1
|
Liu Q, Liu M, Lu W, Li H, Ma Z, Xiong J, Zhang P. Surface-enhanced confocal Raman microscopy to characterize esophageal cancer cell-derived extracellular vesicles and maternal cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40353506 DOI: 10.1039/d4ay02300e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Exosomes, a subtype of extracellular vesicles, are increasingly recognized as promising biomarkers for human cancers. Rapid detection and classification of esophageal cancer-associated exosomes could significantly improve non-invasive screening for potential patients. This study aims to establish a label-free, direct surface-enhanced Raman scattering (SERS) method to capture characteristic molecular information from both esophageal cancer cells and their corresponding exosomes using confocal Raman microscopy. The results revealed distinct Raman spectra for esophageal cancer cells and their exosomes within the range of 500-1600 cm-1, with notable signal similarities observed at 506-622, 778-832, 1079-1098, and 1572-1630 cm-1. In contrast, significant differences were identified in Raman peaks related to nucleic acids (723, 654, 1354 cm-1) and proteins (998, 1028, 1354, 1560 cm-1). An orthogonal partial least squares discriminant analysis (OPLS-DA) model was utilized to discern subtle variations among these highly similar samples, achieving an accuracy rate of 100%. By comparing the spectral correlations between esophageal cancer cells and their exosomes, this study provides valuable insights into the molecular composition and cellular origins of exosomes. The findings demonstrate the potential of integrating SERS with OPLS-DA for the precise and rapid detection and monitoring of esophageal cancer through exosomal biomarkers, offering a powerful tool for diagnostic applications.
Collapse
Affiliation(s)
- Qianjin Liu
- College of Future Technology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China.
| | - Mengdong Liu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Wenjing Lu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Han Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Zixuan Ma
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Jingwei Xiong
- College of Future Technology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China.
| | - Ping Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Quinn LK, Sharma K, Faber KT, Orphan VJ. Clear as mud redefined: Tunable transparent mineral scaffolds for visualizing microbial processes below ground. PNAS NEXUS 2025; 4:pgaf118. [PMID: 40352645 PMCID: PMC12063488 DOI: 10.1093/pnasnexus/pgaf118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 03/31/2025] [Indexed: 05/14/2025]
Abstract
Microbes inhabiting complex porous microenvironments in sediments and aquifers catalyze reactions that are critical to global biogeochemical cycles and ecosystem health. However, the opacity and complexity of porous sediment and rock matrices have considerably hindered the study of microbial processes occurring within these habitats. Here, we generated microbially compatible, optically transparent mineral scaffolds to visualize and investigate microbial colonization and activities occurring in these environments, in laboratory settings and in situ. Using inexpensive synthetic cryolite mineral, we produced optically transparent scaffolds mimicking the complex 3D structure of sediments and rocks by adapting a suspension-based, freeze-casting technique commonly used in materials science. Fine-tuning of parameters, such as freezing rate and choice of solvent, provided full control of pore size and architecture. The combined effects of scaffold porosity and structure on the movement of microbe-sized particles, tested using velocity tracking of fluorescent beads, showed diverse yet reproducible behaviors. The scaffolds we produced are compatible with epifluorescence microscopy, allowing the fluorescence-based identification of colonizing microbes by DNA-based staining and fluorescence in situ hybridization (FISH) to depths of 100 µm. Additionally, Raman spectroscopy analysis indicates minimal background signal in regions used for measuring deuterium and 13C enrichment in microorganisms, highlighting the potential to directly couple D2O or 13C stable isotope probing and Raman-FISH for quantifying microbial activity at the single-cell level. To demonstrate the relevance of cryolite scaffolds for environmental field studies, we visualized their colonization by diverse microorganisms within rhizosphere sediments of a coastal seagrass plant using epifluorescence microscopy. The tool presented here enables highly resolved, spatially explicit, and multimodal investigations into the distribution, activities, and interactions of underground microbes typically obscured within opaque geological materials until now.
Collapse
Affiliation(s)
- Laura K Quinn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kriti Sharma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Katherine T Faber
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Victoria J Orphan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
3
|
Li D, Zhu Y, Mehmood A, Liu Y, Qin X, Dong Q. Intelligent identification of foodborne pathogenic bacteria by self-transfer deep learning and ensemble prediction based on single-cell Raman spectrum. Talanta 2025; 285:127268. [PMID: 39644671 DOI: 10.1016/j.talanta.2024.127268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
Foodborne pathogenic infections pose a significant threat to human health. Accurate detection of foodborne diseases is essential in preventing disease transmission. This study proposed an AI model for precisely identifying foodborne pathogenic bacteria based on single-cell Raman spectrum. Self-transfer deep learning and ensemble prediction algorithms had been incorporated into the model framework to improve training efficiency and predictive performance, significantly improving prediction results. Our model can identify simultaneously gram-negative and positive, genus, species of foodborne pathogenic bacteria with an accuracy over 99.99 %, as well as recognized strain with over 99.49 %. At all four classification levels, unprecedented excellent predictive performance had been achieved. This advancement holds practical significance for medical detection and diagnosis of foodborne diseases by reducing false negatives.
Collapse
Affiliation(s)
- Daixi Li
- Institute of Biothermal Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China; Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China.
| | - Yuqi Zhu
- Institute of Biothermal Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Aamir Mehmood
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yangtai Liu
- Institute of Biothermal Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Xiaojie Qin
- Institute of Biothermal Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Qingli Dong
- Institute of Biothermal Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| |
Collapse
|
4
|
Xu W, Zhu W, Xia Y, Hu S, Liao G, Xu Z, Shen A, Hu J. Raman spectroscopy for cell analysis: Retrospect and prospect. Talanta 2025; 285:127283. [PMID: 39616760 DOI: 10.1016/j.talanta.2024.127283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/23/2025]
Abstract
Cell analysis is crucial to contemporary biomedical research, as it plays a pivotal role in elucidating life processes and advancing disease diagnosis and treatment. Raman spectroscopy, harnessing distinctive molecular vibrational data, provides a non-destructive method for cell analysis. This review surveys the progress of Raman spectroscopy in cellular analysis, emphasizing its utility in identifying individual cells, monitoring biomolecules, and assessing intracellular environments. A significant focus is placed on the novel application of triple-bond molecules as Raman tags, which enhance imaging capabilities by creating a distinctive signature with minimal background noise. The summary of Raman spectroscopy studies provides a forward-looking perspective on its applications.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Chemistry and Chemical Engineering, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China
| | - Wei Zhu
- School of Chemistry and Chemical Engineering, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China.
| | - Yukang Xia
- School of Chemistry and Chemical Engineering, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China
| | - Shun Hu
- School of Chemistry and Chemical Engineering, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China
| | - Guangfu Liao
- Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China.
| | - Zushun Xu
- Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Aiguo Shen
- School of Chemistry and Chemical Engineering, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China.
| | - Jiming Hu
- Institute of Analytical Biomedicine, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
5
|
Manzi HP, Qin D, Yang K, Li H, Kiki C, Nizeyimana JC, Cui L, Sun Q. Unveiling bisphenol A-degrading bacteria in activated sludge through plating and 13C isotope labeled single-cell Raman spectroscopy. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136862. [PMID: 39673954 DOI: 10.1016/j.jhazmat.2024.136862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Bacteria play a crucial role in biodegradation of recalcitrant endocrine-disrupting compounds (EDCs), such as bisphenol A (BPA). However, in-situ identification of BPA-degrading bacteria remains technically challenging. Herein, we employed a conventional plating isolation (PI) and a new single cell Raman spectroscopy coupled with stable isotope probing (Raman-SIP) approach to enrich and identify BPA-degrading bacteria from activated sludge (AS). AS-inhabitant bacteria were exposed to either 12C-BPA or 13C-BPA as sole carbon source over three consecutive generations. While PI relies on colony proliferation on agar media, Raman-SIP enables identification of in situ BPA-degrading bacteria in a culture-independent way. The results showed that BPA dissipation correlated with increased bacterial growth. The uptake of 13C-BPA by single cells was verified by Raman spectra, suggesting occurrence of both metabolic and biosynthesis processes. This direct tracking of the fate of 13C-BPA within cells highlights the advantages of Raman-SIP over PI technique. PI isolated four BPA-degrading bacterial strains belonging to Comamonas, Pseudomonas, and Herbaspirillum genera. Meanwhile, Raman-SIP identified labeled cells belonging to Comamonas and Pseudomonas genera. Metagenomics of labeled cells revealed the presence of fifteen genes associated with benzene ring cleavage. This study provides a novel Raman-SIP approach for detecting and characterizing BPA-assimilating bacteria at a single cell level.
Collapse
Affiliation(s)
- Habasi Patrick Manzi
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Qin
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Kai Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hongzhe Li
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Claude Kiki
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jean Claude Nizeyimana
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Cui
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
6
|
Jing X, Gong Y, Diao Z, Ma Y, Meng Y, Chen J, Ren Y, Liang Y, Li Y, Sun W, Zhang J, Ji Y, Cong Z, Li S, Ma B, Cui Z, Ma L, Xu J. Phylogeny-metabolism dual-directed single-cell genomics for dissecting and mining ecosystem function by FISH-scRACS-seq. Innovation (N Y) 2025; 6:100759. [PMID: 40098675 PMCID: PMC11910816 DOI: 10.1016/j.xinn.2024.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 12/09/2024] [Indexed: 03/19/2025] Open
Abstract
Microbiome-wide association studies (MWASs) have uncovered microbial markers linked to ecosystem traits, but the mechanisms underlying their functions can remain elusive. This is largely due to challenges in validating their in situ metabolic activities and tracing such activities to individual genomes. Here, we introduced a phylogeny-metabolism dual-directed single-cell genomics approach called fluorescence-in situ-hybridization-guided single-cell Raman-activated sorting and sequencing (FISH-scRACS-seq). It directly localizes individual cells from target taxon via an FISH probe for marker organism, profiles their in situ metabolic functions via single-cell Raman spectra, sorts cells of target taxonomy and target metabolism, and produces indexed, high-coverage, and precisely-one-cell genomes. From cyclohexane-contaminated seawater, cells representing the MWAS-derived marker taxon of γ-Proteobacteria and that are actively degrading cyclohexane in situ were directly identified via FISH and Raman, respectively, then sorted and sequenced for one-cell full genomes. In such a Pseudoalteromonas fuliginea cell, we discovered a three-component cytochrome P450 system that can convert cyclohexane to cyclohexanol in vitro, representing a previously unknown group of cyclohexane-degrading enzymes and organisms. Therefore, by unveiling enzymes, pathways, genomes, and their in situ cellular functions specifically for those organisms with ecological relevance at one-cell resolution, FISH-scRACS-seq is a rational and generally applicable approach to dissecting and mining microbiota functions.
