1
|
Kothawade S, Padwal V. Cutting-edge 3D printing in immunosensor design for early cancer detection. Mikrochim Acta 2024; 192:42. [PMID: 39738752 DOI: 10.1007/s00604-024-06880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025]
Abstract
Cancer is a major cause of death globally, and early detection is a key to improving outcomes. Traditional diagnostic methods have limitations such as being invasive and lacking sensitivity. Immunosensors, which detect cancer biomarkers using antibodies, offer a solution with high sensitivity and selectivity. When combined with 3D printing, these immunosensors can be customized to detect specific cancer markers, creating rapid, cost-effective, and scalable diagnostic tools. The article reviews the principles behind immunosensors, different 3D fabrication methods such as Fused Deposition Modeling (FDM) and Stereolithography (SLA), and discusses how functionalization strategies, such as surface modifications, can enhance the sensitivity of these devices. The integration of 3D printing allows for the creation of complex sensor structures, offering advantages such as customization, rapid prototyping, and multi-material printing. These advancements make immunosensors arrays highly promising for early cancer detection, tumor profiling, and personalized medicine. The article also explores challenges like scalability, material biocompatibility, and the need for clinical validation. Future perspectives suggest the potential of integrating nanomaterials, multiplexed detection, and wearable technology to further improve the performance and accessibility of these diagnostic tools.
Collapse
Affiliation(s)
- Sachin Kothawade
- Department of Pharmaceutics, SCSSS's Sitabai, Thite College of Pharmacy, Shirur-412210, Dist-Pune, Maharashtra, India.
| | - Vijaya Padwal
- Department of Pharmaceutics, SCSSS's Sitabai, Thite College of Pharmacy, Shirur-412210, Dist-Pune, Maharashtra, India
| |
Collapse
|
2
|
Zhang H, Jiang H, Liu X, Wang X. A review of innovative electrochemical strategies for bioactive molecule detection and cell imaging: Current advances and challenges. Anal Chim Acta 2024; 1285:341920. [PMID: 38057043 DOI: 10.1016/j.aca.2023.341920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 12/08/2023]
Abstract
Cellular heterogeneity poses a major challenge for tumor theranostics, requiring high-resolution intercellular bioanalysis strategies. Over the past decades, the advantages of electrochemical analysis, such as high sensitivity, good spatio-temporal resolution, and ease of use, have made it the preferred method to uncover cellular differences. To inspire more creative research, herein, we highlight seminal works in electrochemical techniques for biomolecule analysis and bioimaging. Specifically, micro/nano-electrode-based electrochemical techniques enable real-time quantitative analysis of electroactive substances relevant to life processes in the micro-nanostructure of cells and tissues. Nanopore-based technique plays a vital role in biosensing by utilizing nanoscale pores to achieve high-precision detection and analysis of biomolecules with exceptional sensitivity and single-molecule resolution. Electrochemiluminescence (ECL) technology is utilized for real-time monitoring of the behavior and features of individual cancer cells, enabling observation of their dynamic processes due to its capability of providing high-resolution and highly sensitive bioimaging of cells. Particularly, scanning electrochemical microscopy (SECM) and scanning ion conductance microscopy (SICM) which are widely used in real-time observation of cell surface biological processes and three-dimensional imaging of micro-nano structures, such as metabolic activity, ion channel activity, and cell morphology are introduced in this review. Furthermore, the expansion of the scope of cellular electrochemistry research by innovative functionalized electrodes and electrochemical imaging models and strategies to address future challenges and potential applications is also discussed in this review.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
3
|
Ino K, Utagawa Y, Shiku H. Microarray-Based Electrochemical Biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:317-338. [PMID: 37306698 DOI: 10.1007/10_2023_229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microarrays are widely utilized in bioanalysis. Electrochemical biosensing techniques are often applied in microarray-based assays because of their simplicity, low cost, and high sensitivity. In such systems, the electrodes and sensing elements are arranged in arrays, and the target analytes are detected electrochemically. These sensors can be utilized for high-throughput bioanalysis and the electrochemical imaging of biosamples, including proteins, oligonucleotides, and cells. In this chapter, we summarize recent progress on these topics. We categorize electrochemical biosensing techniques for array detection into four groups: scanning electrochemical microscopy, electrode arrays, electrochemiluminescence, and bipolar electrodes. For each technique, we summarize the key principles and discuss the advantages, disadvantages, and bioanalysis applications. Finally, we present conclusions and perspectives about future directions in this field.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
| | - Yoshinobu Utagawa
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
4
|
Sharafeldin M, Kadimisetty K, Bhalerao KS, Chen T, Rusling JF. 3D-Printed Immunosensor Arrays for Cancer Diagnostics. SENSORS 2020; 20:s20164514. [PMID: 32806676 PMCID: PMC7472114 DOI: 10.3390/s20164514] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Abstract
