1
|
Deng WQ, Belisario K, Munafò MR, MacKillop J. Longitudinal characterization of impulsivity phenotypes boosts signal for genomic correlates and heritability. Mol Psychiatry 2025; 30:608-618. [PMID: 39181994 DOI: 10.1038/s41380-024-02704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Genomic correlates of impulsivity have been identified in several genome-wide association studies (GWAS) using cross-sectional designs, but no studies have investigated the molecular genetic correlates of impulsivity phenotypes using longitudinally constructed traits. In 3860 unrelated European participants in the Avon Longitudinal Study of Parents and Children (ALSPAC), we constructed longitudinal phenotypes for delay discounting and impulsive personality traits (as measured by the UPPS-P impulsive behavior scales) via assessment at ages 24, 26, and 28. We conducted GWASs of impulsivity using both cross-sectional and longitudinal phenotypes, estimated heritability and their phenotypic and genetic correlations, and evaluated their association with recently-developed polygenic risk scores (PRSs) for the impulsivity indicators themselves and also related psychiatric conditions. Latent growth curve modeling revealed a stable intercept over time for all impulsivity phenotypes. High genetic correlation of cross-sectional measures over time suggested a stable genetic component for delay discounting (rg = 0.53-0.99) and sensation seeking (rg = 0.99). Heritability estimates of the stable longitudinal phenotypes substantively improved as compared to their cross-sectional counterparts, revealing a significant SNP-heritability for delay discounting (0.22; p = 0.03) and sensation seeking (0.35; p = 0.0007). Consistent with previous reports, GWAS and gene-based analyses revealed associations between specific longitudinal impulsivity indicators and CADM2 and NCAM1 genes. The PRSs for the impulsivity indicators and disorders related to self-regulation were also significantly associated with longitudinal impulsivity traits. Finally, we validated the associations between longitudinal impulsivity phenotypes and their PRSs in an independent 13-wave longitudinal study (n = 1019) and the benefit of longitudinal phenotypes in simulation studies. In this first longitudinal genetic study of impulsivity traits, the results revealed stable genomic correlates of delay discounting and sensation seeking over time and further validated the utility of recently-developed PRSs, both in relation to the observed traits and in connecting them to psychiatric disorders. More generally, these findings support using latent intercepts as novel longitudinal phenotypes to boost signal for heritability and genomic correlates of mechanisms contributing to psychiatric disease liability.
Collapse
Affiliation(s)
- Wei Q Deng
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | - Kyla Belisario
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Marcus R Munafò
- School of Psychological Science, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - James MacKillop
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Friske MM, Torrico EC, Haas MJW, Borruto AM, Giannone F, Hade AC, Yu Y, Gao L, Sutherland GT, Hitzemann R, Philips MA, Fei SS, Sommer WH, Mayfield RD, Spanagel R. A systematic review and meta-analysis on the transcriptomic signatures in alcohol use disorder. Mol Psychiatry 2025; 30:310-326. [PMID: 39242950 PMCID: PMC11649567 DOI: 10.1038/s41380-024-02719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Currently available clinical treatments on alcohol use disorder (AUD) exhibit limited efficacy and new druggable targets are required. One promising approach to discover new molecular treatment targets involves the transcriptomic profiling of brain regions within the addiction neurocircuitry, utilizing animal models and postmortem brain tissue from deceased patients with AUD. Unfortunately, such studies suffer from large heterogeneity and small sample sizes. To address these limitations, we conducted a cross-species meta-analysis on transcriptome-wide data obtained from brain tissue of patients with AUD and animal models. We integrated 36 cross-species transcriptome-wide RNA-expression datasets with an alcohol-dependent phenotype vs. controls, following the PRISMA guidelines. In total, we meta-analyzed 964 samples - 502 samples from the prefrontal cortex (PFC), 282 nucleus accumbens (NAc) samples, and 180 from amygdala (AMY). The PFC had the highest number of differentially expressed genes (DEGs) across rodents, monkeys, and humans. Commonly dysregulated DEGs suggest conserved cross-species mechanisms for chronic alcohol consumption/AUD comprising MAPKs as well as STAT, IRF7, and TNF. Furthermore, we identified numerous unique gene sets that might contribute individually to these conserved mechanisms and also suggest novel molecular aspects of AUD. Validation of the transcriptomic alterations on the protein level revealed interesting targets for further investigation. Finally, we identified a combination of DEGs that are commonly regulated across different brain tissues as potential biomarkers for AUD. In summary, we provide a compendium of genes that are assessable via a shiny app, and describe signaling pathways, and physiological and cellular processes that are altered in AUD that require future studies for functional validation.
Collapse
Affiliation(s)
- Marion M Friske
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany.
- Waggoner Center for Alcohol and Addiction Research and the Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| | - Eva C Torrico
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Maximilian J W Haas
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Anna M Borruto
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Francesco Giannone
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Andreas-Christian Hade
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, Tartu, Estonia
- Forensic Medical Examination Department, Estonian Forensic Science Institute, Tallinn, Estonia
| | - Yun Yu
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Lina Gao
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Greg T Sutherland
- New South Wales Tissue Resource Center, University of Sydney, Camperdown, NSW, Australia
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Suzanne S Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Wolfgang H Sommer
- Bethania Hospital for Psychiatry, Psychosomatics and Psychotherapy, Greifswald, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, Mannheim, Germany
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research and the Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany.
