1
|
Liu MH, Xia X, Wang YL, Wang DY, Wang SW, Chen YZ, Sun ML, Xing JX, Xuan JF, Yao J. Current progress and future perspectives in personal identification of monozygotic twins in forensic medicine. Forensic Sci Int Genet 2025; 76:103231. [PMID: 39883969 DOI: 10.1016/j.fsigen.2025.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
The personal identification of monozygotic (MZ) twins is of great importance in forensic medicine. Due to the extreme similarity in genetic between MZ twins, it is challenging to differentiate them using autosomal STR genotyping. Forensic experts are striving to explore available genetic markers that can differentiate between MZ twins. With the advent of next-generation sequence (NGS), an increasing number of genetic markers have been demonstrated to effectively differentiate between MZ twins. Here, we summarized for the relevant studies on MZ twins' differentiation and discussed the limitations of the underlying markers. In details, single-nucleotide variants (SNVs), copy number variation (CNV), mitochondrial DNA (mtDNA), DNA methylation, and non-coding RNA have been demonstrated considerable value. Furthermore, the utilization of proteomics, metabolomics, and microbiomics has shed light on MZ twin differentiation. Additionally, we introduce the methodologies for MZ differentiation based on external morphological variations observed in the human body. Looking to the future, the process of aging may represent a novel avenue for the differentiation of MZ twins.
Collapse
Affiliation(s)
- Ming-Hui Liu
- School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China.
| | - Xi Xia
- School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China.
| | - Yi-Long Wang
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, PR China.
| | - Dan-Yang Wang
- School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China.
| | - Si-Wen Wang
- School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China.
| | - Yun-Zhou Chen
- School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China.
| | - Mao-Ling Sun
- School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China.
| | - Jia-Xin Xing
- School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China.
| | - Jin-Feng Xuan
- School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China.
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China; Shanghai Key Laboratory of Forensic Medicine and Key Laboratory of Forensic Science, Ministry of Justice, PR China.
| |
Collapse
|
2
|
El-Hossary NM, El-Desouky MA, Sabry GM, Omar MF, Ali MY, Elzayat MG, Hassan RE, Mohamed RH, Rashidi FB. A new insight of blood vs. buccal DNA methylation in the forensic identification of monozygotic triplets. Forensic Sci Int 2024; 364:112247. [PMID: 39405818 DOI: 10.1016/j.forsciint.2024.112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
The case of the monozygotic (MZ) twin as a suspect demonstrates a practical problem in forensic casework. As the MZ twins are genetically identical, they share the same short tandem repeat (STR) profile. Many studies showed that older MZ twins have significant differences in overall content and genomic distribution of methylation between them. However, studies addressing the investigation of epigenetic MZ triplet differentiation in various forensic reference materials are lacking. Here, one triplet set of Egyptian MZ twins was used as an analog to a forensic case. The genome-wide methylation analysis was performed via the new Human Methylation EPIC BeadChip array. Following normalization methods, potential differentially methylated positions (DMPs) were discovered. This resulted in the detection of 24 potential DMPs in reference-type blood DNA and 11 potential DMPs in reference-type buccal DNA. Then, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were performed to show the associated biological functions. Our findings revealed that the 35 potential DMPs were enriched in 283 significant GO terms. These terms are mainly enriched in the immune system. Overall, this study demonstrates the general feasibility of epigenetic MZ triplet differentiation in the forensic context and highlights that some potential DMPs identified in blood DNA were not informative in buccal DNA. This is due to various reasons, including the tissue specificity of DNA methylation.