Detecting cancer at an early stage of disease progression promises better treatment outcomes and longer lifespans for cancer survivors. Research has been directed towards the development of accessible and highly sensitive cancer diagnostic tools, many of which rely on protein biomarkers and biomarker panels which are overexpressed in body fluids and associated with different types of cancer. Protein biomarker detection for point-of-care (POC) use requires the development of sensitive, noninvasive liquid biopsy cancer diagnostics that overcome the limitations and low sensitivities associated with current dependence upon imaging and invasive biopsies. Among many endeavors to produce user-friendly, semi-automated, and sensitive protein biomarker sensors, 3D printing is rapidly becoming an important contemporary tool for achieving these goals. Supported by the widely available selection of affordable desktop 3D printers and diverse printing options, 3D printing is becoming a standard tool for developing low-cost immunosensors that can also be used to make final commercial products. In the last few years, 3D printing platforms have been used to produce complex sensor devices with high resolution, tailored towards researchers’ and clinicians’ needs and limited only by their imagination. Unlike traditional subtractive manufacturing, 3D printing, also known as additive manufacturing, has drastically reduced the time of sensor and sensor array development while offering excellent sensitivity at a fraction of the cost of conventional technologies such as photolithography. In this review, we offer a comprehensive description of 3D printing techniques commonly used to develop immunosensors, arrays, and microfluidic arrays. In addition, recent applications utilizing 3D printing in immunosensors integrated with different signal transduction strategies are described. These applications include electrochemical, chemiluminescent (CL), and electrochemiluminescent (ECL) 3D-printed immunosensors. Finally, we discuss current challenges and limitations associated with available 3D printing technology and future directions of this field.
Collapse
Affiliation(s)
- Mohamed Sharafeldin
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
| | - Karteek Kadimisetty
- LifeSensors Inc., 271 Great Valley Parkway, Suite 100, Malvern, PA 19355, USA;
| | - Ketki S. Bhalerao
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
| | - Tianqi Chen
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA; (M.S.); (K.S.B.); (T.C.)
- Department of Surgery and Neag Cancer Center, UConn Health, Farmington, CT 06032, USA
- School of Chemistry, National University of Ireland at Galway, Galway H91 TK33, Ireland
- Correspondence:
| |
Collapse
|
5
|
Fereja TH, Du F, Wang C, Snizhko D, Guan Y, Xu G. Electrochemiluminescence Imaging Techniques for Analysis and Visualizing. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00128-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Zhang J, Arbault S, Sojic N, Jiang D. Electrochemiluminescence Imaging for Bioanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:275-295. [PMID: 30939032 DOI: 10.1146/annurev-anchem-061318-115226] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrochemiluminescence (ECL) is a widely used analytical technique with the advantages of high sensitivity and low background signal. The recent and rapid development of electrochemical materials, luminophores, and optical elements significantly increases the ECL signals and, thus, ECL imaging with enhanced spatial and temporal resolutions is realized. Currently, ECL imaging is successfully applied to high-throughput bioanalysis and to visualize the distribution of molecules at single cells. Compared with other optical bioassays, no optical excitation is involved in imaging, so the approach avoids a background signal from illumination and increases the detection sensitivity. This review highlights some of the most exciting developments in this field, including the mechanisms, electrode designs, and the applications of ECL imaging in bioanalysis and at single cells and particles.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093, China;
| | - Stéphane Arbault
- Bordeaux INP, Institute of Molecular Science (ISM), and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France;
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science (ISM), and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France;
| | - Dechen Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210093, China;
| |
Collapse
|
7
|
Liu H, Zhang Y, Dong Y, Chu X. Electrogenerated chemiluminescence aptasensor for lysozyme based on copolymer nanospheres encapsulated black phosphorus quantum dots. Talanta 2019; 199:507-512. [PMID: 30952291 DOI: 10.1016/j.talanta.2019.02.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 12/01/2022]
Abstract
Black phosphorus quantum dots (BPQDs) can react with Ru(bpy)32+ to generate strong anodic electrogenerated chemiluminescence (ECL). However, the instability and the lack of functional groups on BPQDs limit its further application in the fabrication of ECL biosensor. In the present work, uniform BPQDs-styrene-acrylamide (St-AAm) nanospheres (BSAN) are synthesized by encapsulating BPQDs into St-AAm copolymer nanospheres. Sufficient amount of BPQDs can be embedded into nanospheres, and react with Ru(bpy)32+ to generate strong anodic ECL which is comparable to that of pure BPQDs. Amino group of polymer endows BPQDs the ability to connect with DNA, and can be used to fabricate ECL aptasensor for the sensitive detection of lysozyme. The proposed aptasensor shows high sensitivity, good selectivity and stability for the detection of lysozyme in the range of 0.1-100 pg mL-1 with a detection limit of 0.029 pg mL-1 (3σ). The proposed method reveals the promising ECL sensing application of BP nanomaterials in the detection of various proteins.