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, Mannheim, Germany.
| |
Collapse
|
3
|
Miller AP, Spychala KM, Slutske WS, Fromme K, Gizer IR. Binge drinking trajectories across adolescence and early adulthood: Associations with genetic influences for dual-systems impulsive personality traits, alcohol consumption, and alcohol use disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.15.24315471. [PMID: 39484268 PMCID: PMC11527070 DOI: 10.1101/2024.10.15.24315471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Binge drinking is a relatively common pattern of alcohol use among youth with normative frequency trajectories peaking in emerging and early adulthood. Frequent binge drinking is a critical risk factor for not only the development of alcohol use disorders (AUDs) but also increased odds of alcohol-related injury and death, and thus constitutes a significant public health concern. Changes in binge drinking across development are strongly associated with changes in impulsive personality traits (IPTs) which have been hypothesized as intermediate phenotypes associated with genetic risk for heavy alcohol use and AUD. The current study sought to examine the extent to which longitudinal changes in binge drinking and intoxication frequency across adolescence and early adulthood are associated with genetic influences underlying dual-systems IPTs (i.e., top-down [lack of self-control] and bottom-up [sensation seeking and urgency] constructs) alongside genetic risk for alcohol consumption and AUD. Associations were tested using conditional latent growth curve polygenic score (PGS) models in three independent longitudinal samples (N=10,554). Results suggested consistent significant and independent associations across all samples between sensation seeking PGSs and model intercepts (i.e., higher frequency of binge drinking at first measurement occasion) and alcohol consumption PGSs and model slopes (i.e., steeper increases toward peak binge drinking frequency). Urgency PGSs were not significantly associated with changes in binge drinking or intoxication frequency. Collectively, these findings highlight the role of unique but correlated IPT and alcohol-specific genetic factors in the emergence and escalation of binge drinking during adolescence and early adulthood.
Collapse
Affiliation(s)
- Alex P. Miller
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kellyn M. Spychala
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
| | - Wendy S. Slutske
- Center for Tobacco Research and Intervention, Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Kim Fromme
- Department of Psychology, University of Texas, Austin, TX, United States
| | - Ian R. Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
4
|
Drouard G, Silventoinen K, Latvala A, Kaprio J. Genetic and Environmental Factors Underlying Parallel Changes in Body Mass Index and Alcohol Consumption: A 36-Year Longitudinal Study of Adult Twins. Obes Facts 2023; 16:224-236. [PMID: 36882010 PMCID: PMC10826601 DOI: 10.1159/000529835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
INTRODUCTION While the genetic and environmental underpinnings of body weight and alcohol use are fairly well-known, determinants of simultaneous changes in these traits are still poorly known. We sought to quantify the environmental and genetic components underlying parallel changes in weight and alcohol consumption and to investigate potential covariation between them. METHODS The analysis comprised 4,461 adult participants (58% women) from the Finnish Twin Cohort with four measures of alcohol consumption and body mass index (BMI) over a 36-year follow-up. Trajectories of each trait were described by growth factors, defined as intercepts (i.e., baseline) and slopes (i.e., change over follow-up), using latent growth curve modeling. Growth values were used for male (190 monozygotic pairs, 293 dizygotic pairs) and female (316 monozygotic pairs, 487 dizygotic pairs) same-sex complete twin pairs in multivariate twin modeling. The variances and covariances of growth factors were then decomposed into genetic and environmental components. RESULTS The baseline heritabilities were similar in men (BMI: h2 = 79% [95% confidence interval: 74, 83]; alcohol consumption: h2 = 49% [32, 67]) and women (h2 = 77% [73, 81]; h2 = 45% [29, 61]). Heritabilities of BMI change were similar in men (h2 = 52% [42, 61]) and women (h2 = 57% [50, 63]), but the heritability of change in alcohol consumption was significantly higher (p = 0.03) in men (h2 = 45% [34, 54]) than in women (h2 = 31% [22, 38]). Significant additive genetic correlations between BMI at baseline and change in alcohol consumption were observed in both men (rA = -0.17 [-0.29, -0.04]) and women (rA = -0.18 [-0.31, -0.06]). Non-shared environmental factors affecting changes in alcohol consumption and BMI were correlated in men (rE = 0.18 [0.06, 0.30]). Among women, non-shared environmental factors affecting baseline alcohol consumption and the change in BMI were inversely correlated (rE = -0.11 [-0.20, -0.01]). CONCLUSIONS Based on genetic correlations, genetic variation underlying BMI may affect changes in alcohol consumption. Independent of genetic effects, change in BMI correlates with change in alcohol consumption in men, suggesting direct effects between them.
Collapse
Affiliation(s)
- Gabin Drouard
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Karri Silventoinen
- Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Antti Latvala
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Institute of Criminology and Legal Policy, University of Helsinki, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Goodspeed K, Mosca LR, Weitzel NC, Horning K, Simon EW, Pfalzer AC, Xia M, Langer K, Freed A, Bone M, Picone M, Bichell TJV. A draft conceptual model of SLC6A1 neurodevelopmental disorder. Front Neurosci 2023; 16:1026065. [PMID: 36741059 PMCID: PMC9893116 DOI: 10.3389/fnins.2022.1026065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/05/2022] [Indexed: 01/21/2023] Open
Abstract
Introduction SLC6A1 Neurodevelopmental Disorder (SLC6A1-NDD), first described in 2015, is a rare syndrome caused by a mutation in the SLC6A1 gene which encodes for the GABA Transporter 1 (GAT-1) protein. Epilepsy is one of the most common symptoms in patients and is often the primary treatment target, though the severity of epilepsy is variable. The impact of seizures and other symptoms of SLC6A1-NDD on patients and caregivers is wide-ranging and has not been described in a formal disease concept study. Methods A literature search was performed using the simple search term, "SLC6A1." Papers published before 2015, and those which did not describe the human neurodevelopmental disorder were removed from analysis. Open-ended interviews on lived experiences were conducted with two patient advocate key opinion leaders. An analysis of de-identified conversations between families of people with SLC6A1-NDD on social media was performed to quantify topics of concern. Results Published literature described symptoms in all of the following domains: neurological, visual, motor, cognitive, communication, behavior, gastrointestinal, sleep, musculo-skeletal, and emotional in addition to epilepsy. Key opinion leaders noted two unpublished features: altered hand use in infants, and developmental regression with onset of epilepsy. Analysis of social media interactions confirmed that the core symptoms of epilepsy and autistic traits were prominent concerns, but also demonstrated that other symptoms have a large impact on family life. Discussion For rare diseases, analysis of published literature is important, but may not be as comprehensive as that which can be gleaned from spontaneous interactions between families and through qualitative interviews. This report reflects our current understanding of the lived experience of SLC6A1-NDD. The discrepancy between the domains of disease reported in the literature and those discussed in patient conversations suggests that a formal qualitative interview-based disease concept study of SLC6A1-NDD is warranted.
