2024; 102:skae352. [PMID: 39657106 DOI: 10.1093/jas/skae352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
Soybean isoflavone (SIF) in soybeans are natural phytoestrogens, which is functioned as an estrogen agonistic or antagonistic. SIF regulates the capacity of animals to synthesize triacylglycerols by directly utilizing long-chain fatty acids. However, few studies have focused on its regulatory lipid metabolism in lactating dairy goats. The objective of this study was to investigate the influence of SIF on milk yield and composition using Saanen dairy goats as a model, employing both in vivo and in vitro approaches. In the in vivo phase, a total of 20 goats were randomly divided into 2 groups: the control group fed a basal diet, and the experimental group fed a basal diet supplemented with SIF at a dosage of 100 mg/d. The results underscored a significant elevation in serum estrogen and prolactin levels in the SIF-supplemented group (P < 0.05). Notably, SIF supplementation also displayed a higher milk fat percentage (P = 0.03). Transitioning to in vitro experimentation, the addition of SIF (75 µM) to goat mammary epithelial cells exhibited a pronounced effect on cell proliferation. It spurred cell proliferation and led to an increase in triacylglycerol levels (P < 0.05). Consistently, SIF showcased an enhancement in the expression of key genes associated with milk fat de novo synthesis. SIF demonstrated a rescuing effect on the suppressive impact of MK2206 on Akt protein phosphorylation. Importantly, the study observed that the knockdown of estrogen receptor alpha (ERα) expression completely counteracted the effect of SIF on lipid droplet accumulation. Collectively, the current study establishes the critical role of SIF in process of fatty acid de novo in the goat mammary gland. This regulation is notably mediated through the ERα-Akt axis, thus enriching our understanding of this intricate biological process. This research sheds light on the potential benefits of SIF supplementation in dairy goat farming, ultimately contributing to improved milk production and quality.
Collapse
Affiliation(s)
- Yuexin Shao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Jiangtao Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Manhong Wei
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Liaoyu Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaiping Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hengbo Shi
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Liu J, Qiao Y, Yu B, Luo Y, Huang Z, Mao X, Yu J, Zheng P, Yan H, Li Y, He J. Functional Characterization and Toxicological Study of Proanthocyanidins in Weaned Pigs. Toxins (Basel) 2023; 15:558. [PMID: 37755984 PMCID: PMC10535313 DOI: 10.3390/toxins15090558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Proanthocyanidin (PRO) has been implicated in a variety of biological functions, such as antibacterial, antioxidant, and anti-obesity effects. However, little is known about its safety dose for animals. To explore its safety and effect on growth performance and intestinal health, thirty weaned pigs were divided into five groups and fed with basal diet containing 0, 30, 300, 600, and 1200 mg/kg PRO for 42 days. Results showed that PRO supplementation at 30 and 300 mg/kg significantly decreased the feed/gain ratio (F:G) and diarrhea rate (p < 0.05). PRO also increased the digestibilities of dry matter, ether extract, gross energy, and ash (p < 0.05). Interestingly, PRO not only elevated the villus height and the ratio of villus height to crypt depth (V/C) in duodenum and jejunum (p < 0.01), but also decreased the crypt depth in the duodenum (p < 0.01). Moreover, PRO supplementation at 30, 300, and 600 mg/kg elevated the expression levels of mucin 1 (MUC1), MUC2, and fatty acid transport protein 1 (FATP-1) in the duodenum (p < 0.05). The expression levels of FATP-4 in jejunum and ileum were also elevated by PRO (p < 0.05). Importantly, histopathological findings of tissues (e.g., heart, liver, kidney, spleen, lungs, pancreas, thymus, mesenteric lymph nodes, stomach, small intestine), serum clinical chemistry, and major hematological parameters were not affected by PRO supplementation. These results suggest that PRO may act as a safe and effective supplement to decrease F:G and improve intestinal health in weaned pigs.