Collapse
Affiliation(s)
- Hui Liu
- School of Chemistry and Chemical Engineering, Hexian Development Institute of Chemical Industry, Anhui University of Technology, Maanshan 243002, China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Hexian Development Institute of Chemical Industry, Anhui University of Technology, Maanshan 243002, China
| | - YongPing Dong
- School of Chemistry and Chemical Engineering, Hexian Development Institute of Chemical Industry, Anhui University of Technology, Maanshan 243002, China.
| | - XiangFeng Chu
- School of Chemistry and Chemical Engineering, Hexian Development Institute of Chemical Industry, Anhui University of Technology, Maanshan 243002, China
| |
Collapse
|
8
|
Oesch F, Fabian E, Landsiedel R. Xenobiotica-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch Toxicol 2018; 92:2411-2456. [PMID: 29916051 PMCID: PMC6063329 DOI: 10.1007/s00204-018-2232-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022]
Abstract
Studies on the metabolic fate of medical drugs, skin care products, cosmetics and other chemicals intentionally or accidently applied to the human skin have become increasingly important in order to ascertain pharmacological effectiveness and to avoid toxicities. The use of freshly excised human skin for experimental investigations meets with ethical and practical limitations. Hence information on xenobiotic-metabolizing enzymes (XME) in the experimental systems available for pertinent studies compared with native human skin has become crucial. This review collects available information of which—taken with great caution because of the still very limited data—the most salient points are: in the skin of all animal species and skin-derived in vitro systems considered in this review cytochrome P450 (CYP)-dependent monooxygenase activities (largely responsible for initiating xenobiotica metabolism in the organ which provides most of the xenobiotica metabolism of the mammalian organism, the liver) are very low to undetectable. Quite likely other oxidative enzymes [e.g. flavin monooxygenase, COX (cooxidation by prostaglandin synthase)] will turn out to be much more important for the oxidative xenobiotic metabolism in the skin. Moreover, conjugating enzyme activities such as glutathione transferases and glucuronosyltransferases are much higher than the oxidative CYP activities. Since these conjugating enzymes are predominantly detoxifying, the skin appears to be predominantly protected against CYP-generated reactive metabolites. The following recommendations for the use of experimental animal species or human skin in vitro models may tentatively be derived from the information available to date: for dermal absorption and for skin irritation esterase activity is of special importance which in pig skin, some human cell lines and reconstructed skin models appears reasonably close to native human skin. With respect to genotoxicity and sensitization reactive-metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the Conclusions section in the end of this review.
Collapse
Affiliation(s)
- F Oesch
- Institute of Toxicology, Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131, Mainz, Germany
| | - E Fabian
- Experimental Toxicology and Ecology, GV/TB, Z470, BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen, Germany
| | - Robert Landsiedel
- Experimental Toxicology and Ecology, GV/TB, Z470, BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen, Germany.
