1
|
Pavy CL, Shaw JC, Palliser HK, Moloney RA, Hirst JJ. Neurosteroid replacement therapy using tiagabine and zuranolone restores cerebellar neurodevelopment and reduces hyperactive behaviour following preterm birth. J Dev Orig Health Dis 2025; 16:e2. [PMID: 39773606 DOI: 10.1017/s2040174424000394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Preterm birth exposes the neonate to hypoxic-ischaemic and excitotoxic insults that impair neurodevelopment and are magnified by the premature loss of placentally supplied, inhibitory neurosteroids. The cerebellum is a neuronally dense brain region, which undergoes critical periods of development during late gestation, when preterm births frequently occur. We propose that neurosteroid replacement therapy using tiagabine and zuranolone will protect the cerebellum against preterm-associated insults. Guinea pig dams received c-section surgery preterm (gestational age (GA) 64) or at term (GA70) with preterm pups administered tiagabine (2.5 mg/kg/day), zuranolone (1 mg/kg/day) or vehicle (15% β-cyclodextrin) until term equivalent age (GA70). Behavioural testing was performed at corrected postnatal day 8 (PND8) and PND41 with tissue collection occurring at PND42. Neurodevelopmental markers (MBP, OLIG2 and NeuN) were assessed within the cerebellum by immunohistochemistry, whilst GABAergic and glutamatergic pathway expression was quantified using high throughput RT-PCR. Zuranolone and, to a lesser extent, tiagabine were able to protect against hyperactive behaviour at PND8 in males, whilst in females, a less marked hyperactive phenotype was present with neither treatment impacting behaviour further. Both treatments improved MBP staining, whilst tiagabine was found to restore oligodendrocyte maturation in females only. GABAergic and glutamatergic pathway expression was found to be restored by both treatments in females. Overall, this study demonstrates the neuroprotective attributes of neurosteroid replacement therapy using tiagabine and zuranolone, thereby demonstrating their potential to mitigate long-term neurodevelopmental impairments. Furthermore, the sexually dimorphic effects observed suggest future investigations may show increased benefit by using sex-specific treatment regimes.
Collapse
Affiliation(s)
- Carlton L Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| | - Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| | - Roisin A Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, Australia
| |
Collapse
|
2
|
Miller SL, Bennet L, Sutherland AE, Pham Y, McDonald C, Castillo‐Melendez M, Allison BJ, Mihelakis J, Nitsos I, Boyd BJ, Hirst JJ, Walker DW, Hunt RW, Jenkin G, Wong F, Malhotra A, Fahey MC, Yawno T. Ganaxolone versus Phenobarbital for Neonatal Seizure Management. Ann Neurol 2022; 92:1066-1079. [PMID: 36054160 PMCID: PMC9828769 DOI: 10.1002/ana.26493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Seizures are more common in the neonatal period than at any other stage of life. Phenobarbital is the first-line treatment for neonatal seizures and is at best effective in approximately 50% of babies, but may contribute to neuronal injury. Here, we assessed the efficacy of phenobarbital versus the synthetic neurosteroid, ganaxolone, to moderate seizure activity and neuropathology in neonatal lambs exposed to perinatal asphyxia. METHODS Asphyxia was induced via umbilical cord occlusion in term lambs at birth. Lambs were treated with ganaxolone (5mg/kg/bolus then 5mg/kg/day for 2 days) or phenobarbital (20mg/kg/bolus then 5mg/kg/day for 2 days) at 6 hours. Abnormal brain activity was classified as stereotypic evolving (SE) seizures, epileptiform discharges (EDs), and epileptiform transients (ETs) using continuous amplitude-integrated electroencephalographic recordings. At 48 hours, lambs were euthanized for brain pathology. RESULTS Asphyxia caused abnormal brain activity, including SE seizures that peaked at 18 to 20 hours, EDs, and ETs, and induced neuronal degeneration and neuroinflammation. Ganaxolone treatment was associated with an 86.4% reduction in the number of seizures compared to the asphyxia group. The total seizure duration in the asphyxia+ganaxolone group was less than the untreated asphyxia group. There was no difference in the number of SE seizures between the asphyxia and asphyxia+phenobarbital groups or duration of SE seizures. Ganaxolone treatment, but not phenobarbital, reduced neuronal degeneration within hippocampal CA1 and CA3 regions, and cortical neurons, and ganaxolone reduced neuroinflammation within the thalamus. INTERPRETATION Ganaxolone provided better seizure control than phenobarbital in this perinatal asphyxia model and was neuroprotective for the newborn brain, affording a new therapeutic opportunity for treatment of neonatal seizures. ANN NEUROL 2022;92:1066-1079.