Collapse
Affiliation(s)
- Jiahao Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610030, China; (J.L.); (Y.Q.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 610030, China
| | - Yong Qiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610030, China; (J.L.); (Y.Q.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 610030, China
- Feng Lan Sci-Tech Co., Ltd., Chengdu 610097, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610030, China; (J.L.); (Y.Q.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 610030, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610030, China; (J.L.); (Y.Q.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 610030, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610030, China; (J.L.); (Y.Q.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 610030, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610030, China; (J.L.); (Y.Q.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 610030, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610030, China; (J.L.); (Y.Q.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 610030, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610030, China; (J.L.); (Y.Q.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 610030, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610030, China; (J.L.); (Y.Q.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 610030, China
| | - Yan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610030, China; (J.L.); (Y.Q.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 610030, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 610030, China; (J.L.); (Y.Q.); (B.Y.); (Y.L.); (Z.H.); (X.M.); (J.Y.); (P.Z.); (H.Y.); (Y.L.)
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu 610030, China
| |
Collapse
|
9
|
Li X, Sun R, Liu Q, Gong Y, Ou Y, Qi Q, Xie Y, Wang X, Hu C, Jiang S, Zhao G, Wei L. Effects of dietary supplementation with dandelion tannins or soybean isoflavones on growth performance, antioxidant function, intestinal morphology, and microbiota composition in Wenchang chickens. Front Vet Sci 2023; 9:1073659. [PMID: 36686185 PMCID: PMC9846561 DOI: 10.3389/fvets.2022.1073659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Many benefits have been found in supplementing tannins or soybean isoflavones to poultry, including increased body weight gain, antioxidant activity, and better intestinal morphology. However, few studies tested the influence of dandelion tannins or soybean isoflavones supplementation on Wenchang chickens. This study investigates the effects of dietary supplementation with dandelion tannins or soybean isoflavones on the growth performance, antioxidant function, and intestinal health of female Wenchang chickens. A total of 300 chickens were randomly divided into five groups, with six replicates per group and 10 broilers per replicate. The chickens in the control group (Con) were fed a basal diet; the four experimental groups were fed a basal diet with different supplements: 300 mg/kg of dandelion tannin (DT1), 500 mg/kg of dandelion tannin (DT2), 300 mg/kg of soybean isoflavone (SI1), or 500 mg/kg of soybean isoflavone (SI2). The experiment lasted 40 days. The results showed that the final body weight (BW) and average daily gain (ADG) were higher in the DT2 and SI1 groups than in the Con group (P < 0.05). In addition, dietary supplementation with dandelion tannin or soybean isoflavone increased the level of serum albumin (P <0.05); the concentrations of serum aspartate aminotransferase and glucose were significantly higher in the SI1 group (P < 0.05) than in the Con group and the concentration of triglycerides in the DT1 group (P < 0.05). The serum catalase (CAT) level was higher in the DT1 and SI1 groups than in the Con group (P < 0.05). The ileum pH value was lower in the DT2 or SI1 group than in the Con group (P < 0.05). The jejunum villus height and mucosal muscularis thickness were increased in the DT2 and SI1 groups (P < 0.05), whereas the jejunum crypt depth was decreased in the DT1 or DT2 group compared to the Con group (P < 0.05). In addition, the messenger RNA (mRNA) expression level of zonula occludens 1 (ZO-1) in the duodenum of the SI1 group and those of occludin, ZO-1, and claudin-1 in the ileum of the DT2 and SI1 groups were upregulated (P < 0.05) compared to the Con group. Moreover, the DT2 and SI1 groups exhibited reduced intestinal microbiota diversity relative to the Con group, as evidenced by decreased Simpson and Shannon indexes. Compared to the Con group, the relative abundance of Proteobacteria was lower and that of Barnesiella was higher in the DT2 group (P < 0.05). Overall, dietary supplementation with 500 mg/kg of dandelion tannin or 300 mg/kg of soybean isoflavone improved the growth performance, serum biochemical indexes, antioxidant function, and intestinal morphology and modulated the cecal microbiota composition of Wenchang chickens.