Collapse
Affiliation(s)
- Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Zhidian Diao
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Yan Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yu Meng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Jie Chen
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Yishang Ren
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 211300, China
| | - Yinchao Li
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266000, China
| | - Weihan Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| | - Jia Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Yuetong Ji
- Qingdao Single-Cell Biotechnology, Co., Ltd., Qingdao 266000, China
| | - Zhiqi Cong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| | - Zhisong Cui
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266000, China
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100000, China
- Shandong Energy Institute, Qingdao 266000, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266000, China
| |
Collapse
|
7
|
Yang A, Hu Z, Zou X, Zhang Y, Qian J, Li S, Liang J, He S. Single-cell Raman spectroscopy for rapid detection of bacteria in ballast water and UV 254 treatment evaluation. Talanta 2025; 284:127266. [PMID: 39586213 DOI: 10.1016/j.talanta.2024.127266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
The increasing global trade has facilitated the transfer of ship ballast water, which has emerged as a primary pathway for alien species invasion into marine ecosystems, posing significant threats to marine biodiversity. Addressing the technical challenges in rapid microorganism detection and treatment efficiency assessment, this study developed a confocal Raman microscopic imaging (CRMI) system integrated with a metal-insulator-metal (MIM) broadband surface-enhanced Raman scattering (SERS) chip, enabling efficient acquisition of single-cell Raman spectroscopy (SCRS). By incorporating machine learning algorithms, the system achieved precise identification of up to 10 bacterial types in ballast water, exhibiting remarkable performance metrics with average accuracy, sensitivity, specificity, and precision above 95.5 %, 95.5 %, 99.5 %, and 95.5 %, respectively. To evaluate the efficacy of ultraviolet (UV) treatment, a Raman spectroscopy-based approach combined with heavy water labeling was introduced to characterize the changes in bacterial single-cell metabolic activity under UV254 irradiation. Experimental results demonstrated that a 10-min UV254 exposure at an effective intensity of 2 mW/cm2 was sufficient to achieve complete bacterial sterilization for the specific ballast water used in our experiment. This study not only established an efficient and accurate method for rapid detection of mixed bacteria but also provided a novel perspective for assessing UV treatment effects. It holds significance and practical value for optimizing ship ballast water management strategies and safeguarding the safety of marine ecosystems.
Collapse
Affiliation(s)
- Anqi Yang
- Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou, 310058, China; Zhejiang Engineering Research Center for Intelligent Medical Imaging,Sensing and Non-invasive Rapid Testing, Taizhou Hospital, Zhejiang University, Taizhou, China; Interdisciplinary Student Training Platform for Marine areas, Zhejiang University, Hangzhou, 310027, China
| | - ZhiPeng Hu
- Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou, 310058, China
| | - Xiaer Zou
- Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Zhang
- Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou, 310058, China
| | - Jiao Qian
- Zhejiang Engineering Research Center for Intelligent Medical Imaging,Sensing and Non-invasive Rapid Testing, Taizhou Hospital, Zhejiang University, Taizhou, China
| | - Shuo Li
- Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou, 310058, China
| | - Junbo Liang
- Zhejiang Engineering Research Center for Intelligent Medical Imaging,Sensing and Non-invasive Rapid Testing, Taizhou Hospital, Zhejiang University, Taizhou, China
| | - Sailing He
- Zhejiang Engineering Research Center for Intelligent Medical Imaging,Sensing and Non-invasive Rapid Testing, Taizhou Hospital, Zhejiang University, Taizhou, China; National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou, 310058, China; Department of Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology, 10044, Stockholm, Sweden.
| |
Collapse
|
8
|
Bi S, Li Y, Ao J, Liu Z, Weng M, Ji M. On-Chip Stimulated Raman Scattering Imaging and Quantification of Molecular Diffusion in Aqueous Microfluidics. Anal Chem 2025; 97:2052-2061. [PMID: 39838697 DOI: 10.1021/acs.analchem.4c04317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Numerous chemical reactions and most life processes occur in aqueous solutions, where the physical diffusion of small molecules plays a vital role, including solvent water molecules, solute biomolecules, and ions. Conventional methods of measuring diffusion coefficients are often limited by technical complexity, large sample consumption, or significant time cost. Here, we present an optical imaging method to study molecular diffusion by combining stimulated Raman scattering (SRS) microscopy with microfluidics: a "Y"-shaped microfluidic channel forming two laminar flows with a stable concentration gradient across the interface. SRS imaging of a specific molecule allows us to obtain a high-resolution chemical profile of the diffusion region at varying inspection locations and flow rates, which enables the extraction of diffusion coefficients using the convection-diffusion model. As a proof of concept, we measured diffusion coefficients of molecules including water, protein, and multiple ions, with a sample volume of less than 1 mL and a time cost of less than 10 min. Moreover, we demonstrated a high-resolution three-dimensional (3D) reconstruction of the diffusion patterns in the microfluidic channel. The high-speed microfluidic SRS platform holds the potential for quantitative measurements of molecular diffusion, chemical reaction, and fluidic dynamics at the liquid-liquid interfaces.
Collapse
Affiliation(s)
- Simin Bi
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Yumo Li
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Jianpeng Ao
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Zhijie Liu
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Meilin Weng
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| |
Collapse
|
9
|
Benahmed A, Seghir A, Dergal F, Chiali A, Boucherit-Otmani Z, Ziani-Chérif C. Study of interaction in dual-species biofilm of Candida glabrata and Klebsiella pneumoniae co-isolated from peripheral venous catheter using Raman characterization mapping and machine learning algorithms. Microb Pathog 2025; 199:107280. [PMID: 39761771 DOI: 10.1016/j.micpath.2025.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Polymicrobial biofilm infections, especially associated with medical devices such as peripheral venous catheters, are challenging in clinical settings for treatment and management. In this study, we examined the mixed biofilm formed by Candida glabrata and Klebsiella pneumoniae, which were co-isolated from the same peripheral venous catheter. Our results revealed that C. glabrata can form mixed biofilms with K. pneumoniae in vitro on peripheral venous catheters and the bottom of microplate wells, as confirmed by scanning electron microscopy. Additionally, using Raman mapping, we showed the distribution of both species in mono- and dual-species biofilms and suggested the type of microbial interaction in this polymicrobial biofilm. Finally, with the assistance of appropriate machine learning (ML) algorithms, based on identified peaks of bacteria, yeast, catheter, and Microplate mapping spectra, we develop a dedicated Raman database to detect the presence of these elements in an unknown spectrum in the future.
Collapse
Affiliation(s)
- Abdeselem Benahmed
- Laboratory of Antibiotics Antifungals: Physico-chemistry, Synthesis and Biological Activity, Department of Biology, Tlemcen University, BP119 Imama, Tlemcen, Algeria.
| | - Abdelfettah Seghir
- Laboratory of Antibiotics Antifungals: Physico-chemistry, Synthesis and Biological Activity, Department of Biology, Tlemcen University, BP119 Imama, Tlemcen, Algeria
| | - Fayçal Dergal
- Center for Scientific and Technical Research in Physico-chemical Analysis (CRAPC), BP 384, Industrial Zone, 42004, Tipaza, Algeria; Laboratory of Catalysis and Synthesis in Organic Chemistry, University of Tlemcen, BP 119, Algeria
| | - Anisse Chiali
- Higher School of Applied Sciences of Tlemcen, ESSA, Tlemcen, 13000, Algeria; Renewable Materials and Energies Unit (URMER), University of Tlemcen, Algeria
| | - Zahia Boucherit-Otmani
- Laboratory of Antibiotics Antifungals: Physico-chemistry, Synthesis and Biological Activity, Department of Biology, Tlemcen University, BP119 Imama, Tlemcen, Algeria
| | - Chewki Ziani-Chérif
- Laboratory of Catalysis and Synthesis in Organic Chemistry, University of Tlemcen, BP 119, Algeria
| |
Collapse
|
10
|
Song J, Meng S, Liu J, Chen N. Processing and inspection of high-pressure microfluidics systems: A review. BIOMICROFLUIDICS 2025; 19:011501. [PMID: 39781103 PMCID: PMC11706627 DOI: 10.1063/5.0235201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
In the field of microfluidics, high-pressure microfluidics technology, which utilizes high driving pressure for microfluidic analysis, is an evolving technology. This technology combines microfluidics and pressurization, where the flow of fluid is controlled by means of high-pressure-driven devices greater than 10 MPa. This paper first reviews the existing high-pressure microfluidics systems and describes their components and applications. Then, it summarizes several materials used in the microfabrication of high-pressure microfluidics chips, reviewing their properties, processing methods, and bonding methods. In addition, advanced laser processing techniques for the microfabrication of high-pressure microfluidics chips are described. Last, the paper examines the analytical detection methods employed in high-pressure microfluidics systems, encompassing optical and electrochemical detection methods. The review of analytical detection methods shows the different functions and application scenarios of high-pressure microfluidics systems. In summary, this study provides an efficient and advanced microfluidics system, which can be widely used in chemical engineering, food industry, and environmental engineering under high pressure conditions.
Collapse
Affiliation(s)
- Jiangyi Song
- School Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Shaoxin Meng
- State Key Laboratory of Power Grid Environmental Protection, Wuhan, Hubei 430074, China
| | - Jianben Liu
- State Key Laboratory of Power Grid Environmental Protection, Wuhan, Hubei 430074, China
| | - Naichao Chen
- Author to whom correspondence should be addressed:. Tel.: +6-21-61655270. Fax: +86-21-61655270
| |
Collapse
|
11
|
Salbreiter M, Frempong SB, Even S, Wagenhaus A, Girnus S, Rösch P, Popp J. Lighting the Path: Raman Spectroscopy's Journey Through the Microbial Maze. Molecules 2024; 29:5956. [PMID: 39770046 PMCID: PMC11870064 DOI: 10.3390/molecules29245956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 03/03/2025] Open
Abstract
The rapid and precise identification of microorganisms is essential in environmental science, pharmaceuticals, food safety, and medical diagnostics. Raman spectroscopy, valued for its ability to provide detailed chemical and structural information, has gained significant traction in these fields, especially with the adoption of various excitation wavelengths and tailored optical setups. The choice of wavelength and setup in Raman spectroscopy is influenced by factors such as applicability, cost, and whether bulk or single-cell analysis is performed, each impacting sensitivity and specificity in bacterial detection. In this study, we investigate the potential of different excitation wavelengths for bacterial identification, utilizing a mock culture composed of six bacterial species: three Gram-positive (S. warneri, S. cohnii, and E. malodoratus) and three Gram-negative (P. stutzeri, K. terrigena, and E. coli). To improve bacterial classification, we applied machine learning models to analyze and extract unique spectral features from Raman data. The results indicate that the choice of excitation wavelength significantly influences the bacterial spectra obtained, thereby impacting the accuracy and effectiveness of the subsequent classification results.
Collapse
Affiliation(s)
- Markus Salbreiter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Sandra Baaba Frempong
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Sabrina Even
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
| | - Annette Wagenhaus
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Sophie Girnus
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (M.S.); (S.B.F.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
12
|
Onoshima D, Uchida K, Iida T, Kojima T, Ikeda Y, Iwata D, Nagasawa I, Yukawa H, Baba Y. Single-cell detection and linear discriminant analysis of bacterial Raman spectra in glass filter microholes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6746-6750. [PMID: 39324503 DOI: 10.1039/d4ay01272k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We report a study of micro-Raman spectroscopy towards an optimal approach for single cell measurements for the detection of bacteria by vibrational spectroscopy. The use of glass membrane filters was tested by microfiltration to separate individual bacterial cells. The glass membrane filters were applied to the study of Raman spectral classification analysis. This approach achieved the capture and individual detection of spiked bacterial cells. Linear discriminant analysis (LDA) of Raman spectra measured on glass membrane filters was successfully used to distinguish several bacterial species.