Collapse
Affiliation(s)
- Suzanne L. Miller
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Laura Bennet
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| | - Amy E. Sutherland
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Yen Pham
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Courtney McDonald
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Margie Castillo‐Melendez
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Beth J. Allison
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Jamie Mihelakis
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Ilias Nitsos
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Ben J. Boyd
- Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Jonathan J. Hirst
- School of Biomedical Sciences and Pharmacy, University of NewcastleNewcastleNew South WalesAustralia
| | - David W. Walker
- School of Health and Biomedical Sciences, RMIT UniversityBundooraVictoriaAustralia
| | - Rodney W. Hunt
- Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| | - Graham Jenkin
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Flora Wong
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia,School of Health and Biomedical Sciences, RMIT UniversityBundooraVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| | - Atul Malhotra
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia,Monash Children's HospitalClaytonVictoriaAustralia
| | - Michael C. Fahey
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia,Monash Children's HospitalClaytonVictoriaAustralia
| | - Tamara Yawno
- Ritchie Centre, Department of Obstetrics and GynaecologyMonash University and Hudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
3
|
Sze Y, Brunton PJ. Neurosteroids and early-life programming: An updated perspective. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 25:100367. [PMID: 36561280 PMCID: PMC7613978 DOI: 10.1016/j.coemr.2022.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Early-life stress can lead to detrimental offspring outcomes, including an increased risk for mood disorders and hypothalamic-pituitary-adrenal axis dysregulation. Neurosteroids bind to ligand-gated neurotransmitter receptors, rapidly modulating neuronal excitability and promoting termination of stress responses. Reduced neurosteroidogenesis underlies some of the aberrant neuroendocrine and behavioural phenotypes observed in adult prenatally stressed rodents. During development, disruptions in neurosteroid generation and action also lead to long-term programming effects on the off-spring's brain and behaviour. Here, we review recent advances in the field, focusing on the interaction between neurosteroids and early-life stress outcomes in adulthood and in the perinatal period. We also discuss the direction of future research, with emphasis on quantification methods, sex differences, and neurosteroids as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, Scotland, UK
| | - Paula J Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, Scotland, UK
| |
Collapse
|
4
|
Adaptations in the Hippocampus during the Fetal to Neonatal Transition in Guinea Pigs. REPRODUCTIVE MEDICINE 2022. [DOI: 10.3390/reprodmed3020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
(Background) The transition from in utero to ex utero life is associated with rapid changes in the brain that are both protective and required for newborn functional activities, allowing adaption to the changing environment. The current study aimed to reveal new insights into adaptations required for normal ongoing brain development and function after birth. (Methods) Time-mated dams were randomly allocated to fetal collection at gestational age 68 or spontaneous term delivery followed by neonatal collection within 24 h of birth. Immunohistochemistry was performed to examine mature myelin formation and neuronal nuclei coverage. RT-PCR was used to quantify the mRNA expression of key markers of the oligodendrocyte lineage, neuronal development, and GABAergic/glutamatergic pathway maturation. (Results) Mature myelin was reduced in the subcortical white matter of the neonate, whilst neuronal nuclei coverage was increased in both the hippocampus and the overlying cortical region. Increased mRNA expression in neonates was observed for oligodendrocyte and neuronal markers. There were also widespread mRNA changes across the inhibitory GABAergic and excitatory glutamatergic pathways in neonates. (Conclusions) This study has identified important adaptations in the expression of key neurodevelopmental structures, including oligodendrocytes and neurons, that may be essential for appropriate transition in neurodevelopment to the postnatal period.
Collapse
|
5
|
Siahanidou T, Spiliopoulou C. Pharmacological Neuroprotection of the Preterm Brain: Current Evidence and Perspectives. Am J Perinatol 2022; 39:479-491. [PMID: 32961562 DOI: 10.1055/s-0040-1716710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite improvements in viability, the long-term neurodevelopmental outcomes of preterm babies remain serious concern as a significant percentage of these infants develop neurological and/or intellectual impairment, and they are also at increased risk of psychiatric illnesses later in life. The current challenge is to develop neuroprotective approaches to improve adverse outcomes in preterm survivors. The purpose of this review was to provide an overview of the current evidence on pharmacological agents targeting the neuroprotection of the preterm brain. Among them, magnesium sulfate, given antenatally to pregnant women with imminent preterm birth before 30 to 34 weeks of gestation, as well as caffeine administered to preterm infants after birth, exhibited neuroprotective effects for human preterm brain. Erythropoietin treatment of preterm infants did not result in neuroprotection at 2 years of age in two out of three published large randomized controlled trials; however, long-term follow-up of these infants is needed to come to definite conclusions. Further studies are also required to assess whether melatonin, neurosteroids, inhaled nitric oxide, allopurinol, or dietary supplements (omega-3 fatty acids, choline, curcumin, etc.) could be implemented as neuroprotectants in clinical practice. Furthermore, other pharmacological agents showing promising signs of neuroprotective efficacy in preclinical studies (growth factors, hyaluronidase inhibitors or treatment, antidiabetic drugs, cannabidiol, histamine-H3 receptor antagonists, etc.), as well as stem cell- or exosomal-based therapies and nanomedicine, may prove useful in the future as potential neuroprotective approaches for human preterm brain. KEY POINTS: · Magnesium and caffeine have neuroprotective effects for the preterm brain.. · Follow-up of infants treated with erythropoietin is needed.. · Neuroprotective efficacy of several drugs in animals needs to be shown in humans..