Collapse
Affiliation(s)
- Xiang Li
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China,Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Ruiping Sun
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Quanwei Liu
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China
| | - Yuanfang Gong
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao, China
| | - Yangkun Ou
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Qi Qi
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yali Xie
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xiuping Wang
- Hainan (Tanniu) Wenchang Chicken Co., Ltd., Haikou, China
| | - Chenjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shouqun Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guiping Zhao
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China,Guiping Zhao ✉
| | - Limin Wei
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry & Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China,Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China,*Correspondence: Limin Wei ✉
| |
Collapse
|
10
|
Gomes MDS, Duarte ME, Saraiva A, de Oliveira LL, Teixeira LM, Rocha GC. Effect of antibiotics and low-crude protein diets on growth performance, health, immune response, and fecal microbiota of growing pigs. J Anim Sci 2023; 101:skad357. [PMID: 37843846 PMCID: PMC10630186 DOI: 10.1093/jas/skad357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023] Open
Abstract
This study aimed to investigate the effects of diets with and without antibiotics supplementation and diets with 18.5% and 13.0% crude protein (CP) on growth performance, carcass characteristics, disease incidence, fecal microbiota, immune response, and antioxidant capacity of growing pigs. One hundred and eighty pigs (59-day-old; 18.5 ± 2.5 kg) were distributed in a randomized complete block design in a 2 × 2 factorial arrangement, nine replicates, and five pigs per pen. The factors were CP (18.5% or 13.0%) and antibiotics (none or 100 mg/kg tiamulin + 506 mg/kg oxytetracycline). Medicated diets were fed from days 59 to 73. After that, all pigs were fed their respective CP diets from 73 to 87 days. Data were analyzed using the Mixed procedure in SAS version 9.4. From days 59 to 73, pigs fed antibiotics diets had higher (P < 0.05) average daily feed intake (ADFI), average daily weight gain (ADG), gain to feed ratio (G:F), compared to the diets without antibiotics. From days 73 to 87 (postmedicated period), any previous supplementation of antibiotics did not affect pig growth performance. Overall (days 59 to 87), pigs-fed antibiotics diets had higher (P < 0.05) G:F compared to pigs-fed diets without antibiotics. In all periods evaluated, pigs fed 18.5% CP diets had higher (P < 0.05) ADG and G:F compared to pigs fed 13.0% CP. Pigs fed the 13.0% CP diets had lower (P < 0.05) fecal score and diarrhea incidence than those fed 18.5% CP. Pigs fed 18.5% CP diets had improved (P < 0.05) loin area compared to pigs-fed diets with 13.0% CP. At 66 days of age, pigs-fed antibiotics diets had lower (P < 0.05) alpha diversity estimated with Shannon and Simpson compared to the pig-fed diets without antibiotics. At family level, pigs fed 18.5% CP diets had higher (P < 0.05) relative abundance of Streptococcaceae, and lower (P < 0.05) relative abundance of Clostridiaceae at days 66 and 87 compared with pigs fed 13.0% CP. Pigs-fed antibiotics diets had lower (P < 0.05) immunoglobulin G and protein carbonyl concentrations at day 66 compared to the pigs-fed diets without antibiotics. The reduction of dietary CP from 18.5% to 13.0% reduced the growth performance and loin muscle area of growing pigs, although it was effective to reduce diarrhea incidence. Antibiotics improved growth performance, lowered diarrhea incidence, improved components of the humoral immune response, and reduced microbiota diversity. However, in the postmedicated period, we found no residual effect on the general health of the animals, and considering the overall period, only G:F was improved by the use of antibiotics.