Collapse
Affiliation(s)
- Daisuke Onoshima
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Kentaro Uchida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomomine Iida
- Takeda Pharmaceutical Co., Ltd, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Takashi Kojima
- Takeda Pharmaceutical Co., Ltd, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Yukihiro Ikeda
- Takeda Pharmaceutical Co., Ltd, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan
| | - Daijiro Iwata
- AGC Inc., Suehirocho 1-1, Tsurumi-ku, Yokohama-shi, Kanagawa, 230-0045, Japan
| | - Ikuo Nagasawa
- AGC Inc., Suehirocho 1-1, Tsurumi-ku, Yokohama-shi, Kanagawa, 230-0045, Japan
| | - Hiroshi Yukawa
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan
| | - Yoshinobu Baba
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
13
|
Suwa S, Ando M, Nakashima T, Horii S, Anai T, Takeyama H. In Situ Raman Hyperspectral Analysis of Microbial Colonies for Secondary Metabolites Screening. Anal Chem 2024; 96:14909-14917. [PMID: 39215690 PMCID: PMC11411491 DOI: 10.1021/acs.analchem.4c02906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Since the discovery of penicillin, a vast array of microbial antibiotics has been identified and applied in the medical field. Globally, the search for drug candidates via microbial screening is ongoing. Traditional screening methods, however, are time-consuming and require labor-intensive sample processing, significantly reducing throughput. This research introduces a Raman spectroscopy-based screening system tailored to the in situ analysis of microbial colonies on solid culture media. Employing multivariate curve resolution-alternating least-squares (MCR-ALS) for spectral decomposition, our approach reveals the production of secondary metabolites at the single colony level. We enhanced the microbial culture method, enabling direct, high signal-to-noise (S/N) ratio Raman spectroscopic measurements of colonies of Escherichia coli and actinomycetes species. Through semisupervised MCR analysis using the known spectra of actinorhodin and undecylprodigiosin as references, we accurately assessed the production of these compounds by Streptomyces coelicolor A3(2). Furthermore, we herein successfully detected the production of amphotericin B by Streptomyces nodosus, even in the absence of prior spectral information. This demonstrates the potential of our technique in the discovery of secondary metabolites. In addition to enabling the detection of the above-mentioned compounds, this analysis revealed the heterogeneity of the spatial distribution of their production in each colony. Our technique makes a significant contribution to the advancement of microbial screening, offering a rapid, efficient alternative to conventional methods and opening avenues for secondary metabolites discovery.
Collapse
Affiliation(s)
- Shunnosuke Suwa
- Department
of Advanced Science Engineering, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo 169-8555, Japan
- Computational
Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Masahiro Ando
- Research
Organization for Nano and Life Innovation, Waseda University, 513
Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo 162-0041, Japan
| | - Takuji Nakashima
- Research
Organization for Nano and Life Innovation, Waseda University, 513
Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo 162-0041, Japan
| | - Shumpei Horii
- Department
of Advanced Science Engineering, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Toyoaki Anai
- Faculty
of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395 Japan
| | - Haruko Takeyama
- Department
of Advanced Science Engineering, Graduate School of Advanced Science
and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo 169-8555, Japan
- Computational
Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-Ku, Tokyo 169-8555, Japan
- Research
Organization for Nano and Life Innovation, Waseda University, 513
Wasedatsurumaki-Cho, Shinjuku-Ku, Tokyo 162-0041, Japan
- Institute
for Advanced Research of Biosystem Dynamics, Graduate School of Advanced
Science and Engineering, Waseda Research Institute for Science and
Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo 169-8555, Japan
- Department
of Life Science and Medical Bioscience, Graduate School of Advanced
Science and Engineering, Waseda University, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo 162-8480, Japan
| |
Collapse
|
14
|
Zhao L, Jiang Z, Wang J, Wang X, Zhang Z, Hu H, Qi X, Zeng H, Song Y. Micro-flow cell washing technique combined with single-cell Raman spectroscopy for rapid and automatic antimicrobial susceptibility test of pathogen in urine. Talanta 2024; 277:126354. [PMID: 38850804 DOI: 10.1016/j.talanta.2024.126354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Facing the rapid spread of antimicrobial resistance, methods based on single-cell Raman spectroscopy have proven their advances in reducing the turn-around time (TAT) of antimicrobial susceptibility tests (AST). However, the Raman-based methods are still hindered by the prolonged centrifugal cell washing procedure, which may require complex labor operation and induce high mechanical stress, resulting in a pretreatment time of over 1 h as well as a high cell-loss probability. In this study, we developed a micro-flow cell washing device and corresponding Raman-compatible washing chips, which were able to automatically remove the impurities in the samples, retain the bacterial cell and perform Raman spectra acquisition in situ. Results of washing the 5- and 10-μm polymethyl methacrylate (PMMA) microspheres showed that the novel technique achieved a successful removal of 99 % impurity and an 80 % particle retention rate after 6 to 10 cycles of washing. The micro-flow cell washing technique could complete the pretreatment for urine samples in a 96-well plate within 10 min, only taking 15 % of the handling time required by centrifugation. The AST profiles of urine sample spiked with E. coli 25922, E. faecalis 29212, and S. aureus 29213 obtained by the proposed Raman-based approach were found to be 100 % consistent with the results from broth micro-dilution while reducing the TAT to 3 h from several days which is required by the latter. Our study has demonstrated the micro-flow cell washing technique is a reliable, fast and compatible approach to replace centrifuge washing for sample pretreatment of Raman-AST and could be readily applied in clinical scenarios.
Collapse
Affiliation(s)
- Luoqi Zhao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, 215163, Jiangsu Province, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China
| | - Zheng Jiang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China
| | - Jingkai Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China
| | - Xinyue Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China
| | - Zhiqiang Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, 215163, Jiangsu Province, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China
| | - Huijie Hu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, 215163, Jiangsu Province, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China
| | - Xiangdong Qi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China
| | - Huan Zeng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China
| | - Yizhi Song
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, 215163, Jiangsu Province, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu Province, China.
| |
Collapse
|
15
|
Eliuz EE, Ayas D. Developing fish oil emulsion gel enriched with Lentinula edodes single cell protein and its effect on controlling the growth of Acinetobacter baumannii. J Microbiol Methods 2024; 224:107006. [PMID: 39069135 DOI: 10.1016/j.mimet.2024.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
In this study, the characterization of fish oil (FO) emulsion gel (EGEL) containing single cell protein (SCP) produced from Lentinula edodes (L. edodes) and its potential inhibition against Acinetobacter baumannii (A. baumannii) were investigated. Oil extracted from the fish liver was emulsified with tween 80 and water, and then gelled using gelatin with the assistance of an ultrasonic homogenizer. The characteristics and surface analysis of SCP-EGEL were examined using FTIR (Fourier-transform infrared spectroscopy) and SEM (Scanning electron microscope). The particle size distribution and zeta potential of SCP-EGEL were measured using a Malvern Zetasizer. When SCP-EGEL was applied to the surface of the medium inoculated with A. baumannii, the inhibition zone (IZ) was 8.2 mm. An expansion of the IZ was observed (10.2 mm) when SCP-EGEL was applied to a fish skin (FS) surface prepared in the shape of a 6-mm diameter disc. In the SEM images, when SCP was added to lipo gel, the gel structure appeared flattened or swollen in some areas. The appearance of SCP cells being covered with gel gave the impression that they have a secondary wall. Therefore, the resulting complex can potentially be used as an additive in animal and human nutrition, in functional food coatings to suppress A. baumannii, and in fish feed to enrich it with protein.
Collapse
Affiliation(s)
- Elif Erdogan Eliuz
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey.
| | - Deniz Ayas
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey
| |
Collapse
|
16
|
Razi S, Tarcea N, Henkel T, Ravikumar R, Pistiki A, Wagenhaus A, Girnus S, Taubert M, Küsel K, Rösch P, Popp J. Raman-Activated, Interactive Sorting of Isotope-Labeled Bacteria. SENSORS (BASEL, SWITZERLAND) 2024; 24:4503. [PMID: 39065901 PMCID: PMC11281290 DOI: 10.3390/s24144503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Due to its high spatial resolution, Raman microspectroscopy allows for the analysis of single microbial cells. Since Raman spectroscopy analyzes the whole cell content, this method is phenotypic and can therefore be used to evaluate cellular changes. In particular, labeling with stable isotopes (SIPs) enables the versatile use and observation of different metabolic states in microbes. Nevertheless, static measurements can only analyze the present situation and do not allow for further downstream evaluations. Therefore, a combination of Raman analysis and cell sorting is necessary to provide the possibility for further research on selected bacteria in a sample. Here, a new microfluidic approach for Raman-activated continuous-flow sorting of bacteria using an optical setup for image-based particle sorting with synchronous acquisition and analysis of Raman spectra for making the sorting decision is demonstrated, showing that active cells can be successfully sorted by means of this microfluidic chip.
Collapse
Affiliation(s)
- Sepehr Razi
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany; (M.T.); (K.K.)
| | - Nicolae Tarcea
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Thomas Henkel
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
| | - Ramya Ravikumar
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Aikaterini Pistiki
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
| | - Annette Wagenhaus
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Sophie Girnus
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Martin Taubert
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany; (M.T.); (K.K.)
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kirsten Küsel
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany; (M.T.); (K.K.)
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| | - Jürgen Popp
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance—Leibniz Health Technologies, 07745 Jena, Germany; (S.R.); (N.T.); (T.H.); (A.P.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany; (M.T.); (K.K.)
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, 07743 Jena, Germany; (R.R.); (P.R.)
| |
Collapse
|
17
|
Stanca SE, Mogavero S, Fritzsche W, Krafft C, Hube B, Popp J. Isotope labeled 3D-Raman confocal imaging and atomic force microscopy study on epithelial cells interacting with the fungus Candida albicans. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 59:102750. [PMID: 38734040 DOI: 10.1016/j.nano.2024.102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
The human pathogenic fungus Candida albicans damages epithelial cells during superficial infections. Here we use three-dimensional-sequential-confocal Raman spectroscopic imaging and atomic force microscopy to investigate the interaction of C. albicans wild type cells, the secreted C. albicans peptide toxin candidalysin and mutant cells lacking candidalysin with epithelial cells. The candidalysin is responsible for epithelial cell damage and exhibits in its deuterated form an identifiable Raman signal in a frequency region distinct from the cellular frequency region. Vibration modes at 2100-2200 cm-1 attributed to carbon‑deuterium bending and at 477 cm-1, attributed to the nitrogen‑deuterium out-of-plane bending, found around the nucleus, can be assigned to deuterated candidalysin. Atomic force microscopy visualized 100 nm deep lesions on the cell and force-distance curves indicate the higher adhesion on pore surrounding after incubation with candidalysin. Candidalysin targets the plasma membrane, but is also found inside of the cytosol of epithelial cells during C. albicans infection.