Collapse
Affiliation(s)
- Tania Siahanidou
- Neonatal Unit of the First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
6
|
Shaw JC, Crombie GK, Palliser HK, Hirst JJ. Impaired Oligodendrocyte Development Following Preterm Birth: Promoting GABAergic Action to Improve Outcomes. Front Pediatr 2021; 9:618052. [PMID: 33634057 PMCID: PMC7901941 DOI: 10.3389/fped.2021.618052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
Preterm birth is associated with poor long-term neurodevelopmental and behavioral outcomes, even in the absence of obvious brain injury at the time of birth. In particular, behavioral disorders characterized by inattention, social difficulties and anxiety are common among children and adolescents who were born moderately to late preterm (32-37 weeks' gestation). Diffuse deficits in white matter microstructure are thought to play a role in these poor outcomes with evidence suggesting that a failure of oligodendrocytes to mature and myelinate axons is responsible. However, there remains a major knowledge gap over the mechanisms by which preterm birth interrupts normal oligodendrocyte development. In utero neurodevelopment occurs in an inhibitory-dominant environment due to the action of placentally derived neurosteroids on the GABAA receptor, thus promoting GABAergic inhibitory activity and maintaining the fetal behavioral state. Following preterm birth, and the subsequent premature exposure to the ex utero environment, this action of neurosteroids on GABAA receptors is greatly reduced. Coinciding with a reduction in GABAergic inhibition, the preterm neonatal brain is also exposed to ex utero environmental insults such as periods of hypoxia and excessive glucocorticoid concentrations. Together, these insults may increase levels of the excitatory neurotransmitter glutamate in the developing brain and result in a shift in the balance of inhibitory: excitatory activity toward excitatory. This review will outline the normal development of oligodendrocytes, how it is disrupted under excitation-dominated conditions and highlight how shifting the balance back toward an inhibitory-dominated environment may improve outcomes.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
7
|
Riddle J, Ahn S, McPherson T, Girdler S, Frohlich F. Progesterone modulates theta oscillations in the frontal-parietal network. Psychophysiology 2020; 57:e13632. [PMID: 33400260 DOI: 10.1111/psyp.13632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/27/2020] [Accepted: 05/24/2020] [Indexed: 11/27/2022]
Abstract
The neuroactive metabolites of the steroid hormones progesterone (P4) and testosterone (T) are GABAergic modulators that influence cognition, yet, the specific effect of P4 and T on brain network activity remains poorly understood. Here, we investigated if a fundamental oscillatory network activity pattern, often related to cognitive control, frontal midline theta (FMT) oscillations, are modulated by steroids hormones, P4 and T. We measured the concentration of P4 and T using salivary enzyme immunoassay and FMT oscillations using high-density electroencephalography (EEG) during eyes-open resting-state in 55 healthy women and men. Electrical brain activity was analyzed using Fourier analysis, aperiodic signal fitting, and beamformer source localization. Steroid hormone concentrations and biological sex were used as predictors for scalp and source-estimated amplitude of theta oscillations. Elevated concentrations of P4 predicted increased amplitude of FMT oscillations across both sexes, and no relationship was found with T. The positive correlation with P4 was specific to the frontal midline electrodes and survived correction for the background aperiodic signal of the brain. Using source localization, FMT oscillations were localized to the frontal-parietal network (FPN). Additionally, theta amplitude within the FPN, but not the default mode network, positively correlated with P4 concentration. Our results suggest that P4 concentration modulates brain activity via upregulation of theta oscillations in the FPN.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Center for Women's Mood Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sangtae Ahn
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,School of Electronic Engineering, Kyungpook National University, Daegu, South Korea
| | - Trevor McPherson
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan Girdler
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Center for Women's Mood Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Shaw JC, Crombie GK, Zakar T, Palliser HK, Hirst JJ. Perinatal compromise contributes to programming of GABAergic and glutamatergic systems leading to long-term effects on offspring behaviour. J Neuroendocrinol 2020; 32:e12814. [PMID: 31758712 DOI: 10.1111/jne.12814] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/30/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023]
Abstract
Extensive evidence now shows that adversity during the perinatal period is a significant risk factor for the development of neurodevelopmental disorders long after the causative event. Despite stemming from a variety of causes, perinatal compromise appears to have similar effects on the developing brain, thereby resulting in behavioural disorders of a similar nature. These behavioural disorders occur in a sex-dependent manner, with males affected more by externalising behaviours such as attention deficit hyperactivity disorder (ADHD) and females by internalising behaviours such as anxiety. Regardless of the causative event or the sex of the offspring, these disorders may begin in childhood or adolescence but extend into adulthood. A mechanism by which adverse events in the perinatal period impact later in life behaviour has been shown to be the changing epigenetic landscape. Methylation of the GAD1/GAD67 gene, which encodes the key glutamate-to-GABA-synthesising enzyme glutamate decarboxylase 1, resulting in increased levels of glutamate, is one epigenetic mechanism that may account for a tendency towards excitation in disorders such as ADHD. Exposure of the fetus or the neonate to high levels of cortisol may be the mediator between perinatal compromise and poor behavioural outcomes because evidence suggests that increased glucocorticoid exposure triggers widespread changes in the epigenetic landscape. This review summarises the current evidence and recent literature about the impact of various perinatal insults on the epigenome and the common mechanisms that may explain the similarity of behavioural outcomes occurring following diverse perinatal compromise.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tamas Zakar
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
9
|
Bartolomé I, Llidó A, Darbra S, Pallarès M. Early postnatal allopregnanolone levels alteration and adult behavioral disruption in rats: Implication for drug abuse. Neurobiol Stress 2019; 12:100208. [PMID: 32435661 PMCID: PMC7231993 DOI: 10.1016/j.ynstr.2019.100208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023] Open
Abstract
Several studies have highlighted the role that early postnatal levels of allopregnanolone play in the development of the CNS and adult behavior. Changes in allopregnanolone levels related to stress have been observed during early postnatal periods, and perinatal stress has been linked to neuropsychiatric disorders. The alteration of early postnatal allopregnanolone levels in the first weeks of life has been proven to affect adult behaviors, such as anxiety-related behaviors and the processing of sensory inputs. This review focuses on the first studies about the possible relationship between the early postnatal allopregnanolone levels and the vulnerability to abuse of drugs such as alcohol in adulthood, given that (1) changes in neonatal allopregnanolone levels affect novelty exploration and novelty seeking has been linked to vulnerability to drug abuse; (2) early postnatal administration of progesterone, the main allopregnanolone precursor, affects the maturation of dopaminergic meso-striatal systems, which have been related to novelty seeking and drug abuse; and (3) alcohol consumption increases plasma and brain allopregnanolone levels in animals and humans. Manipulating neonatal allopregnanolone by administering finasteride, an inhibitor of the 5α-reductase enzyme that participates in allopregnanolone synthesis, increases alcohol consumption and decreases the locomotor stimulant effects of low alcohol doses. At a molecular level, finasteride decreases dopamine and serotonin in ventral striatum and dopamine release in nucleus accumbens. Preliminary results suggest that serotonin 5HT3 receptors could also be affected. Although an in-depth study is necessary, evidence suggests that there is a relation between early postnatal allopregnanolone and vulnerability to drug use/abuse. Early postnatal AlloP levels alteration affects brain maturation and adult behavior. Early stress interacts to AlloP influencing neuropsychiatric disorders vulnerability. Fluctuations in neonatal AlloP levels play a role in alcohol abuse vulnerability. Neonatal finasteride induces novelty-seeking profile and increases ethanol intake.