| |
Collapse
|
9
|
Yang T, Fu J, Zheng S, Yao H, Jin Y, Lu Y, Liu H. Biomolecular logic devices based on stimuli-responsive PNIPAM-DNA film electrodes and bioelectrocatalysis of natural DNA with Ru(bpy)32+ as mediator. Biosens Bioelectron 2018; 108:62-68. [DOI: 10.1016/j.bios.2018.02.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 11/16/2022]
|
10
|
Guo W, Ding H, Su B. Electrochemiluminescence of metallated porous organic polymers. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Wang N, Feng Y, Wang Y, Ju H, Yan F. Electrochemiluminescent Imaging for Multi-immunoassay Sensitized by Dual DNA Amplification of Polymer Dot Signal. Anal Chem 2018; 90:7708-7714. [DOI: 10.1021/acs.analchem.8b01610] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ningning Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yaqiang Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yawei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Feng Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P. R. China
| |
Collapse
|
12
|
Robb AJ, Vinogradov S, Danell AS, Anderson E, Blackledge MS, Melander C, Hvastkovs EG. Electrochemical Detection of Small Molecule Induced Pseudomonas aeruginosa Biofilm Dispersion. Electrochim Acta 2018; 268:276-282. [PMID: 30504968 DOI: 10.1016/j.electacta.2018.02.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A simple electrochemical assay to monitor the dispersion of Pseudomonas aeruginosa PA01 biofilm is described. Pyrolytic graphite (PG) electrodes were modified with P. aeruginosa PA01 using layer-by-layer (LbL) methods. The presence of the bacteria on the electrodes was directly monitored using square wave voltammetry (SWV) via the electrochemical reduction of electroactive phenazine compounds expressed by the bacteria, which indicate the presence of biofilm. Upon treatment of bacteria-modified electrodes with a 2-aminoimidazole (2-AI) derivative with known Pseudomonas anti-biofilm properties, the bacteria-related electrochemical reduction peaks decreased in a concentration dependent manner, indicating dispersal of the biofilm on the electrode surface. A similar 2-AI compound with negligible anti-biofilm activity was used as a comparative control and produced muted electrochemical results. Electrochemical responses mirrored previously established bioassay-derived half maximal inhibition concentration (IC50) and half maximal effective concentration (EC50) values.. Biofilm dispersal detection via the electrochemical response was validated by monitoring crystal violet absorbance after its release from electrode confined P. aeruginosa biofilm. Mass spectrometry data showing multiple redox active phenazine compounds are presented to provide insight into the surface reaction complexity. Overall, we present a very simple assay to monitor the anti-biofilm activity of compounds of interest.
Collapse
Affiliation(s)
- Alex J Robb
- East Carolina University, Department of Chemistry
| | | | | | | | | | | | | |
Collapse
|
13
|
Zhang L, Tian K, Dong Y, Ding H, Wang C. Electrogenerated chemiluminescence of Ru(bpy)32+at a black phosphorus quantum dot modified electrode and its sensing application. Analyst 2018; 143:304-310. [DOI: 10.1039/c7an01617d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Strong anodic electrogenerated chemiluminescence (ECL) of Ru(bpy)32+can be obtained under neutral conditions at a black phosphorus quantum dot (BPQD) modified electrode due to the catalytic effect of BPQDs. Dopamine exhibits an apparent inhibiting effect on the ECL signal, and as a result, can be sensitively detected.
Collapse
Affiliation(s)
- Lei Zhang
- School of Chemistry and Chemical Engineering
- Hexian Development Institute of Chemical Industry
- Anhui University of Technology
- Maanshan
- China
| | - KaiJin Tian
- School of Chemistry and Chemical Engineering
- Hexian Development Institute of Chemical Industry
- Anhui University of Technology
- Maanshan
- China
| | - YongPing Dong
- School of Chemistry and Chemical Engineering
- Hexian Development Institute of Chemical Industry
- Anhui University of Technology
- Maanshan
- China
| | - HouCheng Ding
- School of Chemistry and Chemical Engineering
- Hexian Development Institute of Chemical Industry
- Anhui University of Technology
- Maanshan
- China
| | - ChengMing Wang
- Hefei National Laboratory for Physical Science at the Microscale
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
14
|
Zhuo Y, Wang HJ, Lei YM, Zhang P, Liu JL, Chai YQ, Yuan R. Electrochemiluminescence biosensing based on different modes of switching signals. Analyst 2018; 143:3230-3248. [DOI: 10.1039/c8an00276b] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electrochemiluminescence (ECL) has attracted much attention in various fields of analysis owing to low background signals, high sensitivity, and excellent controllability.