Collapse
Affiliation(s)
- Sarmiza Elena Stanca
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | - Selene Mogavero
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Wolfgang Fritzsche
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | - Bernhard Hube
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany; Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
| |
Collapse
|
18
|
Liu Y, Wu H, Shu Y, Hua Y, Fu P. Symbiodiniaceae and Ruegeria sp. Co-Cultivation to Enhance Nutrient Exchanges in Coral Holobiont. Microorganisms 2024; 12:1217. [PMID: 38930599 PMCID: PMC11205819 DOI: 10.3390/microorganisms12061217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The symbiotic relationship between corals and their associated microorganisms is crucial for the health of coral reef eco-environmental systems. Recently, there has been a growing interest in unraveling how the manipulation of symbiont nutrient cycling affects the stress tolerance in the holobiont of coral reefs. However, most studies have primarily focused on coral-Symbiodiniaceae-bacterial interactions as a whole, neglecting the interactions between Symbiodiniaceae and bacteria, which remain largely unexplored. In this study, we proposed a hypothesis that there exists an inner symbiotic loop of Symbiodiniaceae and bacteria within the coral symbiotic loop. We conducted experiments to demonstrate how metabolic exchanges between Symbiodiniaceae and bacteria facilitate the nutritional supply necessary for cellular growth. It was seen that the beneficial bacterium, Ruegeria sp., supplied a nitrogen source to the Symbiodiniaceae strain Durusdinium sp., allowing this dinoflagellate to thrive in a nitrogen-free medium. The Ruegeria sp.-Durusdinium sp. interaction was confirmed through 15N-stable isotope probing-single cell Raman spectroscopy, in which 15N infiltrated into the bacterial cells for intracellular metabolism, and eventually the labeled nitrogen source was traced within the macromolecules of Symbiodiniaceae cells. The investigation into Symbiodiniaceae loop interactions validates our hypothesis and contributes to a comprehensive understanding of the intricate coral holobiont. These findings have the potential to enhance the health of coral reefs in the face of global climate change.
Collapse
Affiliation(s)
| | | | | | | | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; (Y.L.); (H.W.); (Y.S.); (Y.H.)
| |
Collapse
|
19
|
Xu J, Chen D, Wu W, Ji X, Dou X, Gao X, Li J, Zhang X, Huang WE, Xiong D. A metabolic map and artificial intelligence-aided identification of nasopharyngeal carcinoma via a single-cell Raman platform. Br J Cancer 2024; 130:1635-1646. [PMID: 38454165 PMCID: PMC11091122 DOI: 10.1038/s41416-024-02637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a complex cancer influenced by various factors. This study explores the use of single-cell Raman spectroscopy as a potential diagnostic tool for investigating biomolecular changes associated with NPC carcinogenesis. METHODS Seven NPC cell lines, one immortalised nasopharyngeal epithelial cell line, six nasopharyngeal mucosa tissues and seven NPC tissue samples were analysed by performing confocal Raman spectroscopic measurements and imaging. The single-cell Raman spectral dataset was used to quantify relevant biomolecules and build machine learning classification models. Metabolomic profiles were investigated using ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). RESULTS By generating a metabolic map of seven NPC cell lines, we identified an interplay of altered metabolic processes involving nucleic acids, amino acids, lipids and sugars. The results from spatially resolved Raman maps and UPLC-MS/MS metabolomics were consistent, revealing an increase of unsaturated fatty acids in cancer cells, particularly in highly metastatic 5-8F and poorly differentiated CNE2 cells. The classification model achieved a nearly perfect classification when identifying NPC and non-NPC cells with an ROC-AUC of 0.99 and a value of 0.97 when identifying 13 tissue samples. CONCLUSION This study unveils a complex interplay of metabolic network and highlights the potential roles of unsaturated fatty acids in NPC progression and metastasis. This renders further research to provide deeper insights into NPC pathogenesis, identify new metabolic targets and improve the efficacy of targeted therapies in NPC. Artificial intelligence-aided analysis of single-cell Raman spectra has achieved high accuracies in the classification of both cancer cells and patient tissues, paving the way for a simple, less invasive and accurate diagnostic test.
Collapse
Affiliation(s)
- Jiabao Xu
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Dayang Chen
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wei Wu
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiang Ji
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaowen Dou
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaojuan Gao
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jian Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuming Zhang
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, OX1 3PJ, Oxford, UK.
| | - Dan Xiong
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
20
|
Cui Z, Li Y, Jing X, Luan X, Liu N, Liu J, Meng Y, Xu J, Valentine DL. Cycloalkane degradation by an uncultivated novel genus of Gammaproteobacteria derived from China's marginal seas. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133904. [PMID: 38422739 DOI: 10.1016/j.jhazmat.2024.133904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/30/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
The consumption of cycloalkanes is prevalent in low-temperature marine environments, likely influenced by psychrophilic microorganisms. Despite their significance, the primary active species responsible for marine cycloalkane degradation remain largely unidentified due to cultivation challenges. In this study, we provide compelling evidence indicating that the uncultured genus C1-B045 of Gammaproteobacteria is a pivotal participant in cycloalkane decomposition within China's marginal seas. Notably, the relative abundance of C1-B045 surged from 15.9% in the methylcyclohexane (MCH)-consuming starter culture to as high as 97.5% in MCH-utilizing extinction cultures following successive dilution-to-extinction and incubation cycles. We used stable isotope probing, Raman-activated gravity-driven encapsulation, and 16 S rRNA gene sequencing to link cycloalkane-metabolizing phenotype to genotype at the single-cell level. By annotating key enzymes (e.g., alkane monooxygenase, cyclohexanone monooxygenase, and 6-hexanolactone hydrolase) involved in MCH metabolism within C1-B045's representative metagenome-assembled genome, we developed a putative MCH degradation pathway.
Collapse
Affiliation(s)
- Zhisong Cui
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China.
| | - Yingchao Li
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China
| | - Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
| | - Xiao Luan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, People's Republic of China
| | - Na Liu
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Jinyan Liu
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China
| | - Yu Meng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
| | - David L Valentine
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
21
|
Lee KS, Landry Z, Athar A, Alcolombri U, Pramoj Na Ayutthaya P, Berry D, de Bettignies P, Cheng JX, Csucs G, Cui L, Deckert V, Dieing T, Dionne J, Doskocil O, D'Souza G, García-Timermans C, Gierlinger N, Goda K, Hatzenpichler R, Henshaw RJ, Huang WE, Iermak I, Ivleva NP, Kneipp J, Kubryk P, Küsel K, Lee TK, Lee SS, Ma B, Martínez-Pérez C, Matousek P, Meckenstock RU, Min W, Mojzeš P, Müller O, Kumar N, Nielsen PH, Notingher I, Palatinszky M, Pereira FC, Pezzotti G, Pilat Z, Plesinger F, Popp J, Probst AJ, Riva A, Saleh AAE, Samek O, Sapers HM, Schubert OT, Stubbusch AKM, Tadesse LF, Taylor GT, Wagner M, Wang J, Yin H, Yue Y, Zenobi R, Zini J, Sarkans U, Stocker R. MicrobioRaman: an open-access web repository for microbiological Raman spectroscopy data. Nat Microbiol 2024; 9:1152-1156. [PMID: 38714759 DOI: 10.1038/s41564-024-01656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2024]
Affiliation(s)
- Kang Soo Lee
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland.
| | - Zachary Landry
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
- Department of Marine and Environmental Biology, University of Southern California, Los Angeles, CA, USA
| | - Awais Athar
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Cambridge, UK
| | - Uria Alcolombri
- Department of Plant and Environmental Sciences, Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pratchaya Pramoj Na Ayutthaya
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - David Berry
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | | | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering and Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Gabor Csucs
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Zurich, Switzerland
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Volker Deckert
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
- Leibniz Institute of Photonic Technology e.V. Jena, member of Leibniz Health Technology, member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | | | - Jennifer Dionne
- Department of Materials Science and Engineering, and Department of Radiology, Stanford University, Stanford, CA, USA
| | - Ondrej Doskocil
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i, Brno, Czech Republic
| | - Glen D'Souza
- Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Cristina García-Timermans
- CMET, Center for Microbial Technology and Ecology, Department of Biotechnology, Ghent University, Gent, Belgium
| | - Notburga Gierlinger
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
- Institute of Technological Sciences, Wuhan University, Wuhan, China
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Department of Microbiology and Cell Biology, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Richard J Henshaw
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Oxford, UK
| | | | - Natalia P Ivleva
- Chair of Analytical Chemistry and Water Chemistry, Institute of Water Chemistry, TUM School of Natural Sciences (Dep. Chemistry), Technical University of Munich, Garching, Germany
| | - Janina Kneipp
- Department of Chemistry, Humboldt- Universität zu Berlin, Berlin, Germany
| | | | - Kirsten Küsel
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Tae Kwon Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| | - Sung Sik Lee
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Zurich, Switzerland
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioengineering and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Clara Martínez-Pérez
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell, UK
| | - Rainer U Meckenstock
- Environmental Microbiology and Biotechnology (EMB), University of Duisburg-Essen, Essen, Germany
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Oliver Müller
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Ioan Notingher
- School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Márton Palatinszky
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Fátima C Pereira
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Zdenek Pilat
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i, Brno, Czech Republic
| | - Filip Plesinger
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i, Brno, Czech Republic
| | - Jürgen Popp
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
- Leibniz Institute of Photonic Technology e.V. Jena, member of Leibniz Health Technology, member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Alexander J Probst
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Alessandra Riva
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Amr A E Saleh
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i, Brno, Czech Republic
| | - Haley M Sapers
- Centre for Research in Earth and Space Sciences, York University, Toronto, Ontario, Canada
| | - Olga T Schubert
- Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Astrid K M Stubbusch
- Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Geological Institute, Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | - Loza F Tadesse
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Jameel Clinic for AI & Healthcare, MIT, Cambridge, MA, USA
| | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Michael Wagner
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Jing Wang
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
- Advanced Analytical Technologies, Empa, Dübendorf, Switzerland
| | - Huabing Yin
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Yang Yue
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
- Advanced Analytical Technologies, Empa, Dübendorf, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Jacopo Zini
- Timegate Instruments Oy, Oulu, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ugis Sarkans
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Cambridge, UK.
| | - Roman Stocker
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Liu H, Zhu W, Zou Y, Xia X. Antimicrobial Activity and Mechanisms of Punicalagin against Vibrio parahaemolyticus. Foods 2024; 13:1366. [PMID: 38731737 PMCID: PMC11082947 DOI: 10.3390/foods13091366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
This study sought to explore the antimicrobial activity of punicalagin against V. parahaemolyticus and its potential modes of action. V. parahaemolyticus ATCC 17802 and RIMD 2210633Sm were exposed to punicalagin, and the energy production, membrane potential, and envelope permeability, as well as the interaction with cell biomolecules, were measured using a variety of fluorescent probes combined with electrophoresis and Raman spectroscopy. Punicalagin treatment disrupted the envelope integrity and induced a decrease in intracellular ATP and pH. The uptake of 1-N-phenyl-naphtylamine (NPN) demonstrated that punicalagin weakened the outer membrane. Punicalagin damaged the cytoplasmic membrane, as indicated by the membrane depolarization and the leakage of intracellular potassium ions, proteins, and nucleic acids. Electronic microscopy observation visualized the cell damage caused by punicalagin. Further, gel electrophoresis coupled with the Raman spectrum assay revealed that punicalagin affected the protein expression of V. parahaemolyticus, and there was no effect on the integrity of genomic DNA. Therefore, the cell envelope and proteins of V. parahaemolyticus were the assailable targets of punicalagin treatment. These findings suggested that punicalagin may be promising as a natural bacteriostatic agent to control the growth of V. parahaemolyticus.