Collapse
Affiliation(s)
- Kimberly Goodspeed
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lindsay R. Mosca
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, United States
| | - Nicole C. Weitzel
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, United States
| | | | - Elijah W. Simon
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, United States
| | | | - Maya Xia
- COMBINEDBrain, Brentwood, TN, United States
| | - Katherine Langer
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, United States
| | | | - Megan Bone
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Maria Picone
- TREND Community, Philadelphia, PA, United States
| | | |
Collapse
|
6
|
Bukina ES, Kondratyev NV, Kozin SV, Golimbet VE, Artyuhov AS, Dashinimaev EB. SLC6A1 and Neuropsychiatric Diseases: The Role of Mutations and Prospects for Treatment with Genome Editing Systems. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
A genome-wide association study of the longitudinal course of executive functions. Transl Psychiatry 2021; 11:386. [PMID: 34247186 PMCID: PMC8272719 DOI: 10.1038/s41398-021-01510-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 01/13/2023] Open
Abstract
Executive functions are metacognitive capabilities that control and coordinate mental processes. In the transdiagnostic PsyCourse Study, comprising patients of the affective-to-psychotic spectrum and controls, we investigated the genetic basis of the time course of two core executive subfunctions: set-shifting (Trail Making Test, part B (TMT-B)) and updating (Verbal Digit Span backwards) in 1338 genotyped individuals. Time course was assessed with four measurement points, each 6 months apart. Compared to the initial assessment, executive performance improved across diagnostic groups. We performed a genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with performance change over time by testing for SNP-by-time interactions using linear mixed models. We identified nine genome-wide significant SNPs for TMT-B in strong linkage disequilibrium with each other on chromosome 5. These were associated with decreased performance on the continuous TMT-B score across time. Variant rs150547358 had the lowest P value = 7.2 × 10-10 with effect estimate beta = 1.16 (95% c.i.: 1.11, 1.22). Implementing data of the FOR2107 consortium (1795 individuals), we replicated these findings for the SNP rs150547358 (P value = 0.015), analyzing the difference of the two available measurement points two years apart. In the replication study, rs150547358 exhibited a similar effect estimate beta = 0.85 (95% c.i.: 0.74, 0.97). Our study demonstrates that longitudinally measured phenotypes have the potential to unmask novel associations, adding time as a dimension to the effects of genomics.
Collapse
|
8
|
Lopez-Leon S, González-Giraldo Y, Wegman-Ostrosky T, Forero DA. Molecular genetics of substance use disorders: An umbrella review. Neurosci Biobehav Rev 2021; 124:358-369. [PMID: 33556390 DOI: 10.1016/j.neubiorev.2021.01.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Substance use disorders (SUD) are a category of psychiatric disorders with a large epidemiological and societal impact around the world. In the last decades, a large number of genetic studies have been published for SUDs. METHODS With the objective of having an overview and summarizing the evidence published up to date, we carried out an umbrella review of all the meta-analyses of genetic studies for the following substances: alcohol, tobacco, cannabis, cocaine, opioids, heroin and methamphetamines. Meta-analyses for candidate gene studies and genome-wide association studies (GWAS) were included. RESULTS Alcohol and tobacco were the substances with the largest number of meta-analyses, and cannabis, opioids and cocaine the least studied. The following genes were associated with two or more SUDs: OPRM1, DRD2, DRD4, BDNF and SL6A4. The only genes that had an OR higher than two were the SLC6A4 for all addictions, the ADH1B for alcohol dependence, and BDNF for methamphetamine dependence. GWAS confirmed the possible role of CHRNA5 gene in nicotine dependence and identified novel candidate genes in other SUDs, such as FOXP2, PEX and, AUTS2, which need further functional analyses. CONCLUSIONS This umbrella review summarizes the evidence of 16 years of research on the genetics of SUDs and provides a broad and detailed overview of results from more than 150 meta-analyses for SUD. The results of this umbrella review will guide the need for future genetic studies geared toward understanding, preventing and treating SUDs.
Collapse
Affiliation(s)
- Sandra Lopez-Leon
- Drug Development, Novartis Pharmaceuticals Corporation, East Hanover NJ, USA.
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Talia Wegman-Ostrosky
- Basic Research Subdirection, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Diego A Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia; MSc Program in Epidemiology, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia
| |
Collapse
|
9
|
Maldonado R, Calvé P, García-Blanco A, Domingo-Rodriguez L, Senabre E, Martín-García E. Genomics and epigenomics of addiction. Am J Med Genet B Neuropsychiatr Genet 2021; 186:128-139. [PMID: 33819378 DOI: 10.1002/ajmg.b.32843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
Recent progress in the genomics and epigenomics of addiction has contributed to improving our understanding of this complex mental disorder's etiology, filling the gap between genes, environment, and behavior. We review the behavioral genetic studies reporting gene and environment interactions that explain the polygenetic contribution to the resilience and vulnerability to develop addiction. We discuss the evidence of polymorphic candidate genes that confer susceptibility to develop addiction as well as the studies of specific epigenetic marks that contribute to vulnerability and resilience to addictive-like behavior. A particular emphasis has been devoted to the miRNA changes that are considered potential biomarkers. The increasing knowledge about the technology required to alter miRNA expression may provide promising novel therapeutic tools. Finally, we give future directions for the field's progress in disentangling the connection between genes, environment, and behavior.
Collapse
Affiliation(s)
- Rafael Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Pablo Calvé
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alejandra García-Blanco
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Domingo-Rodriguez
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eric Senabre
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elena Martín-García
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
10
|
Osborne AJ, Pearson JF, Noble AJ, Gemmell NJ, Horwood LJ, Boden JM, Benton MC, Macartney-Coxson DP, Kennedy MA. Genome-wide DNA methylation analysis of heavy cannabis exposure in a New Zealand longitudinal cohort. Transl Psychiatry 2020; 10:114. [PMID: 32321915 PMCID: PMC7176736 DOI: 10.1038/s41398-020-0800-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Cannabis use is of increasing public health interest globally. Here we examined the effect of heavy cannabis use, with and without tobacco, on genome-wide DNA methylation in a longitudinal birth cohort (Christchurch Health and Development Study, CHDS). A total of 48 heavy cannabis users were selected from the CHDS cohort, on the basis of their adult exposure to cannabis and tobacco, and DNA methylation assessed from whole blood samples, collected at approximately age 28. Methylation in heavy cannabis users was assessed, relative to non-users (n = 48 controls) via the Illumina Infinium® MethylationEPIC BeadChip. We found the most differentially methylated sites in cannabis with tobacco users were in the AHRR and F2RL3 genes, replicating previous studies on the effects of tobacco. Cannabis-only users had no evidence of differential methylation in these genes, or at any other loci at the epigenome-wide significance level (P < 10-7). However, there were 521 sites differentially methylated at P < 0.001 which were enriched for genes involved in neuronal signalling (glutamatergic synapse and long-term potentiation) and cardiomyopathy. Further, the most differentially methylated loci were associated with genes with reported roles in brain function (e.g. TMEM190, MUC3L, CDC20 and SP9). We conclude that the effects of cannabis use on the mature human blood methylome differ from, and are less pronounced than, the effects of tobacco use, and that larger sample sizes are required to investigate this further.