Collapse
Affiliation(s)
- Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Hai-Jun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yan-Mei Lei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Pu Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Jia-Li Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
15
|
Guo W, Liu Y, Cao Z, Su B. Imaging Analysis Based on Electrogenerated Chemiluminescence. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0013-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Bacqueville D, Jacques C, Duprat L, Jamin EL, Guiraud B, Perdu E, Bessou-Touya S, Zalko D, Duplan H. Characterization of xenobiotic metabolizing enzymes of a reconstructed human epidermal model from adult hair follicles. Toxicol Appl Pharmacol 2017; 329:190-201. [PMID: 28601433 DOI: 10.1016/j.taap.2017.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/10/2017] [Accepted: 05/30/2017] [Indexed: 11/15/2022]
Abstract
In this study, a comprehensive characterization of xenobiotic metabolizing enzymes (XMEs) based on gene expression and enzyme functionality was made in a reconstructed skin epidermal model derived from the outer root sheath (ORS) of hair follicles (ORS-RHE). The ORS-RHE model XME gene profile was consistent with native human skin. Cytochromes P450 (CYPs) consistently reported to be detected in native human skin were also present at the gene level in the ORS-RHE model. The highest Phase I XME gene expression levels were observed for alcohol/aldehyde dehydrogenases and (carboxyl) esterases. The model was responsive to the CYP inducers, 3-methylcholanthrene (3-MC) and β-naphthoflavone (βNF) after topical and systemic applications, evident at the gene and enzyme activity level. Phase II XME levels were generally higher than those of Phase I XMEs, the highest levels were GSTs and transferases, including NAT1. The presence of functional CYPs, UGTs and SULTs was confirmed by incubating the models with 7-ethoxycoumarin, testosterone, benzo(a)pyrene and 3-MC, all of which were rapidly metabolized within 24h after topical application. The extent of metabolism was dependent on saturable and non-saturable metabolism by the XMEs and on the residence time within the model. In conclusion, the ORS-RHE model expresses a number of Phase I and II XMEs, some of which may be induced by AhR ligands. Functional XME activities were also demonstrated using systemic or topical application routes, supporting their use in cutaneous metabolism studies. Such a reproducible model will be of interest when evaluating the cutaneous metabolism and potential toxicity of innovative dermo-cosmetic ingredients.
Collapse
Affiliation(s)
- Daniel Bacqueville
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France.
| | - Carine Jacques
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| | - Laure Duprat
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| | - Emilien L Jamin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Beatrice Guiraud
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| | - Elisabeth Perdu
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sandrine Bessou-Touya
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Hélène Duplan
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| |
Collapse
|
17
|
Trumbo-White CM, Hvastkovs EG. Electrochemical Assessment of Sequence Selective DNA Damage from Myoglogin and Cytochrome P450 Bioactivated Benzo[ a]pyrene at TP53 Oligomers. ELECTROANAL 2016. [DOI: 10.1002/elan.201600109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Eli G. Hvastkovs
- Department of Chemistry; East Carolina University; Greenville, NC
| |
Collapse
|
18
|
Liu X, Dong M, Qi H, Gao Q, Zhang C. Electrogenerated Chemiluminescence Bioassay of Two Protein Kinases Incorporating Peptide Phosphorylation and Versatile Probe. Anal Chem 2016; 88:8720-7. [DOI: 10.1021/acs.analchem.6b02070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xia Liu
- Key Laboratory
of Analytical
Chemistry for Life Science of Shaanxi Province, School of Chemistry
and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. China
| | - Manman Dong
- Key Laboratory
of Analytical
Chemistry for Life Science of Shaanxi Province, School of Chemistry
and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. China
| | - Honglan Qi
- Key Laboratory
of Analytical
Chemistry for Life Science of Shaanxi Province, School of Chemistry
and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. China
| | - Qiang Gao
- Key Laboratory
of Analytical
Chemistry for Life Science of Shaanxi Province, School of Chemistry
and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. China
| | - Chengxiao Zhang
- Key Laboratory
of Analytical
Chemistry for Life Science of Shaanxi Province, School of Chemistry
and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P. R. China
| |
Collapse
|
19
|
Bano K, Rusling JF. Electrochemiluminescence Arrays for Studies of Metabolite-related Toxicity. ELECTROANAL 2016; 28:2636-2643. [PMID: 28592918 DOI: 10.1002/elan.201600207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This article reviews recent progress from our laboratory in electrochemiluminescence (ECL) arrays designed for screening toxicity-related chemistry of chemical and drug candidates. Cytochrome P450s and metabolic bioconjugation enzymes convert lipophilic chemicals in our bodies by oxidation and bioconjugation that can lead to toxic metabolites. DNA can be used as an easily measurable toxicity-related endpoint, targeting DNA oxidation and addcut formation with metabolites. ECL using guanosines in the DNA strands as co-reactants have been used in high throughput arrays utilizing DNA-enzyme films fabricated layer-by-layer. This review describes approaches developed to provide new high throughput ECL arrays to aid in toxicity assessment for drug and chemical product development.