Collapse
Affiliation(s)
- Iris Bartolomé
- Institut de Neurociències, Departament de Psicobiologia I Metodologia en Ciències de La Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Anna Llidó
- Institut de Neurociències, Departament de Psicobiologia I Metodologia en Ciències de La Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Sònia Darbra
- Institut de Neurociències, Departament de Psicobiologia I Metodologia en Ciències de La Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Marc Pallarès
- Institut de Neurociències, Departament de Psicobiologia I Metodologia en Ciències de La Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
10
|
Giatti S, Diviccaro S, Garcia-Segura LM, Melcangi RC. Sex differences in the brain expression of steroidogenic molecules under basal conditions and after gonadectomy. J Neuroendocrinol 2019; 31:e12736. [PMID: 31102564 DOI: 10.1111/jne.12736] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 01/19/2023]
Abstract
The brain is a steroidogenic tissue. It expresses key molecules involved in the synthesis and metabolism of neuroactive steroids, such as steroidogenic acute regulatory protein (StAR), translocator protein 18 kDa (TSPO), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenases (3β-HSD), 5α-reductases (5α-R) and 3α-hydroxysteroid oxidoreductases (3α-HSOR). Previous studies have shown that the levels of brain steroids are different in male and female rats under basal conditions and after gonadectomy. In the present study, we assessed gene expression of key neurosteroidogenic molecules in the cerebral cortex and cerebellum of gonadally intact and gonadectomised adult male and female rats. In the cerebellum, the basal mRNA levels of StAR and 3α-HSOR were significantly higher in females than in males. By contrast, the mRNA levels of TSPO and 5α-R were significantly higher in males. In the cerebral cortex, all neurosteroidogenic molecules analysed showed similar mRNA levels in males and females. Gonadectomy increased the expression of 5α-R in the brain of both sexes, although it affected the brain expression of StAR, TSPO, P450scc and 3α-HSOR in females only and with regional differences. Although protein levels were not investigated in the present study, our findings indicate that mRNA expression of steroidogenic molecules in the adult rat brain is sexually dimorphic and presents regional specificity, both under basal conditions and after gonadectomy. Thus, local steroidogenesis may contribute to the reported sex and regional differences in the levels of brain neuroactive steroids and may be involved in the generation of sex differences in the adult brain function.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
11
|
Shaw JC, Berry MJ, Dyson RM, Crombie GK, Hirst JJ, Palliser HK. Reduced Neurosteroid Exposure Following Preterm Birth and Its' Contribution to Neurological Impairment: A Novel Avenue for Preventative Therapies. Front Physiol 2019; 10:599. [PMID: 31156466 PMCID: PMC6529563 DOI: 10.3389/fphys.2019.00599] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Children born preterm are at an increased risk of developing cognitive problems and neuro-behavioral disorders such as attention deficit hyperactivity disorder (ADHD) and anxiety. Whilst neonates born at all gestational ages, even at term, can experience poor cognitive outcomes due to birth-complications such as birth asphyxia, it is becoming widely known that children born preterm in particular are at significant risk for learning difficulties with an increased utilization of special education resources, when compared to their healthy term-born peers. Additionally, those born preterm have evidence of altered cerebral myelination with reductions in white matter volumes of the frontal cortex, hippocampus and cerebellum evident on magnetic resonance imaging (MRI). This disruption to myelination may underlie some of the pathophysiology of preterm-associated brain injury. Compared to a fetus of the same post-conceptional age, the preterm newborn loses access to in utero factors that support and promote healthy brain development. Furthermore, the preterm ex utero environment is hostile to the developing brain with a myriad of environmental, biochemical and excitotoxic stressors. Allopregnanolone is a key neuroprotective fetal neurosteroid which has promyelinating effects in the developing brain. Preterm birth leads to an abrupt loss of the protective effects of allopregnanolone, with a dramatic drop in allopregnanolone concentrations in the preterm neonatal brain compared to the fetal brain. This occurs in conjunction with reduced myelination of the hippocampus, subcortical white matter and cerebellum; thus, damage to neurons, astrocytes and especially oligodendrocytes of the developing nervous system can occur in the vulnerable developmental window prior to term as a consequence reduced allopregnanolone. In an effort to prevent preterm-associated brain injury a number of therapies have been considered, but to date, other than antenatal magnesium sulfate and corticosteroid therapy, none have become part of standard clinical care for vulnerable infants. Therefore, there remains an urgent need for improved therapeutic options to prevent brain injury in preterm neonates. The actions of the placentally derived neurosteroid allopregnanolone on GABAA receptor signaling has a major role in late gestation neurodevelopment. The early loss of this intrauterine neurotrophic support following preterm birth may be pivotal to development of neurodevelopmental morbidity. Thus, restoring the in utero neurosteroid environment for preterm neonates may represent a new and clinically feasible treatment option for promoting better trajectories of myelination and brain development, and therefore reducing neurodevelopmental disorders in children born preterm.