Collapse
Affiliation(s)
| | | | | | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (H.L.); (W.Z.); (Y.Z.)
| |
Collapse
|
23
|
Xu J, Morten KJ. Raman micro-spectroscopy as a tool to study immunometabolism. Biochem Soc Trans 2024; 52:733-745. [PMID: 38477393 PMCID: PMC11088913 DOI: 10.1042/bst20230794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
In the past two decades, immunometabolism has emerged as a crucial field, unraveling the intricate molecular connections between cellular metabolism and immune function across various cell types, tissues, and diseases. This review explores the insights gained from studies using the emerging technology, Raman micro-spectroscopy, to investigate immunometabolism. Raman micro-spectroscopy provides an exciting opportunity to directly study metabolism at the single cell level where it can be combined with other Raman-based technologies and platforms such as single cell RNA sequencing. The review showcases applications of Raman micro-spectroscopy to study the immune system including cell identification, activation, and autoimmune disease diagnosis, offering a rapid, label-free, and minimally invasive analytical approach. The review spotlights three promising Raman technologies, Raman-activated cell sorting, Raman stable isotope probing, and Raman imaging. The synergy of Raman technologies with machine learning is poised to enhance the understanding of complex Raman phenotypes, enabling biomarker discovery and comprehensive investigations in immunometabolism. The review encourages further exploration of these evolving technologies in the rapidly advancing field of immunometabolism.
Collapse
Affiliation(s)
- Jiabao Xu
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K
| | - Karl J Morten
- Nuffield Department of Women's and Reproductive Health, University of Oxford, The Women Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, U.K
| |
Collapse
|
24
|
Chen J, Hu J, Xue C, Zhang Q, Li J, Wang Z, Lv J, Zhang A, Dang H, Lu D, Zou D, Cong L, Li Y, Chen GJ, Shum PP. Combined Mutual Learning Net for Raman Spectral Microbial Strain Identification. Anal Chem 2024; 96:5824-5831. [PMID: 38573047 DOI: 10.1021/acs.analchem.3c05107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Infectious diseases pose a significant threat to global health, yet traditional microbiological identification methods suffer from drawbacks, such as high costs and long processing times. Raman spectroscopy, a label-free and noninvasive technique, provides rich chemical information and has tremendous potential in fast microbial diagnoses. Here, we propose a novel Combined Mutual Learning Net that precisely identifies microbial subspecies. It demonstrated an average identification accuracy of 87.96% in an open-access data set with thirty microbial strains, representing a 5.76% improvement. 50% of the microbial subspecies accuracies were elevated by 1% to 46%, especially for E. coli 2 improved from 31% to 77%. Furthermore, it achieved a remarkable subspecies accuracy of 92.4% in the custom-built fiber-optical tweezers Raman spectroscopy system, which collects Raman spectra at a single-cell level. This advancement demonstrates the effectiveness of this method in microbial subspecies identification, offering a promising solution for microbiology diagnosis.
Collapse
Affiliation(s)
- Junfan Chen
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaqi Hu
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chenlong Xue
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qian Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Jingyan Li
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziyue Wang
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinqian Lv
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Aoyan Zhang
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Dang
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dan Lu
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Defeng Zou
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Longqing Cong
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuchao Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Gina Jinna Chen
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| | - Perry Ping Shum
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
25
|
Frempong SB, Salbreiter M, Mostafapour S, Pistiki A, Bocklitz TW, Rösch P, Popp J. Illuminating the Tiny World: A Navigation Guide for Proper Raman Studies on Microorganisms. Molecules 2024; 29:1077. [PMID: 38474589 PMCID: PMC10934050 DOI: 10.3390/molecules29051077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Raman spectroscopy is an emerging method for the identification of bacteria. Nevertheless, a lot of different parameters need to be considered to establish a reliable database capable of identifying real-world samples such as medical or environmental probes. In this review, the establishment of such reliable databases with the proper design in microbiological Raman studies is demonstrated, shining a light into all the parts that require attention. Aspects such as the strain selection, sample preparation and isolation requirements, the phenotypic influence, measurement strategies, as well as the statistical approaches for discrimination of bacteria, are presented. Furthermore, the influence of these aspects on spectra quality, result accuracy, and read-out are discussed. The aim of this review is to serve as a guide for the design of microbiological Raman studies that can support the establishment of this method in different fields.
Collapse
Affiliation(s)
- Sandra Baaba Frempong
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Markus Salbreiter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Sara Mostafapour
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
| | - Aikaterini Pistiki
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Thomas W. Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany; (S.B.F.); (M.S.); (S.M.); (A.P.); (T.W.B.); (J.P.)
- InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
26
|
Xu L, Liang Y, Huang WE, Shang L, Chai L, Zhang X, Shi J, Li B, Wang Y, Xu Z, Lu Z. Rapid detection of six Oceanobacillus species in Daqu starter using single-cell Raman spectroscopy combined with machine learning. Microb Biotechnol 2024; 17:e14416. [PMID: 38381051 PMCID: PMC10880574 DOI: 10.1111/1751-7915.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Many traditional fermented foods and beverages industries around the world request the addition of multi-species starter cultures. However, the microbial community in starter cultures is subject to fluctuations due to their exposure to an open environment during fermentation. A rapid detection approach to identify the microbial composition of starter culture is essential to ensure the quality of the final products. Here, we applied single-cell Raman spectroscopy (SCRS) combined with machine learning to monitor Oceanobacillus species in Daqu starter, which plays crucial roles in the process of Chinese baijiu. First, a total of six Oceanobacillus species (O. caeni, O. kimchii, O. iheyensis, O. sojae, O. oncorhynchi subsp. Oncorhynchi and O. profundus) were detected in 44 Daqu samples by amplicon sequencing and isolated by pure culture. Then, we created a reference database of these Oceanobacillus strains which correlated their taxonomic data and single-cell Raman spectra (SCRS). Based on the SCRS dataset, five machine-learning algorithms were used to classify Oceanobacillus strains, among which support vector machine (SVM) showed the highest rate of accuracy. For validation of SVM-based model, we employed a synthetic microbial community composed of varying proportions of Oceanobacillus species and demonstrated a remarkable accuracy, with a mean error was less than 1% between the predicted result and the expected value. The relative abundance of six different Oceanobacillus species during Daqu fermentation was predicted within 60 min using this method, and the reliability of the method was proved by correlating the Raman spectrum with the amplicon sequencing profiles by partial least squares regression. Our study provides a rapid, non-destructive and label-free approach for rapid identification of Oceanobacillus species in Daqu starter culture, contributing to real-time monitoring of fermentation process and ensuring high-quality products.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangnan UniversityWuxiChina
| | - Yuan Liang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
| | - Wei E Huang
- Oxford Suzhou Centre for Advanced ResearchSuzhouChina
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Lin‐Dong Shang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of SciencesChangchunChina
| | - Li‐Juan Chai
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangnan UniversityWuxiChina
| | - Xiao‐Juan Zhang
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangnan UniversityWuxiChina
| | - Jin‐Song Shi
- School of Life Sciences and Health EngineeringJiangnan UniversityWuxiChina
| | - Bei Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of SciencesChangchunChina
| | - Yun Wang
- Oxford Suzhou Centre for Advanced ResearchSuzhouChina
| | - Zheng‐Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangnan UniversityWuxiChina
- National Engineering Research Center of Solid‐State BrewingLuzhouChina
| | - Zhen‐Ming Lu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangnan UniversityWuxiChina
- National Engineering Research Center of Solid‐State BrewingLuzhouChina
| |
Collapse
|
27
|
Sun Y, Li S, Si Y, Niu Y, Yang J, Liu Y, Dong L, Zhu P, Dai J, Yang F. Dual-Stable-Isotope-Probed Raman microspectroscopy reveals the metabolic dynamic of Streptococcus mutans. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123318. [PMID: 37703791 DOI: 10.1016/j.saa.2023.123318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Streptococcus mutans (S. mutans) is regarded as a cariogenic pathogen with the ability to metabolize sugars and form organic acids. However, its actual timely level of glucose consumption and cellular vitality in a polymicrobial culture system remains largely unknown. To tackle this challenge, we employed the S. mutans UA159 as a model and developed a dual-stable-isotope-probed Raman microspectroscopy method (Dual SIP-Raman) to simultaneously profile the general metabolic activity and glucose assimilative activity in situ. (i) Mono-SIP substrate feeding revealed that 0.5% 13C-glucose and 30% D2O were proper doses in the medium to obtain prominent and quantitative band shifts along with the 13C or D2O incorporation. In addition, the intensity of the 13C peak of phenylalanine (Phe) is proposed as a Raman-based biomarker for glucose utilization in a cell. (ii) The state of dual SIP substrate incorporation of 13C-glucose and D2O could be visualized by the corresponding spectral "red shifts" of Raman-scattered emissions; moreover, we also demonstrated that 13C/12C analysis was closely correlated with the C-D ratio. (iii) The application of the dual 13C-glucose and D2O feeding approach on a mock microbiota of S. mutans UA159 and C. albicans ATCC14053 revealed a stimulatory effect of fungus on both the glucose intake rate and general metabolic vitality of S. mutans UA159 (p < 0.05). Therefore, the 13C-glucose and D2O dual-feeding Raman Microspectroscopy approach is a valuable new tool for evaluating the glucose intake rate and general metabolic levels in situ, tracing the changing trend of the above metabolic activities, which is helpful to clarify the changes in the cariogenicity of oral microorganisms caused by the external environment at the single-cell level.