Collapse
Affiliation(s)
- Maykelly da S Gomes
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Marcos E Duarte
- Departament of Animal Science, North Carolina State University, Raleigh, USA
| | - Alysson Saraiva
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | | | - Lucas M Teixeira
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Gabriel C Rocha
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Science, Universidade Federal de Viçosa, Minas Gerais, Brazil
| |
Collapse
|
11
|
Holen JP, Goodband RD, Tokach MD, Woodworth JC, DeRouchey JM, Gebhardt JT. Effects of increasing soybean meal in corn-based diets on the growth performance of late finishing pigs. Transl Anim Sci 2022; 7:txac165. [PMID: 36628387 PMCID: PMC9825279 DOI: 10.1093/tas/txac165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Three experiments were conducted to determine the effects of increasing soybean meal (SBM) levels by replacing feed-grade amino acids (AA) in corn, corn dried distillers grains with solubles (DDGS), and corn-wheat midds-based diets on growth performance of late finishing pigs (n = 4,406) raised in commercial facilities. Across all experiments, pens of pigs were blocked by initial bodyweight (BW) and randomly assigned to 1 of 5 dietary treatments. All diets were formulated to contain 0.70% standardized ileal digestible (SID) Lys and varying amounts of feed-grade AA. All diets were formulated to meet or exceed minimum essential AA requirement estimates as a ratio to Lys. In Exp. 1, 1,793 pigs (initially 104.9 ± 4.9 kg) were fed corn-based diets and pens of pigs were assigned treatments with increasing SBM from 5% to 20%. Overall, average daily gain (ADG) and feed efficiency (G:F) improved (linear and cubic, P ≤ 0.02) as dietary SBM increased, with the greatest improvement observed as SBM increased from 5% to 8.75% and little improvement thereafter. In Exp. 2, 1,827 pigs (initially 97.9 ± 4.3 kg) were fed diets containing 25% DDGS with SBM levels increasing from 0% to 16%. Overall, feed efficiency marginally improved (linear, P ≤ 0.10) as SBM increased, with the greatest performance observed when diets contained 8% SBM and similar performance thereafter with 12 or 16% dietary SBM. In Exp. 3, 786 pigs (initially 96.7 ± 3.2 kg) were fed diets that contained 30% wheat midds and dietary SBM from 0% to 16%. Final BW of pigs increased (linear, P < 0.05) and overall ADG and G:F improved (linear and cubic, P < 0.05) as SBM increased. The combined results of the three experiments suggest that inclusion of at least 4% to 8% dietary SBM at the expense of feed-grade amino acids in corn-based diets with or without grain coproducts can improve growth performance of late-finishing (greater than 100 kg) pigs.
Collapse
Affiliation(s)
- Julia P Holen
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | | | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
12
|
Li Y, Jiang X, Cai L, Zhang Y, Ding H, Yin J, Li X. Effects of daidzein on antioxidant capacity in weaned pigs and IPEC-J2 cells. ANIMAL NUTRITION 2022; 11:48-59. [PMID: 36091258 PMCID: PMC9428850 DOI: 10.1016/j.aninu.2022.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/05/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
Our previous study found that soybean isoflavones in soybean meal play an important role in improving growth performance and antioxidant capacity in pigs. However, it is still unknown whether long-term supplementation with daidzein, an active molecule deglycosylated from daidzin, in a corn–soybean meal diet can enhance growth performance in pigs. Thus, in the present study, an animal trial was carried out to investigate the effects of dietary supplementation with daidzein on the growth performance and antioxidant capacity of pigs. A total of 80 weaned piglets (40 barrows and 40 females) were assigned to 4 treatments with 5 pens per treatment and 4 piglets per pen and fed a diet supplemented with 0, 25, 50 and 100 mg/kg daidzein for a 72-day trial. In addition, porcine intestinal epithelial cells (IPEC-J2) were used as an in vitro model to explore the underlying antioxidant mechanisms of daidzein. IPEC-J2 cells were treated with 0.6 mM hydrogen peroxide (H2O2) in the presence or absence of 40 μM daidzein. The results showed that adding 50 mg/kg of daidzein to the diet significantly improved body weight on day 72, average daily gain (ADG) during days 0 to 72 and plasma superoxide dismutase (SOD) activity on day 42 (P < 0.05). Treatment with 0.6 mM H2O2 for 1 h significantly decreased cell viability and catalase (CAT) activity and increased intracellular reactive oxygen species (ROS) levels and malondialdehyde (MDA) content (P < 0.05), while pretreatment with 40 μM daidzein prevented the decrease in cell viability and CAT activity and the increase in intracellular ROS levels and MDA content caused by H2O2 (P < 0.05). In addition, H2O2 stimulation significantly suppressed the expression of nuclear factor erythroid-2-related factor 2 (Nrf2), CAT, occludin and zonula occludens-1 (ZO-1), while pretreatment with daidzein preserved the expression of Nrf2, CAT and occludin in H2O2-stimulated IPEC-J2 cells (P < 0.05). In conclusion, our results suggested that long-term dietary supplementation with 50 mg/kg daidzein improved growth performance in pigs and was beneficial to the antioxidant capacity of pigs. Daidzein exerted protective effects against H2O2-induced oxidative stress in IPEC-J2 cells and the underlying mechanism may be related to the activation of the Nrf2 signaling pathway.