Collapse
Affiliation(s)
- Nancy M El-Hossary
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Crime scene investigation (CSI) Laboratory, Ministry of Interior, Cairo 11517, Egypt
| | - Mohamed A El-Desouky
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Gilane M Sabry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Mohamed F Omar
- Crime scene investigation (CSI) Laboratory, Ministry of Interior, Cairo 11517, Egypt; Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Y Ali
- Genomics program Department of Basic Research, Children's Cancer Hospital, Cairo 11562, Egypt; Clinical pharmacy Department, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo 12566, Egypt
| | - Mariam G Elzayat
- Genomics program Department of Basic Research, Children's Cancer Hospital, Cairo 11562, Egypt
| | - Rasha E Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Rania H Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Fatma B Rashidi
- Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
3
|
Pedroza Matute S, Iyavoo S. Applications and Performance of Precision ID GlobalFiler NGS STR, Identity, and Ancestry Panels in Forensic Genetics. Genes (Basel) 2024; 15:1133. [PMID: 39336724 PMCID: PMC11431077 DOI: 10.3390/genes15091133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Short Tandem Repeat (STR) testing via capillary electrophoresis is undoubtedly the most popular forensic genetic testing method. However, its low multiplexing capabilities and limited performance with challenging samples are among the factors pushing scientists towards new technologies. Next-generation sequencing (NGS) methods overcome some of these limitations while also enabling the testing of Single-Nucleotide Polymorphisms (SNPs). Nonetheless, these methods are still under optimization, and their adoption into practice is limited. Among the available kits, Thermo Fisher Scientific (Waltham, MA, USA) produces three Precision ID Panels: GlobalFiler NGS STR, Identity, and Ancestry. A clear review of these kits, providing information useful for the promotion of their use, is, however, lacking. To close the gap, a literature review was performed to investigate the popularity, applications, and performance of these kits. Following the PRISMA guidelines, 89 publications produced since 2015 were identified. China was the most active country in the field, and the Identity Panel was the most researched. All kits appeared robust and useful for low-quality and low-quantity samples, while performance with mixtures varied. The need for more population data was highlighted, as well as further research surrounding variables affecting the quality of the sequencing results.
Collapse
Affiliation(s)
- Sharlize Pedroza Matute
- School of Natural Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
- AttoGroup Limited, Scottow Enterprise Park, Badersfield, Norwich NR10 5FB, UK
| | - Sasitaran Iyavoo
- School of Natural Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
- AttoGroup Limited, Scottow Enterprise Park, Badersfield, Norwich NR10 5FB, UK
| |
Collapse
|
4
|
Kim JY, Lee HY, Lee SY, Kim SY, Park JL, Lee SD. DNA methylome profiling of blood to identify individuals in a pair of monozygotic twins. Genes Genomics 2023; 45:1273-1279. [PMID: 37198375 PMCID: PMC10504115 DOI: 10.1007/s13258-023-01396-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Short tandem repeat (STR) markers cannot be used to distinguish between genetically identical monozygotic (MZ) twins, causing problems in a case with an MZ twin as a suspect. Many studies have shown that in older MZ twins, there are significant differences in overall content and genomic distribution of methylation. OBJECTIVE In this study, we analyzed the DNA methylome profile of blood to identify recurrent differentially methylated CpG sites (DMCs) to discriminate between MZ twins. METHODS Blood samples were collected from 47 paired MZ twins. We performed the DNA methylation profiling using the HumanMethylation EPIC BeadChip platform and identified recurrent DMCs between MZ twins. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and motif enrichment analyses were performed to reveal the biological functions of recurrent DMCs. We collected DNA methylome data from the Gene Expression Omnibus (GEO) public database to verify the recurrent DMCs between MZ twins. RESULTS We identified recurrent DMCs between MZ twin samples and observed that they were enriched in immune-related genes. In addition, we verified our DMCs in a public dataset. CONCLUSION Our results suggest that the methylation level at recurrent DMCs between MZ twins may serve as a valuable biomarker for identification of individuals in a pair of MZ twins.
Collapse
Affiliation(s)
- Jae-Yoon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - So-Yeon Lee
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Korea
| | - Jong-Lyul Park
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Korea.
- Aging Convergence Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Korea.
| | - Soong Deok Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
5
|
Carratto TMT, Moraes VMS, Recalde TSF, Oliveira MLGD, Teixeira Mendes-Junior C. Applications of massively parallel sequencing in forensic genetics. Genet Mol Biol 2022; 45:e20220077. [PMID: 36121926 PMCID: PMC9514793 DOI: 10.1590/1678-4685-gmb-2022-0077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
Massively parallel sequencing, also referred to as next-generation sequencing, has positively changed DNA analysis, allowing further advances in genetics. Its capability of dealing with low quantity/damaged samples makes it an interesting instrument for forensics. The main advantage of MPS is the possibility of analyzing simultaneously thousands of genetic markers, generating high-resolution data. Its detailed sequence information allowed the discovery of variations in core forensic short tandem repeat loci, as well as the identification of previous unknown polymorphisms. Furthermore, different types of markers can be sequenced in a single run, enabling the emergence of DIP-STRs, SNP-STR haplotypes, and microhaplotypes, which can be very useful in mixture deconvolution cases. In addition, the multiplex analysis of different single nucleotide polymorphisms can provide valuable information about identity, biogeographic ancestry, paternity, or phenotype. DNA methylation patterns, mitochondrial DNA, mRNA, and microRNA profiling can also be analyzed for different purposes, such as age inference, maternal lineage analysis, body-fluid identification, and monozygotic twin discrimination. MPS technology also empowers the study of metagenomics, which analyzes genetic material from a microbial community to obtain information about individual identification, post-mortem interval estimation, geolocation inference, and substrate analysis. This review aims to discuss the main applications of MPS in forensic genetics.