Collapse
Affiliation(s)
- Julia C. Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Mary J. Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, Wellington, New Zealand
| | - Rebecca M. Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, Wellington, New Zealand
- Centre for Translational Physiology, University of Otago, Wellington, Wellington, New Zealand
| | - Gabrielle K. Crombie
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Jonathan J. Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Hannah K. Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Mothers and Babies Research Centre, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
12
|
Theis V, Theiss C. Progesterone Effects in the Nervous System. Anat Rec (Hoboken) 2019; 302:1276-1286. [PMID: 30951258 DOI: 10.1002/ar.24121] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/12/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022]
Abstract
The sex hormone progesterone is mainly known as a key factor in establishing and maintaining pregnancy. In addition, progesterone has been shown to induce morphological changes in the central and peripheral nervous system by increasing dendrito-, spino-, and synaptogenesis in Purkinje cells (Wessel et al.: Cell Mol Life Sci (2014a) 1723-1740) and increasing axonal outgrowth in dorsal root ganglia (Olbrich et al.: Endocrinology (2013) 3784-3795). These effects mediated mainly by the classical progesterone receptors (PRs) A and B seem to be limited to young neurons. It may be assumed that microRNAs (miRNAs), which are potent regulators of nervous system maturation and degeneration, are also involved in the regulation of progesterone-mediated neuronal plasticity by altering the expression patterns of the corresponding PR A/B receptors (Theis and Theiss: Neural Regen Res (2015) 547-549, Pieczora et al.: Cerebellum (2017) 376-387). This review critically discusses current data on the neuroprotective effect of progesterone and its corresponding receptors in the nervous system, with possible regulatory processes by miRNAs. Preclinical studies on stroke and traumatic brain injury revealed neuroprotective and neuroregenerative effects of progesterone in the treatment of severe neurological diseases in animal models, but have so far failed in humans. In this context, the identification of specific miRNAs that regulate the expression of progesterone and PR could help to exploit the neuroprotective potential of progesterone for the treatment of various neurological disorders. Anat Rec, 302:1276-1286, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
13
|
Baud O, Berkane N. Hormonal Changes Associated With Intra-Uterine Growth Restriction: Impact on the Developing Brain and Future Neurodevelopment. Front Endocrinol (Lausanne) 2019; 10:179. [PMID: 30972026 PMCID: PMC6443724 DOI: 10.3389/fendo.2019.00179] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
The environment in which a fetus develops is not only important for its growth and maturation but also for its long-term postnatal health and neurodevelopment. Several hormones including glucocorticosteroids, estrogens and progesterone, insulin growth factor and thyroid hormones, carefully regulate the growth of the fetus and its metabolism during pregnancy by controlling the supply of nutrients crossing the placenta. In addition to fetal synthesis, hormones regulating fetal growth are also expressed and regulated in the placenta, and they play a key role in the vulnerability of the developing brain and its maturation. This review summarizes the current understanding and evidence regarding the involvement of hormonal dysregulation associated with intra-uterine growth restriction and its consequences on brain development.
Collapse
Affiliation(s)
- Olivier Baud
- Division of Neonatology and Pediatric Intensive Care, Department of Women-Children-Teenagers, University Hospitals Geneva, Geneva, Switzerland
- Inserm U1141, Sorbonne, Paris Diderot University, Paris, France
- *Correspondence: Olivier Baud
| | - Nadia Berkane
- Division of Obstetrics and Gynecology, Department of Women-Children-Teenagers, University Hospitals Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Neurosteroid replacement therapy using the allopregnanolone-analogue ganaxolone following preterm birth in male guinea pigs. Pediatr Res 2019; 85:86-96. [PMID: 30237570 DOI: 10.1038/s41390-018-0185-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Children born preterm, especially boys, are at increased risk of developing attention deficit hyperactivity disorder (ADHD) and learning difficulties. We propose that neurosteroid-replacement therapy with ganaxolone (GNX) following preterm birth may mitigate preterm-associated neurodevelopmental impairment. METHODS Time-mated sows were delivered preterm (d62) or at term (d69). Male preterm pups were randomized to ganaxolone (Prem-GNX; 2.5 mg/kg subcutaneously twice daily until term equivalence), or preterm control (Prem-CON). Surviving male juvenile pups underwent behavioural testing at d25-corrected postnatal age (CPNA). Brain tissue was collected at CPNA28 and mature myelinating oligodendrocytes of the hippocampus and subcortical white matter were quantified by immunostaining of myelin basic protein (MBP). RESULTS Ganaxolone treatment returned the hyperactive behavioural phenotype of preterm-born juvenile males to a term-born phenotype. Deficits in MBP immunostaining of the preterm hippocampus and subcortical white matter were also ameliorated in animals receiving ganaxolone. However, during the treatment period weight gain was poor, and pups were sedated, ultimately increasing the neonatal mortality rate. CONCLUSION Ganaxolone improved neurobehavioural outcomes in males suggesting that neonatal treatment may be an option for reducing preterm-associated neurodevelopmental impairment. However, dosing studies are required to reduce the burden of unwanted side effects.