Collapse
Affiliation(s)
- Amy J. Osborne
- grid.21006.350000 0001 2179 4063School of Biological Sciences, University of Canterbury, Christchurch, 8041 New Zealand
| | - John F. Pearson
- grid.29980.3a0000 0004 1936 7830Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, 8011 New Zealand
| | - Alexandra J. Noble
- grid.21006.350000 0001 2179 4063School of Biological Sciences, University of Canterbury, Christchurch, 8041 New Zealand
| | - Neil J. Gemmell
- grid.29980.3a0000 0004 1936 7830Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin, 9054 New Zealand
| | - L. John Horwood
- grid.29980.3a0000 0004 1936 7830Department of Psychological Medicine, University of Otago Christchurch, Christchurch, 8011 New Zealand
| | - Joseph M. Boden
- grid.29980.3a0000 0004 1936 7830Department of Psychological Medicine, University of Otago Christchurch, Christchurch, 8011 New Zealand
| | - Miles C. Benton
- grid.419706.d0000 0001 2234 622XHuman Genomics, Institute of Environmental Science and Research, Kenepuru Science Centre, Porirua, 5240 New Zealand
| | - Donia P. Macartney-Coxson
- grid.419706.d0000 0001 2234 622XHuman Genomics, Institute of Environmental Science and Research, Kenepuru Science Centre, Porirua, 5240 New Zealand
| | - Martin A. Kennedy
- grid.29980.3a0000 0004 1936 7830Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, 8011 New Zealand
| |
Collapse
|
11
|
Trucco EM, Madan B, Villar M. The Impact of Genes on Adolescent Substance Use: A Developmental Perspective. CURRENT ADDICTION REPORTS 2019; 6:522-531. [PMID: 31929960 DOI: 10.1007/s40429-019-00273-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purpose This review discusses the importance of understanding the impact of genetic factors on adolescent substance use within a developmental framework. Methods for identifying genetic factors, relevant endophenotypes and intermediate phenotypes, and gene-environment interplay effects will be reviewed. Findings Prior work supports the role of polygenic variation on adolescent substance use. Mechanisms through which genes impact adolescent phenotypes consist of differences in neural structure and function, early temperamental differences, and problem behavior. Gene-environment interactions are characterized by increased vulnerability to both maladaptive and adaptive contexts. Summary Developmental considerations in genetic investigations highlight the critical role that polygenic variation has on adolescent substance use. Yet, determining what to do with this information, especially in terms of personalized medicine, poses ethical and logistic challenges.
Collapse
Affiliation(s)
- Elisa M Trucco
- Florida International University, Psychology Department, Center for Children and Families, 11200 SW 8 Street, AHC-1, Miami, FL 33199
| | - Brigitte Madan
- Florida International University, Center for Children and Families, 11200 SW 8 Street, AHC-4, Miami, FL 33199
| | - Michelle Villar
- Florida International University, Center for Children and Families, 11200 SW 8 Street, AHC-1, Miami, FL 33199
| |
Collapse
|
12
|
Cornelis MC. Genetic determinants of beverage consumption: Implications for nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 89:1-52. [PMID: 31351524 PMCID: PMC7047661 DOI: 10.1016/bs.afnr.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Beverages make important contributions to nutritional intake and their role in health has received much attention. This review focuses on the genetic determinants of common beverage consumption and how research in this field is contributing insight to what and how much we consume and why this genetic knowledge matters from a research and public health perspective. The earliest efforts in gene-beverage behavior mapping involved genetic linkage and candidate gene analysis but these approaches have been largely replaced by genome-wide association studies (GWAS). GWAS have identified biologically plausible loci underlying alcohol and coffee drinking behavior. No GWAS has identified variants specifically associated with consumption of tea, juice, soda, wine, beer, milk or any other common beverage. Thus far, GWAS highlight an important behavior-reward component (as opposed to taste) to beverage consumption which may serve as a potential barrier to dietary interventions. Loci identified have been used in Mendelian randomization and gene×beverage interaction analysis of disease but results have been mixed. This research is necessary as it informs the clinical relevance of SNP-beverage associations and thus genotype-based personalized nutrition, which is gaining interest in the commercial and public health sectors.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
13
|
Salvatore JE, Han S, Farris SP, Mignogna KM, Miles MF, Agrawal A. Beyond genome-wide significance: integrative approaches to the interpretation and extension of GWAS findings for alcohol use disorder. Addict Biol 2019; 24:275-289. [PMID: 29316088 PMCID: PMC6037617 DOI: 10.1111/adb.12591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder (AUD) is a heritable complex behavior. Due to the highly polygenic nature of AUD, identifying genetic variants that comprise this heritable variation has proved to be challenging. With the exception of functional variants in alcohol metabolizing genes (e.g. ADH1B and ALDH2), few other candidate loci have been confidently linked to AUD. Genome-wide association studies (GWAS) of AUD and other alcohol-related phenotypes have either produced few hits with genome-wide significance or have failed to replicate on further study. These issues reinforce the complex nature of the genetic underpinnings for AUD and suggest that both GWAS studies with larger samples and additional analysis approaches that better harness the nominally significant loci in existing GWAS are needed. Here, we review approaches of interest in the post-GWAS era, including in silico functional analyses; functional partitioning of single nucleotide polymorphism heritability; aggregation of signal into genes and gene networks; and validation of identified loci, genes and gene networks in postmortem brain tissue and across species. These integrative approaches hold promise to illuminate our understanding of the biological basis of AUD; however, we recognize that the main challenge continues to be the extremely polygenic nature of AUD, which necessitates large samples to identify multiple loci associated with AUD liability.