Collapse
Affiliation(s)
- Yanfei Sun
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Shandong, 26607, China; School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Shanshan Li
- Changhai Hospital of Shanghai, Shanghai, 200433, China
| | - Yuan Si
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Shandong, 26607, China; School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Yufen Niu
- School of Stomatology of Qingdao University, Qingdao 266003, China; Wuxi Stomatology Hospital, Jiangsu, Wuxi, 214000, China
| | - Jiazhen Yang
- Stomatological Hospital of Qingdao, Qingdao, 266000, China
| | - Yuhan Liu
- Stomatological Hospital of Qingdao, Qingdao, 266000, China
| | - Lei Dong
- School of Stomatology of Qingdao University, Qingdao 266003, China
| | - Pengfei Zhu
- Stomatological Hospital of Qingdao, Qingdao, 266000, China
| | - Jing Dai
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266003, China
| | - Fang Yang
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Shandong, 26607, China; School of Stomatology of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
28
|
Cui J, Chen R, Sun H, Xue Y, Diao Z, Song J, Wang X, Zhang J, Wang C, Ma B, Xu J, Luan G, Lu X. Culture-free identification of fast-growing cyanobacteria cells by Raman-activated gravity-driven encapsulation and sequencing. Synth Syst Biotechnol 2023; 8:708-715. [PMID: 38053584 PMCID: PMC10693988 DOI: 10.1016/j.synbio.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023] Open
Abstract
By directly converting solar energy and carbon dioxide into biobased products, cyanobacteria are promising chassis for photosynthetic biosynthesis. To make cyanobacterial photosynthetic biosynthesis technology economically feasible on industrial scales, exploring and engineering cyanobacterial chassis and cell factories with fast growth rates and carbon fixation activities facing environmental stresses are of great significance. To simplify and accelerate the screening for fast-growing cyanobacteria strains, a method called Individual Cyanobacteria Vitality Tests and Screening (iCyanVS) was established. We show that the 13C incorporation ratio of carotenoids can be used to measure differences in cell growth and carbon fixation rates in individual cyanobacterial cells of distinct genotypes that differ in growth rates in bulk cultivations, thus greatly accelerating the process screening for fastest-growing cells. The feasibility of this approach is further demonstrated by phenotypically and then genotypically identifying individual cyanobacterial cells with higher salt tolerance from an artificial mutant library via Raman-activated gravity-driven encapsulation and sequencing. Therefore, this method should find broad applications in growth rate or carbon intake rate based screening of cyanobacteria and other photosynthetic cell factories.
Collapse
Affiliation(s)
- Jinyu Cui
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Rongze Chen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Huili Sun
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yingyi Xue
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Zhidian Diao
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jingyun Song
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Xiaohang Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jia Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Chen Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Bo Ma
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jian Xu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guodong Luan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
29
|
Wang X, Xia J, Aipire A, Li J. Reviews of bio-orthogonal probes in bioscience by stimulated Raman scattering microscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 306:123545. [PMID: 39492383 DOI: 10.1016/j.saa.2023.123545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/10/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Stimulated Raman scattering (SRS) microscopy, is a nonlinear optical imaging method for visualizing chemical content based on molecular vibrational bonds, with high sensitivity, resolution, speed, and specificity. In the current review, we provided a comprehensive and critical review of the most recent developments in the field of SRS in combination with bio-orthogonal Raman tags or labels in bioscience. Firstly, we introduced the fundamentals of SRS microscopy and the theory principle of bio-orthogonal Raman tags. In particular, present the applications of each kind of bio-orthogonal Raman tags, including heavy water (D2O), stable isotope probes (SIP), and triple-bonds tags. And shared our vision for the remaining challenges, research needs, and potential future breakthroughs for SRS technology lastly. We envision that the advanced SRS imaging and analysis will be a major force in future biological discovery.
Collapse
Affiliation(s)
- Xiaoting Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Jingjing Xia
- Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China.
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China; Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
30
|
Kotsifaki DG, Rajiv Singh R, Nic Chormaic S, Truong VG. Asymmetric split-ring plasmonic nanostructures for the optical sensing of Escherichia coli. BIOMEDICAL OPTICS EXPRESS 2023; 14:4875-4887. [PMID: 37791281 PMCID: PMC10545205 DOI: 10.1364/boe.497820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 10/05/2023]
Abstract
Strategies for in-liquid micro-organism detection are crucial for the clinical and pharmaceutical industries. While Raman spectroscopy is a promising label-free technique for micro-organism detection, it remains challenging due to the weak bacterial Raman signals. In this work, we exploit the unique electromagnetic properties of metamaterials to identify bacterial components in liquid using an array of Fano-resonant metamolecules. This Fano-enhanced Raman scattering (FERS) platform is designed to exhibit a Fano resonance close to the protein amide group fingerprint around 6030 nm. Raman signatures of Escherichia coli were recorded at several locations on the metamaterial under off-resonance laser excitation at 530 nm, where the photodamage effect is minimized. As the sizes of the Escherichia coli are comparable to the micro-gaps i.e, 0.41 µm, of the metamaterials, its local immobilisation leads to an increase in the Raman sensitivity. We also observed that the time-dependent FERS signal related to bacterial amide peaks increased during the bacteria's mid-exponential phase while it decreased during the stationary phase. This work provides a new set of opportunities for developing ultrasensitive FERS platforms suitable for large-scale applications and could be particularly useful for diagnostics and environmental studies at off-resonance excitation.
Collapse
Affiliation(s)
- Domna G. Kotsifaki
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna 904-0495 Okinawa, Japan
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, 215316 Jiangsu Province, China
| | - Ranjan Rajiv Singh
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Onna 904-0495 Okinawa, Japan
| | - Síle Nic Chormaic
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna 904-0495 Okinawa, Japan
| | - Viet Giang Truong
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna 904-0495 Okinawa, Japan
| |
Collapse
|
31
|
Ando M, Sugiyama K, Kubo K, Horii S, Hano T, Tomaru Y, Takeyama H. Single-Cell Level Raman Molecular Profiling Reveals the Classification of Growth Phases of Chaetoceros tenuissimus. J Phys Chem B 2023. [PMID: 37243612 DOI: 10.1021/acs.jpcb.3c02152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Harmful algal blooms (HABs) are a natural phenomenon caused by outbreaks of algae, resulting in serious problems for aquatic ecosystems and the coastal environment. Chaetoceros tenuissimus (C. tenuissimus) is one of the diatoms responsible for HABs. The growth curve of C. tenuissimus can be observed from beginning to end of HABs: therefore, detailed analysis is necessary to characterize each growth phase of C. tenuissimus. It is important to examine the phenotype of each diatom cell individually, as they display heterogeneity even in the same growth phase. Raman spectroscopy is a label-free technique to elucidate biomolecular profiles and spatial information at the cellular level. Multivariate data analysis (MVA) is an efficient method for the analysis of complicated Raman spectra, to identify molecular features. Here, we utilized Raman microspectroscopy to identify the molecular information of each diatom cell, at the single-cell level. The MVA, together with a support vector machine, which is a machine learning technique, allowed the classification of proliferating and nonproliferating cells. The classification includes polyunsaturated fatty acids such as linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid. This study indicated that Raman spectroscopy is an appropriate technique to examine C. tenuissimus at the single-cell level, providing relevant data to assess the correlation between the molecular details obtained from the Raman analysis, at each growth phase.
Collapse
Affiliation(s)
- Masahiro Ando
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-Cho, Shinjuku-Ku,Tokyo 169-0041, Japan
| | - Kaori Sugiyama
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Koya Kubo
- Department of Advanced Science Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo 169-8555, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Shumpei Horii
- Department of Advanced Science Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo 169-8555, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo 169-8555, Japan
| | - Takeshi Hano
- Environment Conservation Division, National Research and Development Agency, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Yuji Tomaru
- Environment Conservation Division, National Research and Development Agency, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-Cho, Shinjuku-Ku,Tokyo 169-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo 169-8555, Japan
- Department of Advanced Science Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo 169-8555, Japan
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-Ku, Tokyo 169-8555, Japan
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
32
|
Wang X, He Y, Zhou Y, Zhu B, Xu J, Pan K, Li Y. An attempt to simultaneously quantify the polysaccharide, total lipid, protein and pigment in single Cyclotella cryptica cell by Raman spectroscopy. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:63. [PMID: 37031179 PMCID: PMC10082982 DOI: 10.1186/s13068-023-02314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/28/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND At present, the conventional methods for determining photosynthetic products of microalgae are usually based on a large number of cell mass to reach the measurement baseline, and the result can only reveal the average state at the population level, which is not feasible for large-scale and rapid screening of specific phenotypes from a large number of potential microalgae mutants. In recent years, single-cell Raman spectra (SCRS) has been proved to be able to rapidly and simultaneously quantify the biochemical components of microalgae. However, this method has not been reported to analyze the biochemical components of Cyclotella cryptica (C. cryptica). Thus, SCRS was first attempt to determine these four biochemical components in this diatom. RESULTS The method based on SCRS was established to simultaneously quantify the contents of polysaccharide, total lipids, protein and Chl-a in C. cryptica, with thirteen Raman bands were found to be the main marker bands for the diatom components. Moreover, Partial Least Square Regression (PLSR) models based on full spectrum can reliably predict these four cellular components, with Pearson correlation coefficient for these components reached 0.949, 0.904, 0.801 and 0.917, respectively. Finally, based on SCRS data of one isogenic sample, the pairwise correlation and dynamic transformation process of these components can be analyzed by Intra-ramanome Correlation Analysis (IRCA), and the results showed silicon starvation could promote the carbon in C. cryptica cells to flow from protein and pigment metabolism to polysaccharide and lipid metabolism. CONCLUSIONS First, method for the simultaneous quantification of the polysaccharide, total lipid, protein and pigment in single C. cryptica cell are established. Second, the instant interconversion of intracellular components was constructed through IRCA, which is based on data set of one isogenic population and more precision and timeliness. Finally, total results indicated that silicon deficiency could promote the carbon in C. cryptica cells to flow from protein and pigment metabolism to polysaccharide and lipid metabolism.
Collapse
Affiliation(s)
- Xiufen Wang
- The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, Shandong, China
| | - Yuehui He
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Yuanyuan Zhou
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Baohua Zhu
- The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, Shandong, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Kehou Pan
- The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, Shandong, China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yun Li
- The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
33
|
Karlo J, Dhillon AK, Siddhanta S, Singh SP. Monitoring of microbial proteome dynamics using Raman stable isotope probing. JOURNAL OF BIOPHOTONICS 2023; 16:e202200341. [PMID: 36527375 DOI: 10.1002/jbio.202200341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Abnormal protein kinetics could be a cause of several diseases associated with essential life processes. An accurate understanding of protein dynamics and turnover is essential for developing diagnostic or therapeutic tools to monitor these changes. Raman spectroscopy in combination with stable isotope probes (SIP) such as carbon-13, and deuterium has been a breakthrough in the qualitative and quantitative study of various metabolites. In this work, we are reporting the utility of Raman-SIP for monitoring dynamic changes in the proteome at the community level. We have used 13 C-labeled glucose as the only carbon source in the medium and verified its incorporation in the microbial biomass in a time-dependent manner. A visible redshift in the Raman spectral vibrations of major biomolecules such as nucleic acids, phenylalanine, tyrosine, amide I, and amide III were observed. Temporal changes in the intensity of these bands demonstrating the feasibility of protein turnover monitoring were also verified. Kanamycin, a protein synthesis inhibitor was used to assess the feasibility of identifying effects on protein turnover in the cells. Successful application of this work can provide an alternate/adjunct tool for monitoring proteome-level changes in an objective and nondestructive manner.