Collapse
Affiliation(s)
- Thássia Mayra Telles Carratto
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| | - Vitor Matheus Soares Moraes
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| | | | | | - Celso Teixeira Mendes-Junior
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
MicroRNAs: An Update of Applications in Forensic Science. Diagnostics (Basel) 2020; 11:diagnostics11010032. [PMID: 33375374 PMCID: PMC7823886 DOI: 10.3390/diagnostics11010032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs containing 18–24 nucleotides that are involved in the regulation of many biochemical mechanisms in the human body. The level of miRNAs in body fluids and tissues increases because of altered pathophysiological mechanisms, thus they are employed as biomarkers for various diseases and conditions. In recent years, miRNAs obtained a great interest in many fields of forensic medicine given their stability and specificity. Several specific miRNAs have been studied in body fluid identification, in wound vitality in time of death determination, in drowning, in the anti-doping field, and other forensic fields. However, the major problems are (1) lack of universal protocols for diagnostic expression testing and (2) low reproducibility of independent studies. This review is an update on the application of these molecular markers in forensic biology.
Collapse
|
7
|
Xiao C, Pan C, Liu E, He H, Liu C, Huang Y, Yi S, Huang D. Differences of microRNA expression profiles between monozygotic twins' blood samples. Forensic Sci Int Genet 2019; 41:152-158. [PMID: 31132533 DOI: 10.1016/j.fsigen.2019.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022]
Abstract
Monozygotic (MZ) twins are widely regarded as genetically identical, and traditional DNA typing methods are insufficient in identifying MZ twins. So the discrimination of MZ twins become a forensic problem. MicroRNAs (miRNAs) are a class of small, endogenous, non-protein-coding RNA molecules of approximately 22 nucleotides in length, and exist extensively in a variety of eukaryotic cells. MiRNAs regulate gene expression and play fundamental roles in multiple biological processes, including cell differentiation, proliferation and apoptosis as well as aging and disease processes. The goal of this study is to explore the differential expression of miRNAs within MZ twin pairs, and aimed to find new biomarkers for distinguishing MZ twins. Thus, the miRNA expression profiles of seven pairs of healthy MZ twins of different sex and age were analyzed by miRNA microarray. A total of 545 miRNAs were found to be differentially expressed in these MZ twin pairs, and 2, 5, 22, 53 and 132 differentially expressed miRNAs were shared across six, five, four, three and two pairs of MZ twins respectively. These findings had been confirmed by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays on select miRNAs, including miR-151a-3p, miR-3653-3p, miR-142-3p, miR-4325, miR-16-5p, let-7i-5p, miR-222-3p, miR-550b-3p, miR-4791 and miR-27a-3p. The results demonstrated that there are differences in the expression of miRNAs within MZ twin pairs, suggesting a role of miRNAs in identifying MZ twins.
Collapse
Affiliation(s)
- Chao Xiao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chao Pan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Erliang Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Tianjin Municipal Public Security Bureau Wuqing Branch, Tianjin, PR China
| | - Huayu He
- Xiaogan Municipal Public Security Bureau, Xiaogan, PR China
| | - Chunfeng Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yujie Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Shaohua Yi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Daixin Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
8
|
Fang C, Zhao J, Liu X, Zhang J, Cao Y, Yang Y, Yu C, Zhang X, Qian J, Liu W, Wu H, Yan J. MicroRNA profile analysis for discrimination of monozygotic twins using massively parallel sequencing and real-time PCR. Forensic Sci Int Genet 2018; 38:23-31. [PMID: 30321748 DOI: 10.1016/j.fsigen.2018.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/22/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022]
Abstract
In general, it is extremely problematic to discriminate between monozygotic twins (MZTs), who share the same genomic DNA sequence, using traditional DNA-based identification methods such as short tandem repeat profiling. MicroRNAs (miRNAs) have shown potential in forensic applications owing to their low molecular weight, abundant and tissue-specific expression. In this study, we utilized massively parallel sequencing technology to perform genome-wide profiling of miRNAs in the blood from four pairs of healthy MZTs. On average, 158 miRNAs were detected in each individual and 14% of which were differentially expressed within each pair of MZTs. The miRNAs with the most significant differences in expression between the twins were confirmed using real-time polymerase chain reaction. Our results demonstrated that miRNAs have potential for use as molecular markers in MZTs discrimination.