Collapse
|
13
|
Effect of Soybean Isoflavones on Proliferation and Related Gene Expression of Sow Mammary Gland Cells In Vitro. Animals (Basel) 2022; 12:ani12233241. [PMID: 36496762 PMCID: PMC9737626 DOI: 10.3390/ani12233241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
The present study was conducted to investigate the effects of synthetic soybean isoflavones (ISO) on the proliferation and related gene expression of sow mammary gland cells. Cells were cultured with 0 (control), 10, 20, or 30 μM of ISO under incubation conditions. After a 48 h incubation, these ISO-incubated cells proliferated more (p < 0.05) than the control cells. Cyclin E expression was higher (p < 0.05) in the 10 μM ISO and 20 μM ISO treatment groups than in the control group. Cyclin D1 and p21 expressions decreased (p < 0.05) with the 10 μM ISO treatment for 48 h. The relative mRNA abundances of the cells’ IG-1R (Insulin-like growth factor-1R), EGFR (Epidermal growth factor receptor), STAT3 (Signal transducer and activator of transcription 3) and AKT (protein kinase B) were enhanced (p < 0.05) by the 20 μM ISO treatment for 24 h and 48 h in the medium. The relative mRNA abundances of κ-casein at 48 h of incubation and β-casein at 24 h and 48 h of incubation were increased (p < 0.05) by 10 μM of ISO supplementation. It was concluded that ISO improved the proliferation of sow mammary gland cells, possibly by regulating cyclins and function genes expression in the cell proliferation signaling pathway.
Collapse
|
14
|
Qiu Y, Nie X, Yang J, Wang L, Zhu C, Yang X, Jiang Z. Effect of Resveratrol Supplementation on Intestinal Oxidative Stress, Immunity and Gut Microbiota in Weaned Piglets Challenged with Deoxynivalenol. Antioxidants (Basel) 2022; 11:antiox11091775. [PMID: 36139849 PMCID: PMC9495672 DOI: 10.3390/antiox11091775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 12/26/2022] Open
Abstract
(1) Background: Deoxynivalenol (DON) is a general mycotoxin that induces severe intestinal barrier injury in humans and animals. Resveratrol (RES) efficiently exerts anti-inflammatory and antioxidant effects. However, the information regarding RES protecting against DON-induced oxidative stress and intestinal inflammation in piglets is limited. (2) Methods: A total of 64 weaned piglets (Duroc × (Landrace × Yorkshire), 21-d-old, barrow) were randomly allocated to four groups (eight replicate pens per group, each pen containing two piglets) for 28 d. The piglets were fed a control diet (CON) or the CON diet supplemented with 300 mg RES/kg diet (RES group), 3.8 mg DON/kg diet (DON) or both (DON+RES) in a 2 × 2 factorial design. (3) Compared with unsupplemented DON-challenged piglets, RES supplementation in DON-challenged piglets increased ileal villus height and the abundance of ileal SOD1, GCLC and PG1-5 transcripts and Muc2 protein (p < 0.05), while decreasing the mRNA and proteins expression of ileal IL-1β, IL-6 and TNF-α, and malondialdehyde (MDA) levels in plasma and ileum in DON-challenged piglets (p < 0.05). Moreover, the abundances of class Bacilli, order Lactobacillales, family Lactobacillaceae and species Lactobacillus gasseri were increased in DON-challenged piglets fed a RES-supplemented diet compared with those in DON-challenged piglets(p ≤ 0.05). (4) Conclusions: our results indicated that RES supplementation in DON-challenged piglets efficiently attenuated intestinal inflammation and oxidative stress and improved gut microbiota, thereby alleviating DON-induced intestinal barrier injury.
Collapse
Affiliation(s)
- Yueqin Qiu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Xinzhi Nie
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Jun Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Cui Zhu
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Xuefen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
- Correspondence: (X.Y.); (Z.J.)