Collapse
|
15
|
Hirst JJ, Palliser HK, Shaw JC, Crombie G, Walker DW, Zakar T. Birth and Neonatal Transition in the Guinea Pig: Experimental Approaches to Prevent Preterm Birth and Protect the Premature Fetus. Front Physiol 2018; 9:1802. [PMID: 30618814 PMCID: PMC6297273 DOI: 10.3389/fphys.2018.01802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/29/2018] [Indexed: 11/13/2022] Open
Abstract
The guinea pig (Cavia porcellus) displays many features of gestational physiology that makes it the most translationally relevant rodent species. Progesterone production undergoes a luteal to placental shift as in human pregnancy with levels rising during gestation and with labor and delivery occurring without a precipitous decline in maternal progesterone levels. In contrast to other laboratory rodents, labor in guinea pigs is triggered by a functional progesterone withdrawal, which involves the loss of uterine sensitivity to progesterone like in women. In both species the amnion membrane is a major source of labor-inducing prostaglandins, which promote functional progesterone withdrawal by modifying myometrial progesterone receptor expression. These similar features appear to result from convergent evolution rather than closer evolutionally relationship to primates compared to other rodents. Nevertheless, the similarities in the production, metabolism and actions of progesterone and prostaglandins allow information gained in pregnant guinea pigs to be extended to pregnant women with confidence. This includes exploring the effects of pregnancy complications including growth restriction and the mechanisms by which stressful conditions increase the incidence of preterm labor. The relatively long gestation of the guinea pig and the maturity of the pups at birth particularly in brain development means that a greater proportion of brain development happens in utero. This allows adverse intrauterine conditions to make a sustained impact on the developing brain like in compromised human pregnancies. In addition, the brain is exposed to a protective neurosteroid environment in utero, which has been suggested to promote development in the guinea pig and the human. Moreover, in utero stresses that have been shown to adversely affect long term neurobehavioral outcomes in clinical studies, can be modeled successfully in guinea pigs. Overall, these parallels to the human have led to increasing interest in the guinea pig for translational studies of treatments and therapies that potentially improve outcomes following adverse events in pregnancy and after preterm birth.
Collapse
Affiliation(s)
- Jonathan J Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Hannah K Palliser
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Julia C Shaw
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Gabrielle Crombie
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Tamas Zakar
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
16
|
Morrison JL, Botting KJ, Darby JRT, David AL, Dyson RM, Gatford KL, Gray C, Herrera EA, Hirst JJ, Kim B, Kind KL, Krause BJ, Matthews SG, Palliser HK, Regnault TRH, Richardson BS, Sasaki A, Thompson LP, Berry MJ. Guinea pig models for translation of the developmental origins of health and disease hypothesis into the clinic. J Physiol 2018; 596:5535-5569. [PMID: 29633280 PMCID: PMC6265540 DOI: 10.1113/jp274948] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Over 30 years ago Professor David Barker first proposed the theory that events in early life could explain an individual's risk of non-communicable disease in later life: the developmental origins of health and disease (DOHaD) hypothesis. During the 1990s the validity of the DOHaD hypothesis was extensively tested in a number of human populations and the mechanisms underpinning it characterised in a range of experimental animal models. Over the past decade, researchers have sought to use this mechanistic understanding of DOHaD to develop therapeutic interventions during pregnancy and early life to improve adult health. A variety of animal models have been used to develop and evaluate interventions, each with strengths and limitations. It is becoming apparent that effective translational research requires that the animal paradigm selected mirrors the tempo of human fetal growth and development as closely as possible so that the effect of a perinatal insult and/or therapeutic intervention can be fully assessed. The guinea pig is one such animal model that over the past two decades has demonstrated itself to be a very useful platform for these important reproductive studies. This review highlights similarities in the in utero development between humans and guinea pigs, the strengths and limitations of the guinea pig as an experimental model of DOHaD and the guinea pig's potential to enhance clinical therapeutic innovation to improve human health.