Collapse
Affiliation(s)
- Chen Fang
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Jing Zhao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100010, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xu Liu
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Jingjing Zhang
- Beijing Huayan Judicial Authentication Institute, Beijing 100192, PR China
| | - Yunwang Cao
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, PR China
| | - Yaran Yang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100010, PR China
| | - Chunrui Yu
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Xiaoli Zhang
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Jialin Qian
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Wenli Liu
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China
| | - Huijuan Wu
- Beijing Center for Physical and Chemical Analysis, Beijing 100094, PR China; Beijing Engineering Technology Research Centre of Gene Sequencing and Gene Function Analysis, Beijing 100094, PR China; Beijing Gene Medical Laboratory Co., Ltd., Beijing 100094, PR China.
| | - Jiangwei Yan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100010, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
9
|
Marqueta-Gracia JJ, Álvarez-Álvarez M, Baeta M, Palencia-Madrid L, Prieto-Fernández E, Ordoñana JR, de Pancorbo MM. Differentially methylated CpG regions analyzed by PCR-high resolution melting for monozygotic twin pair discrimination. Forensic Sci Int Genet 2018; 37:e1-e5. [PMID: 30245065 DOI: 10.1016/j.fsigen.2018.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/06/2018] [Accepted: 08/24/2018] [Indexed: 11/28/2022]
Abstract
Discrimination between monozygotic (MZ) twins is a forensic limitation when using conventional DNA profiling techniques for human identification. Recent works based on epigenetics seem to open a new way to solve this issue due to methylation status of MZ twins change during their lifetime. Methylation analysis through BeadChip platforms allows the study up to 850 K CpG sites revealing that numerous differential methylation regions exist between MZ twins. However, this methodology is difficult to implement in forensic laboratories. On the contrary, PCR-HRM (High Resolution Melting) technology is one of the easiest methods for analyzing DNA methylation and it has been capable to discriminate between MZ twins. The purpose of this study is to contribute with new differential methylation regions in MZ twins to those that have been previously studied through PCR-HRM. Here, we have selected 6 CpG regions located at the ITGA2B, ASPA, PDE4C, ZIC5, USP11 and NOP14 loci that have shown methylation status variation during lifetime. The study has been carried out from saliva-derived DNA of 18 MZ twin pairs. The most discriminating regions were those located at ITGA2B, ASPA and ZIC5 loci showing significant within-pair differences in 44.4% of the cases. Non evidences of relation between age and significant differences between MZ twins were found, although the 50% of MZ twin pairs were discrimnated in the oldest age range (59-66 years old). These results support the use of these regions to increase the number of epigenetics age-related markers available to discriminate between MZ twins in a pair by PCR-HRM in forensic laboratories.