Collapse
Affiliation(s)
- Kiran Bano
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.,Department of Surgery and Neag Cancer Center, University of Connecticut Health Center, Farmington, CT 06032, USA.,Institute of Material Science, University of Connecticut, Storrs, CT 06269, USA.,School of Chemistry, NationalUniversity of Ireland at Galway, Ireland
| |
Collapse
|
20
|
Abstract
Routine in vitro bioassays and animal toxicity studies of drug and environmental chemical candidates fail to reveal toxicity in ∼30% of cases. This Feature article addresses research on new approaches to in vitro toxicity testing as well as our own efforts to produce high-throughput genotoxicity arrays and LC-MS/MS approaches to reveal possible chemical pathways of toxicity.
Collapse
Affiliation(s)
- Eli G. Hvastkovs
- Department of Chemistry, East Carolina University Greenville, North Carolina 27858, United States
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Surgery and Neag Cancer Center, University of Connecticut Health Center, Farmington, Connecticut 06032, United States
- Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269, United States
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
21
|
Microscopic imaging and tuning of electrogenerated chemiluminescence with boron-doped diamond nanoelectrode arrays. Anal Bioanal Chem 2016; 408:7085-94. [DOI: 10.1007/s00216-016-9504-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/18/2016] [Indexed: 12/31/2022]
|
22
|
JIANG G, LIU X, WANG Y, RUAN S, QI H, YANG Y, ZHOU Q, ZHANG C. Design and Application of Multi-functional Electrogenerated Chemiluminescence Imaging Analyzer. ANAL SCI 2016; 32:1023-7. [DOI: 10.2116/analsci.32.1023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Guangfu JIANG
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Xia LIU
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Yaqin WANG
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Sanpeng RUAN
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Honglan QI
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Yong YANG
- Xi’an Remax Analysis Instruments Co. Ltd
| | - Qishe ZHOU
- Xi’an Remax Analysis Instruments Co. Ltd
| | - Chengxiao ZHANG
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University
| |
Collapse
|
23
|
Electrochemical Detection of Alginate Penetration in Immobilized Layer-by-Layer Films by Unnatural Amino Acid Containing Antimicrobial Peptides. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Dong YP, Gao TT, Zhou Y, Jiang LP, Zhu JJ. Anodic Electrogenerated Chemiluminescence of Ru(bpy)3(2+) with CdSe Quantum Dots as Coreactant and Its Application in Quantitative Detection of DNA. Sci Rep 2015; 5:15392. [PMID: 26472243 PMCID: PMC4607998 DOI: 10.1038/srep15392] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/14/2015] [Indexed: 12/27/2022] Open
Abstract
In the present paper, we report that CdSe quantum dots (QDs) can act as the coreactant of Ru(bpy)32+ electrogenerated chemiluminescence (ECL) in neutral condition. Strong anodic ECL signal was observed at ~1.10 V at CdSe QDs modified glassy carbon electrode (CdSe/GCE), which might be mainly attributed to the apparent electrocatalytic effect of QDs on the oxidation of Ru(bpy)32+. Ru(bpy)32+ can be intercalated into the loop of hairpin DNA through the electrostatic interaction to fabricate a probe. When the probe was bound to the CdSe QDs modified on the GCE, the intense ECL signal was obtained. The more Ru(bpy)32+ can be intercalated when DNA loop has larger diameter and the stronger ECL signal can be observed. The loop of hairpin DNA can be opened in the presence of target DNA to release the immobilized Ru(bpy)32+, which can result in the decrease of ECL signal. The decreased ECL signal varied linearly with the concentration of target DNA, which showed the ECL biosensor can be used in the sensitive detection of DNA. The proposed ECL biosensor showed an excellent performance with high specificity, wide linear range and low detection limit.
