1
|
Arshad A, Ding L, Akram R, Zhu W, Long L, Wang K. Construction of a novel Au@Os mediated TMB-H 2O 2 platform with dual-signal output for rapid and accurate detection of ziram in food. Food Chem 2025; 462:140988. [PMID: 39216370 DOI: 10.1016/j.foodchem.2024.140988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The 3,3',5,5'-tetramethylbenzidine-H2O2 (TMB-H2O2) platform has gained widespread use for rapid detection of various analytes in foods. However, the existing TMB-H2O2 platforms suffer from limited accuracy, as their signal output is confined to the visible region, which is prone to interference from various food colorants in real samples. To address this challenge, a novel Au@Os-mediated TMB-H2O2 platform is developed for both rapid and accurate detection of analytes in foods. The prepared Au@Os NPs exhibit remarkable peroxidase-like activity, making the platform display dual absorption peaks in visible and near-infrared (NIR) regions, respectively. This Au@Os-mediated TMB-H2O2 platform exhibited three linear ranges across different concentrations of ziram from 1-100, 150-600, and 800-2000 nM with limit of detection (LOD) 7.9 nM and limit of quantification (LOQ) 24.15 nM respectively. Further, the Au@Os-mediated TMB-H2O2 platform was also used for rapid and accurate detection of ziram in real food samples like apple, tomato, and black tea.
Collapse
Affiliation(s)
- Anila Arshad
- School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lijun Ding
- School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Raheel Akram
- Research Laboratory for Analytical Instrument and Electrochemistry Innovation, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weiren Zhu
- School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Kun Wang
- School of Agriculture Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China; Laboratory of Optic-Electric sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
2
|
Taitt CR, Anderson GP, Ligler FS. Evanescent wave fluorescence biosensors: Advances of the last decade. Biosens Bioelectron 2016; 76:103-12. [PMID: 26232145 PMCID: PMC5012222 DOI: 10.1016/j.bios.2015.07.040] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/15/2015] [Accepted: 07/18/2015] [Indexed: 12/12/2022]
Abstract
Biosensor development has been a highly dynamic field of research and has progressed rapidly over the past two decades. The advances have accompanied the breakthroughs in molecular biology, nanomaterial sciences, and most importantly computers and electronics. The subfield of evanescent wave fluorescence biosensors has also matured dramatically during this time. Fundamentally, this review builds on our earlier 2005 review. While a brief mention of seminal early work will be included, this current review will focus on new technological developments as well as technology commercialized in just the last decade. Evanescent wave biosensors have found a wide array applications ranging from clinical diagnostics to biodefense to food testing; advances in those applications and more are described herein.
Collapse
Affiliation(s)
- Chris Rowe Taitt
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375-5348, USA
| | - George P Anderson
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375-5348, USA
| | - Frances S Ligler
- UNC-Chapel Hill and NC State University Department of Biomedical Engineering, 911 Oval Drive, Raleigh, NC 27695-7115, USA.
| |
Collapse
|
3
|
Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A. Biosensor technology: recent advances in threat agent detection and medicine. Chem Soc Rev 2013; 42:8733-68. [DOI: 10.1039/c3cs60141b] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Marusov G, Sweatt A, Pietrosimone K, Benson D, Geary SJ, Silbart LK, Challa S, Lagoy J, Lawrence DA, Lynes MA. A microarray biosensor for multiplexed detection of microbes using grating-coupled surface plasmon resonance imaging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:348-59. [PMID: 22029256 PMCID: PMC3312245 DOI: 10.1021/es201239f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Grating-coupled surface plasmon resonance imaging (GCSPRI) utilizes an optical diffraction grating embossed on a gold-coated sensor chip to couple collimated incident light into surface plasmons. The angle at which this coupling occurs is sensitive to the capture of analyte at the chip surface. This approach permits the use of disposable biosensor chips that can be mass-produced at low cost and spotted in microarray format to greatly increase multiplexing capabilities. The current GCSPRI instrument has the capacity to simultaneously measure binding at over 1000 unique, discrete regions of interest (ROIs) by utilizing a compact microarray of antibodies or other specific capture molecules immobilized on the sensor chip. In this report, we describe the use of GCSPRI to directly detect multiple analytes over a large dynamic range, including soluble protein toxins, bacterial cells, and viruses, in near real-time. GCSPRI was used to detect a variety of agents that would be useful for diagnostic and environmental sensing purposes, including macromolecular antigens, a nontoxic form of Pseudomonas aeruginosa exotoxin A (ntPE), Bacillus globigii, Mycoplasma hyopneumoniae, Listeria monocytogenes, Escherichia coli, and M13 bacteriophage. These studies indicate that GCSPRI can be used to simultaneously assess the presence of toxins and pathogens, as well as quantify specific antibodies to environmental agents, in a rapid, label-free, and highly multiplexed assay requiring nanoliter amounts of capture reagents.