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
- Correspondence: (X.Y.); (Z.J.)
| |
Collapse
|
15
|
Huang L, Zheng T, Hui H, Xie G. Soybean isoflavones modulate gut microbiota to benefit the health weight and metabolism. Front Cell Infect Microbiol 2022; 12:1004765. [PMID: 36118025 PMCID: PMC9478439 DOI: 10.3389/fcimb.2022.1004765] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/12/2022] [Indexed: 12/03/2022] Open
Abstract
Soybean isoflavones (SIs) are widely found in food and herbal medicines. Although the pharmacological activities of SIs have been widely reported, their effects on the intestinal microecology of normal hosts have received little attention. Five-week-old Kunming (KM) mice were administered SIs (10 mg/kg/day) for 15 days. Food intake, body weight, and digestive enzyme activity were measured. Small intestine microbiota, including lumen-associated bacteria (LAB) and mucosa-associated bacteria (MAB), were analyzed using 16S ribosomal ribonucleic acid (16S rRNA) gene sequencing. Short-chain fatty acids (SCFAs) were analyzed using gas chromatography-mass spectrometry (GC-MS). The results showed that the mice that consuming SIs showed a higher food intake but a lower body weight gain rate than that of normal mice. Sucrase, cellulase, and amylase activities reduced, while protease activity increased after SIs intervention. Moreover, SIs increased the intestinal bacterial diversity in both LAB and MAB of normal mice. The composition of LAB was more sensitive to SIs than those of MAB. Lactobacillus, Adlercreutzia, Coprococcus, Ruminococcus, Butyricicoccus, and Desulfovibrio were the differential bacteria among the LAB of mice treated with SIs. In addition, acetic acid, valeric acid, isobutyric acid, isovaleric acid, and caproic acid decreased, while butyric acid and propionic acid increased in the mice treated with SIs. Taken together, SIs are beneficial for weight control, even in short-term interventions. The specific mechanism is related to regulating the gut microbiota, changing digestive enzyme activities, and further affecting carbohydrate absorption and metabolism.
Collapse
|
16
|
Renaudeau D, Jensen SK, Ambye-Jensen M, Adler S, Bani P, Juncker E, Stødkilde L. Nutritional values of forage-legume-based silages and protein concentrates for growing pigs. Animal 2022; 16:100572. [DOI: 10.1016/j.animal.2022.100572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/01/2022] Open
|
17
|
Zhang Q, Vasquez R, Yoo JM, Kim SH, Kang DK, Kim IH. Dietary Supplementation of Limosilactobacillus mucosae LM1 Enhances Immune Functions and Modulates Gut Microbiota Without Affecting the Growth Performance of Growing Pigs. Front Vet Sci 2022; 9:918114. [PMID: 35847647 PMCID: PMC9280434 DOI: 10.3389/fvets.2022.918114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 01/04/2023] Open
Abstract
Limosilactobacillus mucosae LM1 (LM1) is previously isolated from the intestine of piglets, but its potential as a probiotic supplement has not yet been assessed in growing pigs. In this study, we analyzed the probiotic effect of LM1 on the growth performance, apparent total tract digestibility (ATTD) of nutrients, immune properties, intestinal morphology, and gut microbiota and their metabolites in growing pigs. The experiment included 145 Duroc × (Landrace × Yorkshire) pigs (average body weight: 21.21 ± 1.14 kg) distributed into five treatment groups. The pigs were fed either a control diet (CON), or the control diet supplemented with incremental doses of LM1, namely low-dose LM1 (LL, 8.3 × 108 CFU/kg), moderate-low dose LM1 (ML, 4.2 × 109 CFU/kg), moderate-high dose LM1 (MH, 8.3 × 109 CFU/kg), and high-dose LM1 (HH, 2.1 × 1010 CFU/kg) for 42 d. On d 42, 12 pigs from each of the CON and MH groups were slaughtered. The results indicated that the ATTD of nitrogen (N, P = 0.038) was improved with MH supplementation. In addition, increasing dose of LM1 improved the immune response in pigs by reducing serum pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-alpha) and increasing anti-inflammatory cytokines (interleukin-10). Pigs fed with MH LM1 also had higher jejunal villus height and ileal villus height: crypt depth ratio, demonstrating improved intestinal morphology. Moreover, moderate-high LM1 supplementation enriched SCFA-producing taxa such as Lactobacillus, Holdemanella, Peptococcus, Bifidobacterium, Eubacterium_hallii_group, and Lachnospiraceae_AC2044_group, which correlated positively with increased fecal levels of butyrate and iso-valerate. These results strongly suggest the probiotic potential of LM1 on growing pigs. Overall, the current study provides insights on the use of L. mucosae LM1 as a novel livestock probiotic to improve pig gut health.