Collapse
Affiliation(s)
- Jiro Karlo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| | | | - Soumik Siddhanta
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Surya Pratap Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
| |
Collapse
|
34
|
Haq AU, Majeed MI, Nawaz H, Rashid N, Javed MR, Raza A, Shakeel M, Zahra ST, Meraj L, Perveen A, Murtaza S, Khaliq S. Surface-enhanced Raman spectroscopy for monitoring antibacterial activity of imidazole derivative (1-benzyl-3-(sec‑butyl)-1H-imidazole-3-ium bromide) against Bacillus subtilis and Escherichia coli. Photodiagnosis Photodyn Ther 2023; 42:103533. [DOI: 10.1016/j.pdpdt.2023.103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
|
35
|
Liu B, Liu K, Qi X, Zhang W, Li B. Classification of deep-sea cold seep bacteria by transformer combined with Raman spectroscopy. Sci Rep 2023; 13:3240. [PMID: 36828824 PMCID: PMC9958026 DOI: 10.1038/s41598-023-28730-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/24/2023] [Indexed: 02/26/2023] Open
Abstract
Raman spectroscopy is a rapid analysis method of biological samples without labeling and destruction. At present, the commonly used Raman spectrum classification models include CNN, RNN, etc. The transformer has not been used for Raman spectrum identification. This paper introduces a new method of transformer combined with Raman spectroscopy to identify deep-sea cold seep microorganisms at the single-cell level. We collected the Raman spectra of eight cold seep bacteria, each of which has at least 500 spectra for the training of transformer model. We compare the transformer classification model with other deep learning classification models. The experimental results show that this method can improve the accuracy of microbial classification. Our average isolation level accuracy is more than 97%.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Kunxiang Liu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaoqing Qi
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, Hainan, China
| | - Weijia Zhang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, Hainan, China.
| | - Bei Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
36
|
Yu T, Jadhav AC, Xu J, Harris AL, Nair V, Huang WE. Metabolic Reprogramming in Colon Cancer Cells Persistently Infected with Newcastle Disease Virus. Cancers (Basel) 2023; 15:811. [PMID: 36765769 PMCID: PMC9913782 DOI: 10.3390/cancers15030811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Newcastle disease virus (NDV) is an oncolytic agent against various types of mammalian cancers. As with all cancer therapies, the development of cancer resistance, both innate and acquired, is becoming a challenge. In this study, we investigated persistently NDV-infected Caco-2 colon cancer cells, designated as virus-resistant (VR) Caco-2 cells, which were then able to resist NDV-mediated oncolysis. We applied single-cell Raman spectroscopy, combined with deuterium isotope probing (Raman-DIP) techniques, to investigate the metabolic adaptations and dynamics in VR Caco-2 cells. A linear discriminant analysis (LDA) model demonstrated excellent performance in differentiating VR Caco-2 from Caco-2 cells at single-cell level. By comparing the metabolic profiles in a time-resolved manner, the de novo synthesis of proteins and lipids was found upregulated, along with decreased DNA synthesis in VR Caco-2. The results suggest that VR Caco-2 cells might reprogram their metabolism and divert energy from proliferation to protein synthesis and lipidic modulation. The ability to identify and characterise single resistant cells among a population of cancer cells would help develop a deeper understanding of the resistance mechanisms and better tactics for developing effective cancer treatment.
Collapse
Affiliation(s)
- Tong Yu
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Archana Chandrabhan Jadhav
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK
- Viral Oncogenesis Group, The Pirbright Institute, Surrey GU24 0NF, UK
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Adrian L. Harris
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford OX3 9DS, UK
| | - Venugopal Nair
- Viral Oncogenesis Group, The Pirbright Institute, Surrey GU24 0NF, UK
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| |
Collapse
|
37
|
Wang J, Meng S, Lin K, Yi X, Sun Y, Xu X, He N, Zhang Z, Hu H, Qie X, Zhang D, Tang Y, Huang WE, He J, Song Y. Leveraging single-cell Raman spectroscopy and single-cell sorting for the detection and identification of yeast infections. Anal Chim Acta 2023; 1239:340658. [PMID: 36628751 DOI: 10.1016/j.aca.2022.340658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Invasive fungal infection serves as a great threat to human health. Discrimination between fungal and bacterial infections at the earliest stage is vital for effective clinic practice; however, traditional culture-dependent microscopic diagnosis of fungal infection usually requires several days, meanwhile, culture-independent immunological and molecular methods are limited by the detectable type of pathogens and the issues with high false-positive rates. In this study, we proposed a novel culture-independent phenotyping method based on single-cell Raman spectroscopy for the rapid discrimination between fungal and bacterial infections. Three Raman biomarkers, including cytochrome c, peptidoglycan, and nucleic acid, were identified through hierarchical clustering analysis of Raman spectra across 12 types of most common yeast and bacterial pathogens. Compared to those of bacterial pathogens, the single cells of yeast pathogens demonstrated significantly stronger Raman peaks for cytochrome c, but weaker signals for peptidoglycan and nucleic acid. A two-step protocol combining the three biomarkers was established and able to differentiate fungal infections from bacterial infections with an overall accuracy of 94.9%. Our approach was also used to detect ten raw urinary tract infection samples. Successful identification of fungi was achieved within half an hour after sample obtainment. We further demonstrated the accurate fungal species taxonomy achieved with Raman-assisted cell ejection. Our findings demonstrate that Raman-based fungal identification is a novel, facile, reliable, and with a breadth of coverage approach, that has a great potential to be adopted in routine clinical practice to reduce the turn-around time of invasive fungal disease (IFD) diagnostics.
Collapse
Affiliation(s)
- Jingkai Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, 215163, China
| | - Siyu Meng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Kaicheng Lin
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xiaofei Yi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 20040, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yixiang Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 20040, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Na He
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhiqiang Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Huijie Hu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, 215163, China
| | - Xingwang Qie
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Jian He
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yizhi Song
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou, 215163, China.
| |
Collapse
|
38
|
Shin J, Kim G, Park J, Lee M, Park Y. Long-term label-free assessments of individual bacteria using three-dimensional quantitative phase imaging and hydrogel-based immobilization. Sci Rep 2023; 13:46. [PMID: 36593327 PMCID: PMC9806822 DOI: 10.1038/s41598-022-27158-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Three-dimensional (3D) quantitative phase imaging (QPI) enables long-term label-free tomographic imaging and quantitative analysis of live individual bacteria. However, the Brownian motion or motility of bacteria in a liquid medium produces motion artifacts during 3D measurements and hinders precise cell imaging and analysis. Meanwhile, existing cell immobilization methods produce noisy backgrounds and even alter cellular physiology. Here, we introduce a protocol that utilizes hydrogels for high-quality 3D QPI of live bacteria maintaining bacterial physiology. We demonstrate long-term high-resolution quantitative imaging and analysis of individual bacteria, including measuring the biophysical parameters of bacteria and responses to antibiotic treatments.
Collapse
Affiliation(s)
- Jeongwon Shin
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
| | - Geon Kim
- grid.37172.300000 0001 2292 0500Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea ,grid.37172.300000 0001 2292 0500KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
| | - Jinho Park
- grid.37172.300000 0001 2292 0500Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
| | - Moosung Lee
- grid.37172.300000 0001 2292 0500Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea ,grid.37172.300000 0001 2292 0500KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
| | - YongKeun Park
- grid.37172.300000 0001 2292 0500Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea ,grid.37172.300000 0001 2292 0500KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea ,Tomocube Inc., Daejeon, 34051 South Korea
| |
Collapse
|
39
|
Weng J, Müller K, Morgaienko O, Elsner M, Ivleva NP. Multi-element stable isotope Raman microspectroscopy of bacterial carotenoids unravels rare signal shift patterns and single-cell phenotypic heterogeneity. Analyst 2023; 148:128-136. [DOI: 10.1039/d2an01603f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Investigation of bacteria with D-carotenoids reveals unique Raman signatures, inclusive unexpected blue-shift. Simultaneous monitoring of 13C & D of carotenoids provides complementary information on cell growth and metabolic activity, respectively.
Collapse
Affiliation(s)
- Julian Weng
- Technical University of Munich, Institute of Water Chemistry, Chair for Analytical Chemistry and Water Chemistry, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Kara Müller
- Technical University of Munich, Institute of Water Chemistry, Chair for Analytical Chemistry and Water Chemistry, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Oleksii Morgaienko
- Technical University of Munich, Institute of Water Chemistry, Chair for Analytical Chemistry and Water Chemistry, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Martin Elsner
- Technical University of Munich, Institute of Water Chemistry, Chair for Analytical Chemistry and Water Chemistry, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Natalia P. Ivleva
- Technical University of Munich, Institute of Water Chemistry, Chair for Analytical Chemistry and Water Chemistry, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
40
|
Xu J, Luo Y, Wang J, Tu W, Yi X, Xu X, Song Y, Tang Y, Hua X, Yu Y, Yin H, Yang Q, Huang WE. Artificial intelligence-aided rapid and accurate identification of clinical fungal infections by single-cell Raman spectroscopy. Front Microbiol 2023; 14:1125676. [PMID: 37032865 PMCID: PMC10073597 DOI: 10.3389/fmicb.2023.1125676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Integrating artificial intelligence and new diagnostic platforms into routine clinical microbiology laboratory procedures has grown increasingly intriguing, holding promises of reducing turnaround time and cost and maximizing efficiency. At least one billion people are suffering from fungal infections, leading to over 1.6 million mortality every year. Despite the increasing demand for fungal diagnosis, current approaches suffer from manual bias, long cultivation time (from days to months), and low sensitivity (only 50% produce positive fungal cultures). Delayed and inaccurate treatments consequently lead to higher hospital costs, mobility and mortality rates. Here, we developed single-cell Raman spectroscopy and artificial intelligence to achieve rapid identification of infectious fungi. The classification between fungi and bacteria infections was initially achieved with 100% sensitivity and specificity using single-cell Raman spectra (SCRS). Then, we constructed a Raman dataset from clinical fungal isolates obtained from 94 patients, consisting of 115,129 SCRS. By training a classification model with an optimized clinical feedback loop, just 5 cells per patient (acquisition time 2 s per cell) made the most accurate classification. This protocol has achieved 100% accuracies for fungal identification at the species level. This protocol was transformed to assessing clinical samples of urinary tract infection, obtaining the correct diagnosis from raw sample-to-result within 1 h.