Collapse
Affiliation(s)
- Yong-Ping Dong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China.,School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Ting-Ting Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China.,School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Ying Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China.,School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, China
| |
Collapse
|
25
|
Ding C, Zhang W, Wang W, Chen Y, Li X. Amplification strategies using electrochemiluminescence biosensors for the detection of DNA, bioactive molecules and cancer biomarkers. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.10.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Liu S, Li M, Yu X, Li CZ, Liu H. Biomacromolecular logic gate, encoder/decoder and keypad lock based on DNA damage with electrochemiluminescence and electrochemical signals as outputs. Chem Commun (Camb) 2015. [DOI: 10.1039/c5cc04412j] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Biomacromolecular logic devices including a keypad lock were developed based on the damage of natural DNA in Ru(bpy)32+ solution.
Collapse
Affiliation(s)
- Shuang Liu
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- People's Republic of China
| | - Menglu Li
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- People's Republic of China
| | - Xue Yu
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- People's Republic of China
| | - Chen-Zhong Li
- Nanobioengineering/Bioelectronics Laboratory
- Department of Biomedical Engineering
- Florida International University
- Miami
- USA
| | - Hongyun Liu
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- People's Republic of China
- Key Laboratory of Theoretical and Computational Photochemistry
| |
Collapse
|
27
|
Huffnagle IM, Joyner A, Rumble B, Hysa S, Rudel D, Hvastkovs EG. Dual electrochemical and physiological apoptosis assay detection of in vivo generated nickel chloride induced DNA damage in Caenorhabditis elegans. Anal Chem 2014; 86:8418-24. [PMID: 25048399 DOI: 10.1021/ac502007g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Environmental nickel exposure is known to cause allergic reactions, respiratory illness, and may be responsible for some forms of cancer in humans. Nematodes are an excellent model organism to test for environmental toxins, as they are prevalent in many different environments. Nickel exposure has previously been shown to impact nematode life processes. In this study, Caenorhabditis elegans nematodes exposed to NiCl2 featured high levels of programmed cell death (PCD) in a concentration-dependent manner as measured by counting apoptotic corpses in the nematode germ line. A green fluorescent protein (GFP) reporter transgene was used that highlights cell corpse engulfment by fluorescence microscopy. Analysis of the reporter in a p53 mutant strain putatively indicates that the PCDs are a result of genomic DNA damage. In order to assay the potential genotoxic actions of NiCl2, DNA was extracted from nematodes exposed to increasing concentrations of NiCl2 and electrochemically assayed. In vivo damaged DNA was immobilized on pyrolytic graphite electrodes using the layer-by-layer (LbL) technique. Square-wave voltammograms were obtained in the presence of redox mediator, ruthenium trisbipyridine (Ru(bpy)3(2+)), that catalytically oxidizes guanines in DNA. Oxidative peak currents were shown to increase as a function of NiCl2 exposure, which further suggests that the extracted DNA from nematodes exposed to the nickel was damaged. This report demonstrates that our electrochemical biosensor can detect damage at lower Ni concentrations than our physiological PCD assay and that the results are predictive of physiological responses at higher concentrations. Thus, a biological model for toxicity and animal disease can be assayed using an electrochemical approach.
Collapse
Affiliation(s)
- Ian M Huffnagle
- Department of Biology, and ‡Department of Chemistry, East Carolina University , Greenville, North Carolina 27858, United States
| | | | | | | | | | | |
Collapse
|
28
|
Liang G, Li X, Liu X. Electrochemical detection of 9-hydroxyfluorene based on the direct interaction with hairpin DNA. Analyst 2014; 138:1032-7. [PMID: 23254141 DOI: 10.1039/c2an36255d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The direct interaction of hairpin DNA with 9-hydroxyfluorene (9-OHFLU) through hydrogen bonds was investigated by electrochemical impedance spectroscopy (EIS), UV-Vis spectroscopy and (1)H NMR spectra. Based on these results, an electrochemical hairpin DNA sensor was developed for the detection of 9-OHFLU by EIS. Upon 9-OHFLU interacting with hairpin DNA film on the gold electrodes, the charge transfer resistance (R(CT)) of the hairpin DNA film was significantly increased and remained constant after 30 min. Depending on the difference in charge transfer resistance (ΔR(CT)) before and after 9-OHFLU interaction with the hairpin DNA, 9-OHFLU could be detected with a concentration as low as 1 nM. However, only a much smaller ΔR(CT) appeared when eight selected hydroxyl polycyclic aromatic hydrocarbons (HO-PAHs) interacted with the hairpin DNA for 30 min, which demonstrated that 9-OHFLU could be discriminated from other HO-PAHs by EIS. The performance of the sensor in real lake water sample was further explored for the detection of 9-OHFLU with the detection limit of 4 nM.