Collapse
Affiliation(s)
| | | | | | | | - Dae-Kyung Kang
- Department of Animal Resources and Science, Dankook University, Cheonan, South Korea
| | - In Ho Kim
- Department of Animal Resources and Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
18
|
Li D, Dang DX, Xu S, Tian Y, Wu D, Su Y. Soy isoflavones supplementation improves reproductive performance and serum antioxidant status of sows and the growth performance of their offspring. J Anim Physiol Anim Nutr (Berl) 2021; 106:1268-1276. [PMID: 34862676 DOI: 10.1111/jpn.13667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/29/2021] [Accepted: 11/14/2021] [Indexed: 12/29/2022]
Abstract
A total of 60 sows (Landrace × Yorkshire, average parity was 1.39) were used to evaluate the effects of soy isoflavones (ISO) supplementation on reproductive performance, serum antioxidant enzyme parameters, and milk compositions of sows, and the growth performance of offspring. Sows were randomly assigned to 4 groups based on the parity. There were 15 replicates per treatment. Dietary treatments were based on a corn-soybean meal-based basal diet and supplemented with 0, 10, 20, or 40 mg/kg ISO. With the increase of the ISO dosage, average daily feed intake of sows increased linearly; oestrus interval decreased linearly and quadratically. In addition, on day 10 of lactation, linear increases in serum superoxide dismutase levels, linear and quadratic increases in serum total antioxidant capacity, and linear decreases in serum malondialdehyde levels were observed in increasing ISO dosage in the diet of sows. The body weight on day 10 and 21 and the average daily gain during days 3-10 and 3-21 of offspring increased linearly at graduated doses of ISO increased. Therefore, feeding sows with graded levels of ISO containing diet during late-gestation and lactation periods improved the reproductive performance of sows and the growth performance of their offspring in a dose-dependent manner.
Collapse
Affiliation(s)
- Desheng Li
- College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - De Xin Dang
- College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China.,Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yumin Tian
- College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuhong Su
- College of Animal Husbandry & Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
19
|
Grgic D, Varga E, Novak B, Müller A, Marko D. Isoflavones in Animals: Metabolism and Effects in Livestock and Occurrence in Feed. Toxins (Basel) 2021; 13:836. [PMID: 34941674 PMCID: PMC8705642 DOI: 10.3390/toxins13120836] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
Soybeans are a common ingredient of animal feed. They contain isoflavones, which are known to act as phytoestrogens in animals. Isoflavones were described to have beneficial effects on farm animals. However, there are also reports of negative outcomes after the consumption of isoflavones. This review summarizes the current knowledge of metabolization of isoflavones (including the influence of the microbiome, phase I and phase II metabolism), as well as the distribution of isoflavones and their metabolites in tissues. Furthermore, published studies on effects of isoflavones in livestock species (pigs, poultry, ruminants, fish) are reviewed. Moreover, published studies on occurrence of isoflavones in feed materials and co-occurrence with zearalenone are presented and are supplemented with our own survey data.
Collapse
Affiliation(s)
- Dino Grgic
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| | - Barbara Novak
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (B.N.); (A.M.)
| | - Anneliese Müller
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (B.N.); (A.M.)