Collapse
Affiliation(s)
- Jiabao Xu
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Yanjun Luo
- Shanghai Hesen Biotech Co., Shanghai, China
| | - Jingkai Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Weiming Tu
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Xiaofei Yi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yizhi Song
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiaoting Hua
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huabing Yin
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Qiwen Yang,
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Wei E. Huang,
| |
Collapse
|
41
|
Mycelial differentiation linked avermectin production in Streptomyces avermitilis studied with Raman imaging. Appl Microbiol Biotechnol 2022; 107:369-378. [DOI: 10.1007/s00253-022-12314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
|
42
|
Etim IIN, Njoku DI, Uzoma PC, Kolawole SK, Olanrele OS, Ekarenem OO, Okonkwo BO, Ikeuba AI, Udoh II, Njoku CN, Etim IP, Emori W. Microbiologically Influenced Corrosion: A Concern for Oil and Gas Sector in Africa. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
43
|
Shen H, Rösch P, Thieme L, Pletz MW, Popp J. Comparison of bacteria in different metabolic states by micro-Raman spectroscopy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Fardelli E, Lucidi M, Di Gioacchino M, Bashiri S, Persichetti L, Capecchi G, Gasperi T, Sodo A, Visca P, Capellini G. Bio-physical mechanisms of dehydrating membranes of Acinetobacter baumannii linked to drought-resistance. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184045. [PMID: 36108779 DOI: 10.1016/j.bbamem.2022.184045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Acinetobacter baumanni, is an opportunistic nosocomial multi-drug resistant bacterium, which represents a threat for human health. This pathogen is able to persist in intensive care units thanks to its extraordinary resistance towards dehydration, whose mechanisms are unknown and enable it to easily spread through surfaces, contaminating also medical devices. In this article we reveal, with a multimodal approach, based on μ-R Spectroscopy, Gas Chromatography coupled to Mass Spectroscopy, Atomic Force Microscopy and Fluorescence Recovery After Photobleaching, the bio-physical mechanisms that the membrane of two A. baumannii strains undergoes during dehydration. Showing a substantial decoupling of the phase transition from liquid crystalline to gel phase from evidence of cell lysis. Such decoupling may be the core of the resistance of A. baumannii against dehydration and highlights the different ability to resist to drought between strains.
Collapse
Affiliation(s)
- Elisa Fardelli
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy.
| | - Massimiliano Lucidi
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy
| | - Michael Di Gioacchino
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy
| | - Shadi Bashiri
- CNR, NEST, Istituto Nanoscienze, P.zza S. Silvestro, 12, Pisa, 56127, Italy
| | - Luca Persichetti
- University of Tor Vergata, Department of physics, Via della Ricerca Scientifica, 1, Rome, 00133, Italy
| | - Giulia Capecchi
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy
| | - Tecla Gasperi
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy; National Institute of Biostructures and Biosystems (INBB), Viale delle Medaglie d'Oro, 305, Rome, 00136, Italy
| | - Armida Sodo
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy
| | - Paolo Visca
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy; Santa Lucia Foundation IRCCS, Via Ardeatina, 306/354, Rome, 00179, Italy
| | - Giovanni Capellini
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy
| |
Collapse
|
45
|
Jayan H, Sun DW, Pu H, Wei Q. Surface-enhanced Raman spectroscopy combined with stable isotope probing to assess the metabolic activity of Escherichia coli cells in chicken carcass wash water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121549. [PMID: 35792480 DOI: 10.1016/j.saa.2022.121549] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Rapid evaluation of the metabolic activity of microorganisms is crucial in the assessment of the disinfection ability of various antimicrobial agents in the food industry. In this study, surface-enhanced Raman spectroscopy combined with isotope probing was employed for the analysis of the disinfection of single bacterial cells in the chicken carcass wash water. The Raman signals from single Escherichia coli O157:H7 cells were enhanced by in situ synthesis of silver nanoparticles. The ΔCD of the cells grown in presence of 0.5% hydrogen peroxide and 50 ppm chlorine was 5.86 ± 1.86% and 5.1 ± 2.3%, respectively, which showed significant reduction compared with cells grown in the absence of disinfecting agents (19.86 ± 2.51%) after 2 h of incubation. The study proved that the proposed method had the potential to assess the metabolic activity of microorganisms in other food products and optimize the disinfection process.
Collapse
Affiliation(s)
- Heera Jayan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Qingyi Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
46
|
Hyperglycemia and cancer in human lung carcinoma by means of Raman spectroscopy and imaging. Sci Rep 2022; 12:18561. [PMID: 36329066 PMCID: PMC9633797 DOI: 10.1038/s41598-022-21483-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Raman spectroscopy and Raman imaging were used to identify the biochemical and structural features of human cancer lung cells (CCL-185) and the cancer cells supplemented with glucose and deuterated glucose at normal and hyperglycemia conditions. We found that isotope substitution of glucose by deuterated glucose allows to separate de novo lipid synthesis from exogenous uptake of lipids obtained from the diet. We demonstrated that glucose is largely utilized for de novo lipid synthesis. Our results provide a direct evidence that high level of glucose decreases the metabolism via oxidative phosphorylation in mitochondria in cancer cells and shifts the metabolism to glycolysis via Warburg effect. It suggests that hyperglycemia is a factor that may contribute to a more malignant phenotype of cancer cells by inhibition of oxidative phosphorylation and apoptosis.
Collapse
|
47
|
Hu H, Wang J, Yi X, Lin K, Meng S, Zhang X, Jiang C, Tang Y, Wang M, He J, Xu X, Song Y. Stain-free Gram staining classification of pathogens via single-cell Raman spectroscopy combined with machine learning. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4014-4020. [PMID: 36196964 DOI: 10.1039/d2ay01056a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gram staining (GS) is one of the routine microbiological operations to classify bacteria based on the cell wall structure. Accurate GS classification of pathogens is of great significance since it helps correct administration of antimicrobial treatment. The laborious procedure and low sensitivity results related to conventional GS have resulted in reluctance among clinicians. In this study, we integrate confocal Raman spectroscopy and machine learning techniques to distinguish Gram-negative (GN) or Gram-positive (GP) bacteria. A single-cell Raman database including seven most common clinical pathogens (three GP strains and four GN strains) was constructed. Machine learning algorithms including the support-vector machine (SVM), k-nearest neighbors' algorithm (k-NN), gradient boosting machine (GBM), linear discriminant analysis (LDA), and t-distributed stochastic neighbor embedding (t-SNE) were trained to achieve the binary classification for GS. With such a relatively small database, the SVM model achieved the highest accuracy of 98.1%. The molecular signatures of GN and GP embedded in their Raman fingerprints were identified with hierarchical cluster analysis (HCA). The results indicated that Raman peaks for peptidoglycan and teichoic acid were the most significant factors that contributed to accurate classification. The Raman machine learning approach could greatly enhance the diagnosis of pathogenic infections.
Collapse
Affiliation(s)
- Huijie Hu
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou 215163, PR China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China.
| | - Jingkai Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China.
| | - Xiaofei Yi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| | - Kaicheng Lin
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China.
| | - Siyu Meng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China.
| | - Xin Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China.
- Chongqing Guoke Medical Technology Development Co., Ltd, Chongqing 400799, PR China
| | - Chenyu Jiang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China.
- Jinan Guoke Medical Technology Development Co., Ltd, Jinan 250102, PR China
| | - Yuguo Tang
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou 215163, PR China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China.
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| | - Jian He
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| | - Yizhi Song
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Suzhou 215163, PR China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, PR China.
| |
Collapse
|
48
|
Jing X, Gong Y, Xu T, Davison PA, MacGregor-Chatwin C, Hunter CN, Xu L, Meng Y, Ji Y, Ma B, Xu J, Huang WE. Revealing CO 2-Fixing SAR11 Bacteria in the Ocean by Raman-Based Single-Cell Metabolic Profiling and Genomics. BIODESIGN RESEARCH 2022; 2022:9782712. [PMID: 37850122 PMCID: PMC10521720 DOI: 10.34133/2022/9782712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/26/2022] [Indexed: 10/19/2023] Open
Abstract
The majority of marine microbes remain uncultured, which hinders the identification and mining of CO2-fixing genes, pathways, and chassis from the oceans. Here, we investigated CO2-fixing microbes in seawater from the euphotic zone of the Yellow Sea of China by detecting and tracking their 13C-bicarbonate (13C-HCO3-) intake via single-cell Raman spectra (SCRS) analysis. The target cells were then isolated by Raman-activated Gravity-driven Encapsulation (RAGE), and their genomes were amplified and sequenced at one-cell resolution. The single-cell metabolism, phenotype and genome are consistent. We identified a not-yet-cultured Pelagibacter spp., which actively assimilates 13C-HCO3-, and also possesses most of the genes encoding enzymes of the Calvin-Benson cycle for CO2 fixation, a complete gene set for a rhodopsin-based light-harvesting system, and the full genes necessary for carotenoid synthesis. The four proteorhodopsin (PR) genes identified in the Pelagibacter spp. were confirmed by heterologous expression in E. coli. These results suggest that hitherto uncultured Pelagibacter spp. uses light-powered metabolism to contribute to global carbon cycling.
Collapse
Affiliation(s)
- Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Paul A. Davison
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Craig MacGregor-Chatwin
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - C. Neil Hunter
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - La Xu
- Disease and Fishery Drugs Research Center, Marine Biology Institute of Shandong Province, Qingdao, ShandongChina
| | - Yu Meng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Single-Cell Biotechnology, Ltd, Qingdao, ShandongChina
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, UK
| |
Collapse
|
49
|
Singh S, Kumbhar D, Reghu D, Venugopal SJ, Rekha PT, Mohandas S, Rao S, Rangaiah A, Chunchanur SK, Saini DK, Umapathy S. Culture-Independent Raman Spectroscopic Identification of Bacterial Pathogens from Clinical Samples Using Deep Transfer Learning. Anal Chem 2022; 94:14745-14754. [PMID: 36214808 DOI: 10.1021/acs.analchem.2c03391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rapid identification of bacterial pathogens in clinical samples like blood, urine, pus, and sputum is the need of the hour. Conventional bacterial identification methods like culturing and nucleic acid-based amplification have limitations like poor sensitivity, high cost, slow turnaround time, etc. Raman spectroscopy, a label-free and noninvasive technique, has overcome these drawbacks by providing rapid biochemical signatures from a single bacterium. Raman spectroscopy combined with chemometric methods has been used effectively to identify pathogens. However, a robust approach is needed to utilize Raman features for accurate classification while dealing with complex data sets such as spectra obtained from clinical isolates, showing high sample-to-sample heterogeneity. In this study, we have used Raman spectroscopy-based identification of pathogens from clinical isolates using a deep transfer learning approach at the single-cell level resolution. We have used the data-augmentation method to increase the volume of spectra needed for deep-learning analysis. Our ResNet model could specifically extract the spectral features of eight different pathogenic bacterial species with a 99.99% classification accuracy. The robustness of our model was validated on a set of blinded data sets, a mix of cultured and noncultured bacterial isolates of various origins and types. Our proposed ResNet model efficiently identified the pathogens from the blinded data set with high accuracy, providing a robust and rapid bacterial identification platform for clinical microbiology.
Collapse
Affiliation(s)
- Saumya Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Dipak Kumbhar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Dhanya Reghu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shwetha J Venugopal
- Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore 560002, India
| | - P T Rekha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Silpa Mohandas
- Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore 560002, India
| | - Shruti Rao
- Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore 560002, India
| | - Ambica Rangaiah
- Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore 560002, India
| | - Sneha K Chunchanur
- Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore 560002, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction and Genetics, Indian Institute of Science, Bangalore 560012, India.,Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.,Center for Infectious Diseases Research, Indian Institute of Science, Bangalore 560012, India
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.,Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
50
|
Li J, Khalenkow D, Volodkin D, Lapanje A, Skirtach AG, Parakhonskiy BV. Surface enhanced Raman scattering (SERS)-active bacterial detection by Layer-by-Layer (LbL) assembly all-nanoparticle microcapsules. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|