Collapse
Affiliation(s)
- Gregory Marusov
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Andrew Sweatt
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Kathryn Pietrosimone
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - David Benson
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Steven J. Geary
- Department of Pathobiology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
- The Center of Excellence For Vaccine Research, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Lawrence K. Silbart
- Department of Allied Health Sciences, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
- The Center of Excellence For Vaccine Research, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Sreerupa Challa
- Department of Allied Health Sciences, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
- The Center of Excellence For Vaccine Research, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Jacqueline Lagoy
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | | | - Michael A. Lynes
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
- The Center of Excellence For Vaccine Research, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| |
Collapse
|
5
|
Langer V, Niessner R, Seidel M. Stopped-flow microarray immunoassay for detection of viable E. coli by use of chemiluminescence flow-through microarrays. Anal Bioanal Chem 2010; 399:1041-50. [DOI: 10.1007/s00216-010-4414-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 11/27/2022]
|
6
|
Osawa Y, Ikebukuro K, Sode K. Zn finger-based direct detection system for PCR products of Salmonella spp. and the Influenza A virus. Biotechnol Lett 2009; 31:725-33. [DOI: 10.1007/s10529-009-9927-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 12/23/2008] [Indexed: 10/21/2022]
|
7
|
Osawa Y, Ikebukuro K, Motoki H, Matsuo T, Horiuchi M, Sode K. The simple and rapid detection of specific PCR products from bacterial genomes using Zn finger proteins. Nucleic Acids Res 2008; 36:e68. [PMID: 18502777 PMCID: PMC2441800 DOI: 10.1093/nar/gkn274] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A novel method of rapid and specific detection of polymerase chain reaction (PCR) products from bacterial genomes using Zn finger proteins was developed. Zn finger proteins are DNA-binding proteins that can sequence specifically recognize PCR products. Since Zn finger proteins can directly detect PCR products without undergoing dehybridization, unlike probe DNA, and can double check the specific PCR amplification and sequence specificity of the PCR products, this novel method would be quick and highly accurate. In this study, we tried to detect Legionella pneumophila using Sp1. It was found that a 49 bp L. pneumophila-specific region containing the Sp1 recognition site is located on the flhA gene of the L. pneumophila genome. We succeeded in specifically detecting PCR products amplified from L. pneumophila in the presence of other bacterial genomes by ELISA, and demonstrated that Sp1 enables the discrimination of L. pneumophila-specific PCR products from others. By fluorescence depolarization measurement, these specific PCR products could be detected within 1 min. These results indicate that the rapid and simple detection of PCR products specific to L. pneumophila using a Zn finger protein was achieved. This methodology can be applied to the detection of other bacteria using various Zn finger proteins that have already been reported.
Collapse
Affiliation(s)
- Yuko Osawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, 184-8588 Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Simpson-Stroot JM, Kearns EA, Stroot PG, Magaña S, Lim DV. Monitoring biosensor capture efficiencies: development of a model using GFP-expressing Escherichia coli O157:H7. J Microbiol Methods 2007; 72:29-37. [PMID: 18096260 DOI: 10.1016/j.mimet.2007.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 11/09/2007] [Accepted: 11/09/2007] [Indexed: 11/15/2022]
Abstract
One of the known limitations for biosensor assays is the high limit of detection for target cells within complex samples (e.g., Escherichia coli at 10(4) to 10(5) CFU/mL) due to poor capture efficiencies. Currently, researchers can only estimate the cell capture efficiency necessary to produce a positive signal for any type of biosensor using either cumbersome techniques or regression modeling. To solve this problem, green fluorescent protein (GFP) transformed E. coli O157:H7 was used to develop a novel method for directly and easily measuring the cell capture efficiency of any given biosensor platform. For demonstration purposes, E. coli-GFP was assayed on both fiber optic and planar waveguide biosensor platforms. Cells were enumerated using an epifluorescent microscope and digital camera to determine the number of cells captured on the surfaces. Conversion algorithms were used with these digital images to determine the cell density of entire waveguide surface areas. For E. coli-GFP, the range of cell capture efficiency was between 0.4 and 1.2%. This indicates that although the developed model works for calculating cell capture, there is still need for significant improvements in capture methods themselves, to increase the capture efficiency and thereby lower detection limits. The use of GFP-transformed target cells and cell capture efficiency calculations can facilitate the development and optimization processes by allowing direct enumeration of new biosensor design configurations and sample processing strategies.
Collapse
Affiliation(s)
- Joyce M Simpson-Stroot
- Division of Cell Biology, Microbiology, and Molecular Biology, Department of Biology, University of South Florida, Tampa, FL 33620-5200, USA.
| | | | | | | | | |
Collapse
|