Collapse
Affiliation(s)
- Jessica E. Salvatore
- Department of Psychology; Virginia Commonwealth University; Richmond VA USA
- Virginia Institute for Psychiatric and Behavioral Genetics; Virginia Commonwealth University; Richmond VA USA
| | - Shizhong Han
- Department of Psychiatry; University of Iowa; Iowa City IA USA
- Department of Psychiatry and Behavioral Sciences; Johns Hopkins School of Medicine; Baltimore MD USA
| | - Sean P. Farris
- Waggoner Center for Alcohol and Addiction Research; The University of Texas at Austin; Austin TX USA
| | - Kristin M. Mignogna
- Virginia Institute for Psychiatric and Behavioral Genetics; Virginia Commonwealth University; Richmond VA USA
| | - Michael F. Miles
- Department of Pharmacology and Toxicology; Virginia Commonwealth University; Richmond VA USA
| | - Arpana Agrawal
- Department of Psychiatry; Washington University School of Medicine; Saint Louis MO USA
| |
Collapse
|
14
|
Richards A, Horwood J, Boden J, Kennedy M, Sellers R, Riglin L, Mistry S, Jones H, Smith DJ, Zammit S, Owen M, O'Donovan MC, Harold GT. Associations between schizophrenia genetic risk, anxiety disorders and manic/hypomanic episode in a longitudinal population cohort study. Br J Psychiatry 2019; 214:96-102. [PMID: 30472973 PMCID: PMC6429243 DOI: 10.1192/bjp.2018.227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/16/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Studies involving clinically recruited samples show that genetic liability to schizophrenia overlaps with that for several psychiatric disorders including bipolar disorder, major depression and, in a population study, anxiety disorder and negative symptoms in adolescence.AimsWe examined whether, at a population level, association between schizophrenia liability and anxiety disorders continues into adulthood, for specific anxiety disorders and as a group. We explored in an epidemiologically based cohort the nature of adult psychopathology sharing liability to schizophrenia. METHOD Schizophrenia polygenic risk scores (PRSs) were calculated for 590 European-descent individuals from the Christchurch Health and Development Study. Logistic regression was used to examine associations between schizophrenia PRS and four anxiety disorders (social phobia, specific phobia, panic disorder and generalised anxiety disorder), schizophrenia/schizophreniform disorder, manic/hypomanic episode, alcohol dependence, major depression, and - using linear regression - total number of anxiety disorders. A novel population-level association with hypomania was tested in a UK birth cohort (Avon Longitudinal Study of Parents and Children). RESULTS Schizophrenia PRS was associated with total number of anxiety disorders and with generalised anxiety disorder and panic disorder. We show a novel population-level association between schizophrenia PRS and manic/hypomanic episode. CONCLUSIONS The relationship between schizophrenia liability and anxiety disorders is not restricted to psychopathology in adolescence but is present in adulthood and specifically linked to generalised anxiety disorder and panic disorder. We suggest that the association between schizophrenia liability and hypomanic/manic episodes found in clinical samples may not be due to bias.Declarations of interestNone.
Collapse
Affiliation(s)
- Alexander Richards
- Research Associate, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, UK
| | - John Horwood
- Professor, Christchurch Health and Development Study, Department of Psychological Medicine, University of Otago Christchurch, New Zealand
| | - Joseph Boden
- Associate Professor, Christchurch Health and Development Study, Department of Psychological Medicine, University of Otago Christchurch, New Zealand
| | - Martin Kennedy
- Professor, Department of Pathology, University of Otago Christchurch, New Zealand
| | - Ruth Sellers
- Economic and Social Research Council Future Research Leader Fellow, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University and School of Psychology, University of Sussex, UK
| | - Lucy Riglin
- Research Associate, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, UK
| | - Sumit Mistry
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, UK
| | - Hannah Jones
- Research Associate, Population Health Sciences, Bristol Medical School and Medical Research Council Integrative Epidemiology Unit, University of Bristol, UK
| | - Daniel J. Smith
- Professor, Institute of Health and Wellbeing, University of Glasgow, UK
| | - Stanley Zammit
- Professor, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University and Population Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Michael Owen
- Professor, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, UK
| | - Michael C. O'Donovan
- Professor, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, UK
| | - Gordon T. Harold
- Professor, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University and School of Psychology, University of Sussex and School of Psychology, Trinity College, UK
| |
Collapse
|
15
|
Thornton LM, Munn-Chernoff MA, Baker JH, Juréus A, Parker R, Henders AK, Larsen JT, Petersen L, Watson HJ, Yilmaz Z, Kirk KM, Gordon S, Leppä VM, Martin FC, Whiteman DC, Olsen CM, Werge TM, Pedersen NL, Kaye W, Bergen AW, Halmi KA, Strober M, Kaplan AS, Woodside DB, Mitchell J, Johnson CL, Brandt H, Crawford S, Horwood LJ, Boden JM, Pearson JF, Duncan LE, Grove J, Mattheisen M, Jordan J, Kennedy MA, Birgegård A, Lichtenstein P, Norring C, Wade TD, Montgomery GW, Martin NG, Landén M, Mortensen PB, Sullivan PF, Bulik CM. The Anorexia Nervosa Genetics Initiative (ANGI): Overview and methods. Contemp Clin Trials 2018; 74:61-69. [PMID: 30287268 DOI: 10.1016/j.cct.2018.09.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/17/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Genetic factors contribute to anorexia nervosa (AN); and the first genome-wide significant locus has been identified. We describe methods and procedures for the Anorexia Nervosa Genetics Initiative (ANGI), an international collaboration designed to rapidly recruit 13,000 individuals with AN and ancestrally matched controls. We present sample characteristics and the utility of an online eating disorder diagnostic questionnaire suitable for large-scale genetic and population research. METHODS ANGI recruited from the United States (US), Australia/New Zealand (ANZ), Sweden (SE), and Denmark (DK). Recruitment was via national registers (SE, DK); treatment centers (US, ANZ, SE, DK); and social and traditional media (US, ANZ, SE). All cases had a lifetime AN diagnosis based on DSM-IV or ICD-10 criteria (excluding amenorrhea). Recruited controls had no lifetime history of disordered eating behaviors. To assess the positive and negative predictive validity of the online eating disorder questionnaire (ED100K-v1), 109 women also completed the Structured Clinical Interview for DSM-IV (SCID), Module H. RESULTS Blood samples and clinical information were collected from 13,363 individuals with lifetime AN and from controls. Online diagnostic phenotyping was effective and efficient; the validity of the questionnaire was acceptable. CONCLUSIONS Our multi-pronged recruitment approach was highly effective for rapid recruitment and can be used as a model for efforts by other groups. High online presence of individuals with AN rendered the Internet/social media a remarkably effective recruitment tool in some countries. ANGI has substantially augmented Psychiatric Genomics Consortium AN sample collection. ANGI is a registered clinical trial: clinicaltrials.govNCT01916538; https://clinicaltrials.gov/ct2/show/NCT01916538?cond=Anorexia+Nervosa&draw=1&rank=3.