Collapse
Affiliation(s)
- José Javier Marqueta-Gracia
- BIOMICs Research Group, Centro de Investigación "Lascaray" Ikergunea, Universidad del País Vasco UPV/EHU, Av. Miguel de Unamuno 3, 01006 Vitoria-Gasteiz, Spain
| | - Maite Álvarez-Álvarez
- Proteomics and Genomics General Services: DNA Bank Unit (SGIker) University of Basque Country UPV/EHU, Av. Miguel de Unamuno 3, 01006 Vitoria-Gasteiz, Spain
| | - Miriam Baeta
- BIOMICs Research Group, Centro de Investigación "Lascaray" Ikergunea, Universidad del País Vasco UPV/EHU, Av. Miguel de Unamuno 3, 01006 Vitoria-Gasteiz, Spain
| | - Leire Palencia-Madrid
- BIOMICs Research Group, Centro de Investigación "Lascaray" Ikergunea, Universidad del País Vasco UPV/EHU, Av. Miguel de Unamuno 3, 01006 Vitoria-Gasteiz, Spain
| | - Endika Prieto-Fernández
- BIOMICs Research Group, Centro de Investigación "Lascaray" Ikergunea, Universidad del País Vasco UPV/EHU, Av. Miguel de Unamuno 3, 01006 Vitoria-Gasteiz, Spain
| | - Juan Ramón Ordoñana
- Department of Human Anatomy and Psychobiology and Murcia Institute for BioHealth Research (IMIB-Arrixaca-UMU), University of Murcia, 30100, Murcia, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Centro de Investigación "Lascaray" Ikergunea, Universidad del País Vasco UPV/EHU, Av. Miguel de Unamuno 3, 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
10
|
Recent progress, methods and perspectives in forensic epigenetics. Forensic Sci Int Genet 2018; 37:180-195. [PMID: 30176440 DOI: 10.1016/j.fsigen.2018.08.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 01/19/2023]
Abstract
Forensic epigenetics, i.e., investigating epigenetics variation to resolve forensically relevant questions unanswerable with standard forensic DNA profiling has been gaining substantial ground over the last few years. Differential DNA methylation among tissues and individuals has been proposed as useful resource for three forensic applications i) determining the tissue type of a human biological trace, ii) estimating the age of an unknown trace donor, and iii) differentiating between monozygotic twins. Thus far, forensic epigenetic investigations have used a wide range of methods for CpG marker discovery, prediction modelling and targeted DNA methylation analysis, all coming with advantages and disadvantages when it comes to forensic trace analysis. In this review, we summarize the most recent literature on these three main topics of current forensic epigenetic investigations and discuss limitations and practical considerations in experimental design and data interpretation, such as technical and biological biases. Moreover, we provide future perspectives with regard to new research questions, new epigenetic markers and recent technological advances that - as we envision - will move the field towards forensic epigenomics in the near future.
Collapse
|
11
|
Richards R, Patel J, Stevenson K, Harbison S. Evaluation of massively parallel sequencing for forensic DNA methylation profiling. Electrophoresis 2018; 39:2798-2805. [DOI: 10.1002/elps.201800086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/06/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Rebecca Richards
- Forensic Science Programme, School of Chemical Sciences; University of Auckland; Auckland New Zealand
- Institute of Environmental Science & Research Ltd. (ESR); Auckland New Zealand
| | - Jayshree Patel
- Institute of Environmental Science & Research Ltd. (ESR); Auckland New Zealand
| | - Kate Stevenson
- Institute of Environmental Science & Research Ltd. (ESR); Auckland New Zealand
| | - SallyAnn Harbison
- Institute of Environmental Science & Research Ltd. (ESR); Auckland New Zealand
| |
Collapse
|
12
|
Vidaki A, Kalamara V, Carnero-Montoro E, Spector TD, Bell JT, Kayser M. Investigating the Epigenetic Discrimination of Identical Twins Using Buccal Swabs, Saliva, and Cigarette Butts in the Forensic Setting. Genes (Basel) 2018; 9:E252. [PMID: 29758014 PMCID: PMC5977192 DOI: 10.3390/genes9050252] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 12/28/2022] Open
Abstract
Monozygotic (MZ) twins are typically indistinguishable via forensic DNA profiling. Recently, we demonstrated that epigenetic differentiation of MZ twins is feasible; however, proportions of twin differentially methylated CpG sites (tDMSs) identified in reference-type blood DNA were not replicated in trace-type blood DNA. Here we investigated buccal swabs as typical forensic reference material, and saliva and cigarette butts as commonly encountered forensic trace materials. As an analog to a forensic case, we analyzed one MZ twin pair. Epigenome-wide microarray analysis in reference-type buccal DNA revealed 25 candidate tDMSs with >0.5 twin-to-twin differences. MethyLight quantitative PCR (qPCR) of 22 selected tDMSs in trace-type DNA revealed in saliva DNA that six tDMSs (27.3%) had >0.1 twin-to-twin differences, seven (31.8%) had smaller (<0.1) but robustly detected differences, whereas for nine (40.9%) the differences were in the opposite direction relative to the microarray data; for cigarette butt DNA, results were 50%, 22.7%, and 27.3%, respectively. The discrepancies between reference-type and trace-type DNA outcomes can be explained by cell composition differences, method-to-method variation, and other technical reasons including bisulfite conversion inefficiency. Our study highlights the importance of the DNA source and that careful characterization of biological and technical effects is needed before epigenetic MZ twin differentiation is applicable in forensic casework.