Collapse
Affiliation(s)
- Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Kimberley J. Botting
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Anna L. David
- Research Department of Maternal Fetal Medicine, Institute for Women's HealthUniversity College LondonLondonUK
| | - Rebecca M. Dyson
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Kathryn L. Gatford
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Clint Gray
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Emilio A. Herrera
- Pathophysiology Program, Biomedical Sciences Institute (ICBM), Faculty of MedicineUniversity of ChileSantiagoChile
| | - Jonathan J. Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Bona Kim
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Karen L. Kind
- School of Animal and Veterinary SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Bernardo J. Krause
- Division of Paediatrics, Faculty of MedicinePontificia Universidad Católica de ChileSantiagoChile
| | | | - Hannah K. Palliser
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Timothy R. H. Regnault
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Bryan S. Richardson
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Aya Sasaki
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Loren P. Thompson
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Mary J. Berry
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| |
Collapse
|
17
|
Ellery SJ, Kelleher M, Grigsby P, Burd I, Derks JB, Hirst J, Miller SL, Sherman LS, Tolcos M, Walker DW. Antenatal prevention of cerebral palsy and childhood disability: is the impossible possible? J Physiol 2018; 596:5593-5609. [PMID: 29928763 DOI: 10.1113/jp275595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
This review covers our current knowledge of the causes of perinatal brain injury leading to cerebral palsy-like outcomes, and argues that much of this brain damage is preventable. We review the experimental evidence that there are treatments that can be safely administered to women in late pregnancy that decrease the likelihood and extent of perinatal brain damage that occurs because of acute and severe hypoxia that arises during some births, and the additional impact of chronic fetal hypoxia, infection, inflammation, growth restriction and preterm birth. We discuss the types of interventions required to ameliorate or even prevent apoptotic and necrotic cell death, and the vulnerability of all the major cell types in the brain (neurons, astrocytes, oligodendrocytes, microglia, cerebral vasculature) to hypoxia/ischaemia, and whether a pan-protective treatment given to the mother before birth is a realistic prospect.
Collapse
Affiliation(s)
- Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Meredith Kelleher
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Peta Grigsby
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Irina Burd
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Jan B Derks
- Department of Perinatal Medicine University Medical Center Utrecht, The Netherlands, Gynaecology, Monash University, Melbourne, Australia
| | - Jon Hirst
- University of Newcastle, Newcastle, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Larry S Sherman
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Mary Tolcos
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia.,School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| |
Collapse
|
18
|
Shaw JC, Palliser HK, Dyson RM, Berry MJ, Hirst JJ. Disruptions to the cerebellar GABAergic system in juvenile guinea pigs following preterm birth. Int J Dev Neurosci 2017; 65:1-10. [PMID: 29024720 DOI: 10.1016/j.ijdevneu.2017.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Children that are born preterm are at an increased risk of developing cognitive problems and behavioural disorders, such as attention deficit hyperactivity disorder (ADHD). There is increasing interest in the role of the cerebellum in these processes and the potential involvement of GABAergic pathways in neurodevelopmental disorders. We propose that preterm birth, and the associated loss of the trophic intrauterine environment, alters the development of the cerebellum, contributing to ongoing neurobehavioral disorders. METHODS Guinea pigs were delivered preterm (GA62) or spontaneously at term (GA69), and tissues collected at corrected postnatal day (PND) 28. Neurodevelopmental and GABAergic markers myelin basic protein (MBP), neuronal nuclei (NeuN), calbindin (Purkinje cells), and GAD67 (GABA synthesis enzyme) were analysed in cerebellar lobules IX and X by immunohistochemistry. Protein expression of GAD67 and GAT1 (GABA transporter enzyme) were quantified by western blot, whilst neurosteroid-sensitive GABAA receptor subunits were measured by RT-PCR. RESULTS MBP immunostaining was increased in lobule IX of preterm males, and reduced in lobule X of preterm females when compared to their term counterparts. GAD67 staining was decreased in lobule IX and X of the preterm males, but only in lobule X of the preterm females compared to term cohorts for each sex. Internal granule cell layer width of lobule X was decreased in preterm cohorts of both sexes compared to terms. There were no differences between gestational age groups for NeuN staining, GAD67 and GAT1 protein expression as measured by western blotting, or GABAA receptor subunits as measured by RT-PCR between preterm and term for either sex. CONCLUSIONS The present findings suggest that components of the cerebellar GABAergic system of the ex-preterm cerebellum are disrupted. The higher expression of myelin in the preterm males may be due to a deficit in axonal pruning, whereas females have a deficit in myelination at 28 corrected days of age. Together these ongoing alterations may contribute to the neurodevelopmental and behavioural disorders observed in those born preterm.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, Australia.
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, Australia
| | - Rebecca M Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand; Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand; Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, Australia
| |
Collapse
|
19
|
Shaw JC, Palliser HK, Palazzi K, Hirst JJ. Administration of Progesterone Throughout Pregnancy Increases Maternal Steroids Without Adverse Effect on Mature Oligodendrocyte Immunostaining in the Guinea Pig. Reprod Sci 2017. [PMID: 28631553 DOI: 10.1177/1933719117715125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Progesterone is administered to pregnant women at risk of premature labor, despite systematic reviews showing conflicting outcomes regarding its use, highlighting doubt over the effectiveness of the therapy. Progesterone can be rapidly metabolized into a number of steroids, but to date, there has been a lack of investigation into the fetal steroid profiles following administration and whether this impacts fetal neurodevelopment. The objective of this study was to determine the effect of progesterone treatment on allopregnanolone and cortisol levels in the fetus and on a marker of myelination in the fetal brain. We used a guinea pig model where pregnant dams were administered vehicle (β-cyclodextrin) or progesterone orally throughout pregnancy (GA29-61). Maternal and fetal fluids and tissues were collected at both preterm (GA61) and term (GA68) ages. Maternal and fetal progesterone and cortisol were analyzed by enzyme immunoassay and allopregnanolone by radioimmunoassay. Measurement of myelination of fetal brains (hippocampus, cingulum, and subcortical white matter) at preterm and term ages was performed by immunohistochemistry staining for myelin basic protein. We found that dams receiving progesterone had significantly elevated progesterone and cortisol concentrations, but there was no effect on allopregnanolone. Interestingly, the increased cortisol concentrations were not reflected in the fetuses, and there was no effect of progesterone treatment on myelination. Therefore, we conclude that in our guinea pig model, maternal administration of progesterone has no effect on cortisol levels or markers of mature oligodendrocytes in the fetus and suggest this is potentially due to the protective cortisol barrier in the placenta.