Collapse
Affiliation(s)
- Laura M Thornton
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Jessica H Baker
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anders Juréus
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden
| | - Richard Parker
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | | | - Janne T Larsen
- Aarhus University, Norde Ringgade 1, 8000 Aarhus, Denmark
| | | | - Hunna J Watson
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Zeynep Yilmaz
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katherine M Kirk
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | - Scott Gordon
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | - Virpi M Leppä
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden
| | - Felicity C Martin
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | - David C Whiteman
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | - Catherine M Olsen
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | - Thomas M Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Bartholin Alle 6, 8000 Aarhus, Denmark; Mental Health Services, Institute for Biological Psychiatry, MHC Sct. Hans, Kristineberg 3, 2100 Copenhagen, Denmark; University of Copenhagen, Nørregade 10, DK-1165 Copenhagen, Denmark
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden
| | - Walter Kaye
- University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Andrew W Bergen
- Biorealm Research, 6101 W Centinela Ave # 270, Culver City, CA 90230, USA; Oregon Research Institute, Eugene, OR 97403, USA
| | - Katherine A Halmi
- Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Michael Strober
- University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Allan S Kaplan
- University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - D Blake Woodside
- University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada; Toronto General Hospital, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - James Mitchell
- Neuropsychiatric Research Institute, 120 8th Street South, Fargo, ND 58103, USA
| | - Craig L Johnson
- Eating Recovery Center, 7351 E. Lowry Blvd., Suite 200, Denver, CO 80230, USA
| | - Harry Brandt
- The Center for Eating Disorders at Sheppard Pratt, 6501 N. Charles Street, Baltimore, MD 21204, USA
| | - Steven Crawford
- The Center for Eating Disorders at Sheppard Pratt, 6501 N. Charles Street, Baltimore, MD 21204, USA
| | - L John Horwood
- Christchurch School of Medicine & Health Sciences, University of Otago, 2 Riccarton Avenue, PO Box 4345, Christchurch 8140, New Zealand
| | - Joseph M Boden
- Christchurch School of Medicine & Health Sciences, University of Otago, 2 Riccarton Avenue, PO Box 4345, Christchurch 8140, New Zealand
| | - John F Pearson
- Christchurch School of Medicine & Health Sciences, University of Otago, 2 Riccarton Avenue, PO Box 4345, Christchurch 8140, New Zealand
| | - Laramie E Duncan
- Stanford University, 450 Serra Mall, Stanford, CA 94305-2004, USA
| | - Jakob Grove
- Aarhus University, Norde Ringgade 1, 8000 Aarhus, Denmark
| | - Manuel Mattheisen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden; Aarhus University, Norde Ringgade 1, 8000 Aarhus, Denmark; Stockholm Health Care Services, Stockholm County Council, Box 45436, 104 31 Stockholm, Sweden; University of Würzburg, Sanderring 2, 97070 Würzburg, Germany
| | - Jennifer Jordan
- Christchurch School of Medicine & Health Sciences, University of Otago, 2 Riccarton Avenue, PO Box 4345, Christchurch 8140, New Zealand
| | - Martin A Kennedy
- Christchurch School of Medicine & Health Sciences, University of Otago, 2 Riccarton Avenue, PO Box 4345, Christchurch 8140, New Zealand
| | - Andreas Birgegård
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Box 45436, 104 31 Stockholm, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden
| | - Claes Norring
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden; Stockholm Health Care Services, Stockholm County Council, Box 45436, 104 31 Stockholm, Sweden
| | - Tracey D Wade
- Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | | | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital QLD 4029, Australia
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden; Gothenburg University, Box 100, SE-405 30 Gothenburg, Sweden
| | - Preben Bo Mortensen
- Aarhus University, Norde Ringgade 1, 8000 Aarhus, Denmark; Mental Health Services, Institute for Biological Psychiatry, MHC Sct. Hans, Kristineberg 3, 2100 Copenhagen, Denmark; University of Copenhagen, Nørregade 10, DK-1165 Copenhagen, Denmark
| | - Patrick F Sullivan
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden
| | - Cynthia M Bulik
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, PO Box 281, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
16
|
Koulentaki M, Kouroumalis E. GABA A receptor polymorphisms in alcohol use disorder in the GWAS era. Psychopharmacology (Berl) 2018; 235:1845-1865. [PMID: 29721579 DOI: 10.1007/s00213-018-4918-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing, neuro-psychiatric illness of high prevalence and with a serious public health impact worldwide. It is complex and polygenic, with a heritability of about 50%, and influenced by environmental causal heterogeneity. Risk factors associated with its etiology have a genetic component. GABA (γ-aminobutyric acid) is a major inhibitory neurotransmitter in mammalian brain. GABAA receptors are believed to mediate some of the physiological and behavioral actions of alcohol. In this critical review, relevant genetic terms and type and methodology of the genetic studies are briefly explained. Postulated candidate genes that encode subunits of GABAA receptors, with all the reported SNPs, are presented. Genetic studies and meta-analyses examining polymorphisms of the GABAA receptor and their association with AUD predisposition are presented. The data are critically examined with reference to recent GWAS studies that failed to show relations between GABAA receptors and AUD. Restrictions and perspectives of the different findings are discussed.