Collapse
Affiliation(s)
- Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands.
| | - Vivian Kalamara
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands.
| | - Elena Carnero-Montoro
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK.
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK.
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK.
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
13
|
A Possible Twin: The 1960s Twin Study Revisited/Twin Research: Twin-to-Twin Heart Transplantation; Distinguishing Monozygotic Twins; Twin Conceptions via Oocyte Donation; Factors Affecting Craniofacial Traits/In the Media: Triplet Delivery in the UK; Conjoined Twins and the Concept of Self; Colombian Twin Trainers; Skin Grafting to Save an Identical Co-Twin; Lack of Physical Flaws in Dolly the Cloned Sheep; Possible Conjoined Twins of Opposite-Sex; Passing of the Remaining Twin From the World's Longest Separated Pair. Twin Res Hum Genet 2018. [PMID: 29542428 DOI: 10.1017/thg.2018.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article begins with the story of a 51-year-old Los Angeles, California man, Justin Goldberg, whose daughter caught a glimpse of his striking look-alike at a popular market. Many people have so-called doppelgängers, but this occurrence is especially intriguing - the individual in question, born in New York City in the mid-1960s to an unwed mother, was an adoptee placed by the Louise Wise Adoption Agency. This agency, under the guidance of a prominent psychiatrist, decided to place twins in separate homes. Some of these twin children were part of a controversial child development study that was hidden from them and their parents. Next, recent and current twin research on heart transplantation, distinguishing monozygotic co-twins, twin conceptions via oocyte donation and factors affecting craniofacial traits are summarized. The article concludes with highlights on twins in the media, specifically, a triplet delivery in the United Kingdom, self-concept and consciousness in conjoined twins, Colombian twin trainers, skin grafting to save an identical co-twin, lack of physical flaws in Dolly the cloned sheep, possible opposite-sex conjoined twins, and the passing of the remaining twin from the world's longest separated pair.
Collapse
|
14
|
Abstract
Human genetic variation is a major resource in forensics, but does not allow all forensically relevant questions to be answered. Some questions may instead be addressable via epigenomics, as the epigenome acts as an interphase between the fixed genome and the dynamic environment. We envision future forensic applications of DNA methylation analysis that will broaden DNA-based forensic intelligence. Together with genetic prediction of appearance and biogeographic ancestry, epigenomic lifestyle prediction is expected to increase the ability of police to find unknown perpetrators of crime who are not identifiable using current forensic DNA profiling.
Collapse
Affiliation(s)
- Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Room Ee1051, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Room Ee1051, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Vidaki A, Díez López C, Carnero-Montoro E, Ralf A, Ward K, Spector T, Bell JT, Kayser M. Epigenetic discrimination of identical twins from blood under the forensic scenario. Forensic Sci Int Genet 2017; 31:67-80. [DOI: 10.1016/j.fsigen.2017.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/15/2017] [Accepted: 07/28/2017] [Indexed: 12/11/2022]
|
16
|
A metric study of insole foot impressions in footwear of identical twins. J Forensic Leg Med 2017; 52:116-121. [PMID: 28918370 DOI: 10.1016/j.jflm.2017.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/25/2017] [Accepted: 09/10/2017] [Indexed: 11/21/2022]
Abstract
Foot impressions are of utmost importance in crime scene investigations. Foot impressions are available in the form of barefoot prints, sock-clad footprints, and as impressions within footwear. Sometimes suspects leave their footwear at the crime scene, and the insole of this footwear may contain the foot impression of the suspect which may be important evidence linking him or her to the crime. The task of identification based on the analysis of footprints can be challenging when the footprints belonging to one of the identical twin is available for examination. The present study is based on the quantitative measures of the foot impressions in the footwear of adult identical twins. The study was conducted on four sets of female monozygotic twins from the United States of America. A total of 17 length and breadth measurements were taken on each foot impression. A combination of Reel Method and Extended Gunn Method was utilized to produce the measurements. The measurements of the foot impressions were compared among the twins on the right and the left side. Differences were found in the various footprint measurements among the twins. The study's sample size was not large enough to apply robust statistical tests, but the study is significant in that it presents the first detailed comparative analysis of a large number of measurements of insole foot impressions of adult twins. The observations derived from the study are likely to assist forensic investigations in cases involving the foot impressions of the twins.
Collapse
|