Collapse
Affiliation(s)
- Julia C Shaw
- 1 School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia.,2 Mothers and Babies Research Centre, Hunter Medical Research Institute, New South Wales, Australia
| | - Hannah K Palliser
- 1 School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia.,2 Mothers and Babies Research Centre, Hunter Medical Research Institute, New South Wales, Australia
| | - Kerrin Palazzi
- 3 Clinical Research Design, Information Technology and Statistical Support, Hunter Medical Research Institute, New South Wales, Australia
| | - Jonathan J Hirst
- 1 School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia.,2 Mothers and Babies Research Centre, Hunter Medical Research Institute, New South Wales, Australia
| |
Collapse
|
20
|
Shaw JC, Palliser HK, Dyson RM, Hirst JJ, Berry MJ. Long-term effects of preterm birth on behavior and neurosteroid sensitivity in the guinea pig. Pediatr Res 2016; 80:275-83. [PMID: 27055188 DOI: 10.1038/pr.2016.63] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/28/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Ex-preterm children and adolescents are at risk of developing late-onset neurodevelopmental and behavioral disorders. The mechanisms by which this happens are poorly understood and relevant animal models are required. METHODS Ex-preterm (delivered at 62 d gestation) and term (spontaneously delivered) juvenile guinea pigs underwent behavioral testing at 25 d corrected postnatal age, with tissues collected at 28 d. Neurodevelopmental markers (myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP)) were analyzed in the hippocampus and subcortical white matter by immunohistochemistry. Gamma-aminobutyric acid A (GABAA) receptor subunit mRNA levels were quantified by reverse transcription polymerase chain reaction (RT-PCR), and salivary cortisol measured by enzyme-linked immunosorbent assay. RESULTS Preterm males travelled greater distances, were mobile for longer, spent more time investigating objects, and approached or interacted with familiar animals more than controls. Myelination and reactive astrocyte coverage was lower in the hippocampus and the subcortical white matter in preterm males. Hippocampal levels of the α5 subunit were also lower in the preterm male brain. Baseline salivary cortisol was higher for preterm males compared to controls. CONCLUSION We conclude that juvenile ex-preterm male guinea pigs exhibit a hyperactive phenotype and feature impaired neurodevelopment, making this a suitable model for future therapeutic studies.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Rebecca M Dyson
- Department of Paediatrics, Graduate School of Medicine and IHMRI, University of Wollongong, Wollongong, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.,Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Mary J Berry
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand.,Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| |
Collapse
|
21
|
Hirst JJ, Cumberland AL, Shaw JC, Bennett GA, Kelleher MA, Walker DW, Palliser HK. Loss of neurosteroid-mediated protection following stress during fetal life. J Steroid Biochem Mol Biol 2016; 160:181-8. [PMID: 26365557 DOI: 10.1016/j.jsbmb.2015.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022]
Abstract
Elevated levels of neurosteroids during late gestation protect the fetal brain from hypoxia/ischaemia and promote neurodevelopment. Suppression of allopregnanolone production during pregnancy leads to the onset of seizure-like activity and potentiates hypoxia-induced brain injury. Markers of myelination are reduced and astrocyte activation is increased. The placenta has a key role in maintaining allopregnanolone concentrations in the fetal circulation and brain during gestation and levels decline markedly after both normal and preterm birth. This leads to the preterm neonate developing in a neurosteroid deficient environment between delivery and term equivalence. The expression of 5α-reductases is also lower in the fetus prior to term. These deficiencies in neurosteroid exposure may contribute to the increase in incidence of the adverse patterns of behaviour seen in children that are born preterm. Repeated exposure to glucocorticoid stimulation suppresses 5α-reductase expression and allopregnanolone levels in the fetus and results in reduced myelination. Both fetal growth restriction and prenatal maternal stress lead to increased cortisol concentrations in the maternal and fetal circulation. Prenatal stress results in reduced expression of key GABAA receptor subunits that normally heighten neurosteroid sensitivity. These stressors also result in altered placental allopregnanolone metabolism pathways. These findings suggest that reduced neurosteroid production and action in the perinatal period may contribute to some of the adverse neurodevelopmental and behavioural outcomes that result from these pregnancy compromises. Studies examining perinatal steroid supplementation therapy with non-metabolisable neurosteroid analogues to improve these outcomes are warranted.
Collapse
Affiliation(s)
- Jonathan J Hirst
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Angela L Cumberland
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Julia C Shaw
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Greer A Bennett
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | - David W Walker
- Ritchie Centre for Baby Health Research, Department of Obstetrics and Gynaecology, Monash University, VIC 3800, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
22
|
Role of sex steroids and their receptors in human preterm infants: Impacts on future treatment strategies for cerebral development. Biochem Pharmacol 2015; 98:556-63. [DOI: 10.1016/j.bcp.2015.08.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022]
|