Collapse
Affiliation(s)
- Mairi Koulentaki
- Alcohology Research Laboratory, Medical School, University of Crete, 71500, Heraklion, Crete, Greece.,Department of Gastroenterology, University Hospital Heraklion, 71500, Heraklion, Crete, Greece
| | - Elias Kouroumalis
- Department of Gastroenterology, University Hospital Heraklion, 71500, Heraklion, Crete, Greece.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW With the advent of the genome-wide association study (GWAS), our understanding of the genetics of addiction has made significant strides forward. Here, we summarize genetic loci containing variants identified at genome-wide statistical significance (P < 5 × 10-8) and independently replicated, review evidence of functional or regulatory effects for GWAS-identified variants, and outline multi-omics approaches to enhance discovery and characterize addiction loci. RECENT FINDINGS Replicable GWAS findings span 11 genetic loci for smoking, eight loci for alcohol, and two loci for illicit drugs combined and include missense functional variants and noncoding variants with regulatory effects in human brain tissues traditionally viewed as addiction-relevant (e.g., prefrontal cortex [PFC]) and, more recently, tissues often overlooked (e.g., cerebellum). GWAS analyses have discovered several novel, replicable variants contributing to addiction. Using larger sample sizes from harmonized datasets and new approaches to integrate GWAS with multiple 'omics data across human brain tissues holds great promise to significantly advance our understanding of the biology underlying addiction.
Collapse
Affiliation(s)
- Dana B Hancock
- Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, 3040 East Cornwallis Road, P. O. Box 12194, Research Triangle Park, NC, 27709, USA.
| | - Christina A Markunas
- Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, 3040 East Cornwallis Road, P. O. Box 12194, Research Triangle Park, NC, 27709, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Eric O Johnson
- Fellow Program and Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
18
|
Deutsch AR, Wood PK, Slutske WS. Developmental Etiologies of Alcohol Use and Their Relations to Parent and Peer Influences Over Adolescence and Young Adulthood: A Genetically Informed Approach. Alcohol Clin Exp Res 2017; 41:2151-2162. [PMID: 29083505 PMCID: PMC5711546 DOI: 10.1111/acer.13506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 09/09/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Distinct changes in alcohol use etiologies occur during adolescence and young adulthood. Additionally, measured environments known to influence alcohol use such as peers and parenting practice can interact or be associated with this genetic influence. However, change in genetic and environmental influences over age, as well as how associations with measured environments change over age, is understudied. METHODS The National Longitudinal Study of Adolescent Health (Add Health) sibling subsample was used to examine data-driven biometric models of alcohol use over ages 13 to 27. Associations between friends' drinking, parental autonomy granting, and maternal closeness were also examined. RESULTS The best-fitting model included a 5-factor model consisting of early (ages 13 to 20) and overall (ages 13 to 27) additive genetic and unique environmental factors, as well as 1 overall common environment factor. The overall additive genetic factor and the early unique environment factor explained the preponderance of mean differences in the alcohol use over this portion of the life span. The most important factors explaining variance attributed to alcohol use changed over age. Additionally, friend use had the strongest associations with genetic and environmental factors at all ages, while parenting practices had almost no associations at any age. CONCLUSIONS These results supplement previous studies indicating changes in genetic and environmental influences in alcohol use over adolescence and adulthood. However, prior research suggesting that constraining exogenous predictors of genetic and environmental factors to have effects of the same magnitude across age overlooks the differential role of factors associated with alcohol use during adolescence. Consonant with previous research, friend use appears to have a more pervasive influence on alcohol use than parental influence during this age. Interventions and prevention programs geared toward reducing alcohol use in younger populations may benefit from focus on peer influence.
Collapse
|
19
|
Prom-Wormley EC, Ebejer J, Dick DM, Bowers MS. The genetic epidemiology of substance use disorder: A review. Drug Alcohol Depend 2017; 180:241-259. [PMID: 28938182 PMCID: PMC5911369 DOI: 10.1016/j.drugalcdep.2017.06.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Substance use disorder (SUD) remains a significant public health issue. A greater understanding of how genes and environment interact to regulate phenotypes comprising SUD will facilitate directed treatments and prevention. METHODS The literature studying the neurobiological correlates of SUD with a focus on the genetic and environmental influences underlying these mechanisms was reviewed. Results from twin/family, human genetic association, gene-environment interaction, epigenetic literature, phenome-wide association studies are summarized for alcohol, nicotine, cannabinoids, cocaine, and opioids. RESULTS There are substantial genetic influences on SUD that are expected to influence multiple neurotransmission pathways, and these influences are particularly important within the dopaminergic system. Genetic influences involved in other aspects of SUD etiology including drug processing and metabolism are also identified. Studies of gene-environment interaction emphasize the importance of environmental context in SUD. Epigenetic studies indicate drug-specific changes in gene expression as well as differences in gene expression related to the use of multiple substances. Further, gene expression is expected to differ by stage of SUD such as substance initiation versus chronic substance use. While a substantial literature has developed for alcohol and nicotine use disorders, there is comparatively less information for other commonly abused substances. CONCLUSIONS A better understanding of genetically-mediated mechanisms involved in the neurobiology of SUD provides increased opportunity to develop behavioral and biologically based treatment and prevention of SUD.
Collapse
Affiliation(s)
- Elizabeth C Prom-Wormley
- Dvision of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, PO Box 980212, Richmond, VA 23298-0212, USA.
| | - Jane Ebejer
- School of Cognitive Behavioural and Social Sciences, University of New England, Armidale, NSW 2350, Australia
| | - Danielle M Dick
- Department of Psychology, Virginia Commonwealth University, PO Box 842509, Richmond, VA 23284-2509, USA
| | - M Scott Bowers
- Faulk Center for Molecular Therapeutics, Biomedical Engeneering, Northwestern University, Evanston, IL 60201, USA
| |
Collapse
|
20
|
Gene-wide Association Study Reveals RNF122 Ubiquitin Ligase as a Novel Susceptibility Gene for Attention Deficit Hyperactivity Disorder. Sci Rep 2017; 7:5407. [PMID: 28710364 PMCID: PMC5511183 DOI: 10.1038/s41598-017-05514-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/31/2017] [Indexed: 01/07/2023] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a common childhood-onset neurodevelopmental condition characterized by pervasive impairment of attention, hyperactivity, and/or impulsivity that can persist into adulthood. The aetiology of ADHD is complex and multifactorial and, despite the wealth of evidence for its high heritability, genetic studies have provided modest evidence for the involvement of specific genes and have failed to identify consistent and replicable results. Due to the lack of robust findings, we performed gene-wide and pathway enrichment analyses using pre-existing GWAS data from 607 persistent ADHD subjects and 584 controls, produced by our group. Subsequently, expression profiles of genes surpassing a follow-up threshold of P-value < 1e-03 in the gene-wide analyses were tested in peripheral blood mononucleated cells (PBMCs) of 45 medication-naive adults with ADHD and 39 healthy unrelated controls. We found preliminary evidence for genetic association between RNF122 and ADHD and for its overexpression in adults with ADHD. RNF122 encodes for an E3 ubiquitin ligase involved in the proteasome-mediated processing, trafficking, and degradation of proteins that acts as an essential mediator of the substrate specificity of ubiquitin ligation. Thus, our findings support previous data that place the ubiquitin-proteasome system as a promising candidate for its involvement in the aetiology of ADHD.