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| |
Collapse
|
20
|
Li Y, He G, Chen D, Yu B, Yu J, Zheng P, Huang Z, Luo Y, Luo J, Mao X, Yan H, He J. Supplementing daidzein in diets improves the reproductive performance, endocrine hormones and antioxidant capacity of multiparous sows. ACTA ACUST UNITED AC 2021; 7:1052-1060. [PMID: 34738035 PMCID: PMC8546373 DOI: 10.1016/j.aninu.2021.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022]
Abstract
Certain hormones play important roles in modulating mammalian reproductive behaviour. Daidzein is a well-known isoflavonic phytoestrogen that possesses oestrogenic activity. This study was conducted to probe the effects of daidzein supplementation in gestation diets on the reproductive performance in sows. A total of 120 multiparous sows (Landrace × Yorkshire) were randomly assigned to 2 groups (n = 60) and fed either a base diet (control) or one containing 200 mg/kg daidzein during gestation. We discovered that daidzein supplementation significantly increased the total number of piglets born per litter and number of piglets born alive per litter (P < 0.05), decreased the farrowing time (P < 0.05) and increased the serum oestrogen and progesterone concentrations (P < 0.05) at 35 d of gestation. Moreover, serum immunoglobulin G (IgG) concentration and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were higher in the daidzein-treated group than in the control group at 35 d of gestation (P < 0.05). Daidzein increased the serum SOD activity and total anti-oxidative capacity (T-AOC) at 85 d of gestation (P < 0.05). Interestingly, daidzein elevated the expression levels of the sodium-coupled neutral amino acid transporter 1 (SLC38A1) and insulin-like growth factor 1 (IGF-1) genes in the placenta (P < 0.05). These results suggest that daidzein ingestion could improve sow reproductive performance by changing serum hormones, elevating anti-oxidative capacity and up-regulating critical functional genes in the placenta.
Collapse
Affiliation(s)
- Yan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | | | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| |
Collapse
|
21
|
Qiu Y, Yang J, Wang L, Yang X, Gao K, Zhu C, Jiang Z. Dietary resveratrol attenuation of intestinal inflammation and oxidative damage is linked to the alteration of gut microbiota and butyrate in piglets challenged with deoxynivalenol. J Anim Sci Biotechnol 2021; 12:71. [PMID: 34130737 PMCID: PMC8207658 DOI: 10.1186/s40104-021-00596-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/11/2021] [Indexed: 12/17/2022] Open
Abstract
Background Deoxynivalenol (DON) is a widespread mycotoxin that induces intestinal inflammation and oxidative stress in humans and animals. Resveratrol (RES) effectively exerts anti-inflammatory and antioxidant effects. However, the protective effects of RES on alleviating DON toxicity in piglets and the underlying mechanism remain unclear. Therefore, this study aimed to investigate the effect of RES on growth performance, gut health and the gut microbiota in DON-challenged piglets. A total of 64 weaned piglets [Duroc × (Landrace × Yorkshire), 21-d-old, 6.97 ± 0.10 kg body weight (BW)] were randomly allocated to 4 treatment groups (8 replicate pens per treatment, each pen containing 2 males; n = 16 per treatment) for 28 d. The piglets were fed a control diet (CON) or the CON diet supplemented with 300 mg RES/kg diet (RES group), 3.8 mg DON/kg diet (DON) or both (DON+RES) in a 2 × 2 factorial design. Results DON-challenged piglets fed the RES-supplemented diet had significantly decreased D-lactate concentrations and tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) mRNA and protein expression, and increased zonula occludens-1 (ZO-1) mRNA and protein expression compared with those of DON-challenged piglets fed the unsupplemented diet (P < 0.05). Compared with unsupplemented DON-challenged piglets, infected piglets fed a diet with RES showed significantly decreased malondialdehyde (MDA) levelsand increased mRNA expression of antioxidant enzymes and antioxidant genes (i.e., GCLC, GCLM, HO-1, SOD1 and NQO-1) and glutamate-cysteine-ligase modulatory subunit (GCLM) protein expression (P < 0.05). Moreover, RES supplementation significantly abrogated the increase in the proportion of TUNEL-positive cells and the protein expression of caspase3 in DON-challenged piglets (P < 0.05). Finally, RES supplementation significantly increased the abundance of Roseburia and butyrate concentrations, while decreasing the abundances of Bacteroides and unidentified-Enterobacteriaceae in DON-challenged piglets compared with DON-challenged piglets alone (P < 0.05). Conclusions RES supplementation improved gut health in DON-challenged piglets by strengthening intestinal barrier function, alleviating intestinal inflammation and oxidative damage, and positively modulating the gut microbiota. The protective effects of RES on gut health may be linked to increased Roseburia and butyrate concentrations, and decreased levels of Bacteroides and unidentified-Enterobacteriaceae.
Collapse
Affiliation(s)
- Yueqin Qiu
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Yang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xuefen Yang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Kaiguo Gao
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Cui Zhu
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. .,School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding; Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|