Collapse
|
21
|
Clark SL, McClay JL, Adkins DE, Kumar G, Aberg KA, Nerella S, Xie L, Collins AL, Crowley JJ, Quackenbush CR, Hilliard CE, Shabalin AA, Vrieze SI, Peterson RE, Copeland WE, Silberg JL, McGue M, Maes H, Iacono WG, Sullivan PF, Costello EJ, van den Oord EJ. Deep Sequencing of 71 Candidate Genes to Characterize Variation Associated with Alcohol Dependence. Alcohol Clin Exp Res 2017; 41:711-718. [PMID: 28196272 DOI: 10.1111/acer.13352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/09/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Previous genomewide association studies (GWASs) have identified a number of putative risk loci for alcohol dependence (AD). However, only a few loci have replicated and these replicated variants only explain a small proportion of AD risk. Using an innovative approach, the goal of this study was to generate hypotheses about potentially causal variants for AD that can be explored further through functional studies. METHODS We employed targeted capture of 71 candidate loci and flanking regions followed by next-generation deep sequencing (mean coverage 78X) in 806 European Americans. Regions included in our targeted capture library were genes identified through published GWAS of alcohol, all human alcohol and aldehyde dehydrogenases, reward system genes including dopaminergic and opioid receptors, prioritized candidate genes based on previous associations, and genes involved in the absorption, distribution, metabolism, and excretion of drugs. We performed single-locus tests to determine if any single variant was associated with AD symptom count. Sets of variants that overlapped with biologically meaningful annotations were tested for association in aggregate. RESULTS No single, common variant was significantly associated with AD in our study. We did, however, find evidence for association with several variant sets. Two variant sets were significant at the q-value <0.10 level: a genic enhancer for ADHFE1 (p = 1.47 × 10-5 ; q = 0.019), an alcohol dehydrogenase, and ADORA1 (p = 5.29 × 10-5 ; q = 0.035), an adenosine receptor that belongs to a G-protein-coupled receptor gene family. CONCLUSIONS To our knowledge, this is the first sequencing study of AD to examine variants in entire genes, including flanking and regulatory regions. We found that in addition to protein coding variant sets, regulatory variant sets may play a role in AD. From these findings, we have generated initial functional hypotheses about how these sets may influence AD.
Collapse
Affiliation(s)
- Shaunna L Clark
- Center for Biomarker Research and Precision Medicine , School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Joseph L McClay
- Center for Biomarker Research and Precision Medicine , School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Daniel E Adkins
- Center for Biomarker Research and Precision Medicine , School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Gaurav Kumar
- Center for Biomarker Research and Precision Medicine , School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine , School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Srilaxmi Nerella
- Center for Biomarker Research and Precision Medicine , School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Linying Xie
- Center for Biomarker Research and Precision Medicine , School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Ann L Collins
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Corey R Quackenbush
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher E Hilliard
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Andrey A Shabalin
- Center for Biomarker Research and Precision Medicine , School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Scott I Vrieze
- Department of Psychology and Neuroscience, Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado.,Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Roseann E Peterson
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - William E Copeland
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Judy L Silberg
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Hermine Maes
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeth J Costello
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Edwin J van den Oord
- Center for Biomarker Research and Precision Medicine , School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
22
|
Edwards AC, Heron J, Vladimirov V, Wolen AR, Adkins DE, Aliev F, Hickman M, Kendler KS. The Rate of Change in Alcohol Misuse Across Adolescence is Heritable. Alcohol Clin Exp Res 2016; 41:57-64. [PMID: 27892595 DOI: 10.1111/acer.13262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/30/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Alcohol use typically begins during adolescence and escalates into young adulthood. This represents an important period for the establishment of alcohol use and misuse patterns, which can have psychosocial and medical consequences. Although changes in alcohol use during this time have been phenotypically characterized, their genetic nature is poorly understood. METHODS Participants of the Avon Longitudinal Study of Parents and Children completed the Alcohol Use Disorders Identification Test (AUDIT) 4 times from age 16 to 20. We used Mplus to construct a growth model characterizing changes in AUDIT scores across time (N = 4,545, where data were available for at least 2 time points). The slope of the model was used as the phenotype in a genomewide association study (N = 3,380), followed by secondary genetic analyses. RESULTS No individual marker met genomewide significance criteria. Top markers mapped to biologically plausible candidate genes. The slope term was moderately heritable (h2SNP = 0.26, p = 0.009), and replication attempts using a meta-analysis of independent samples provided support for implicated variants at the aggregate level. Nominally significant (p < 0.00001) markers mapped to putatively active genomic regions in brain tissue more frequently than expected by chance. CONCLUSIONS These results build on prior studies by demonstrating that common genetic variation impacts alcohol misuse trajectories. Influential loci map to genes that merit additional research, as well as to intergenic regions with regulatory functions in the central nervous system. These findings underscore the complex biological nature of alcohol misuse across development.
Collapse
Affiliation(s)
- Alexis C Edwards
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Jon Heron
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Vladimir Vladimirov
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia.,Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virginia.,Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia.,Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, Maryland
| | - Aaron R Wolen
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, Virginia
| | - Daniel E Adkins
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Fazil Aliev
- Department of African-American Studies, Virginia Commonwealth University, Richmond, Virginia.,Faculty of Business, Karabuk University, Karabuk, Turkey
| | - Matthew Hickman
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Kenneth S Kendler
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|