Collapse
Affiliation(s)
- Gang Liang
- State Key Laboratory of Water Environment Simulation, School of Environment and College of Chemistry, Beijing Normal University, Beijing, China 100875
| | | | | |
Collapse
|
29
|
Label-free and rapid colorimetric detection of DNA damage based on self-assembly of a hemin-graphene nanocomposite. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1245-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Li X, Fang Q, Lin J, Yuan Z, Han L, Gao Y. Chemistry Study on Protective Effect against·OH-induced DNA Damage and Antioxidant Mechanism of Cortex Magnoliae Officinalis. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.1.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Xu L, Zhou Z, Zhang C, He Y, Su B. Electrochemiluminescence imaging of latent fingermarks through the immunodetection of secretions in human perspiration. Chem Commun (Camb) 2014; 50:9097-100. [DOI: 10.1039/c4cc03466j] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combined use of electrochemiluminescence imaging and enzyme immunoassay allows both identification of latent fingermarks and recognition of protein/polypeptide secretions.
Collapse
Affiliation(s)
- Linru Xu
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058, China
| | - Zhenyu Zhou
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058, China
| | - Congzhe Zhang
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058, China
| | - Yayun He
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058, China
| | - Bin Su
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058, China
| |
Collapse
|
32
|
Zhou Z, Xu L, Wu S, Su B. A novel biosensor array with a wheel-like pattern for glucose, lactate and choline based on electrochemiluminescence imaging. Analyst 2014; 139:4934-9. [DOI: 10.1039/c4an00687a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ECL imaging biosensor was fabricated for detecting glucose, lactate and choline, as well as for simultaneous multicomponent assay.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058, China
| | - Linru Xu
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058, China
| | - Suozhu Wu
- College of Food Science and Engineering
- Shanxi Agricultural University
- Taigu 030801, China
| | - Bin Su
- Institute of Microanalytical Systems
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058, China
| |
Collapse
|
33
|
Wasalathanthri DP, Malla S, Bist I, Tang CK, Faria RC, Rusling JF. High-throughput metabolic genotoxicity screening with a fluidic microwell chip and electrochemiluminescence. LAB ON A CHIP 2013; 13:4554-62. [PMID: 24113555 PMCID: PMC3901045 DOI: 10.1039/c3lc50698c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A high throughput electrochemiluminescent (ECL) chip was fabricated and integrated into a fluidic system for screening toxicity-related chemistry of drug and pollutant metabolites. The chip base is conductive pyrolytic graphite onto which are printed 64 microwells capable of holding one-μL droplets. Films combining DNA, metabolic enzymes and an ECL-generating ruthenium metallopolymer (Ru(II)PVP) are fabricated in these microwells. The system runs metabolic enzyme reactions, and subsequently detects DNA damage caused by reactive metabolites. The performance of the chip was tested by measuring DNA damage caused by metabolites of the well-known procarcinogen benzo[a]pyrene (B[a]P). Liver microsomes and cytochrome P450 (cyt P450) enzymes were used with and without epoxide hydrolase (EH), a conjugative enzyme required for multi-enzyme bioactivation of B[a]P. DNA adduct formation was confirmed by determining specific DNA-metabolite adducts using similar films of DNA/enzyme on magnetic bead biocolloid reactors, hydrolyzing the DNA, and analyzing by capillary liquid chromatography-mass spectrometry (CapLC-MS/MS). The fluidic chip was also used to measure IC50-values of inhibitors of cyt P450s. All results show good correlation with reported enzyme activity and inhibition assays.
Collapse
|
34
|
Hao N, Xiong M, Zhang JD, Xu JJ, Chen HY. Portable Thermo-Powered High-Throughput Visual Electrochemiluminescence Sensor. Anal Chem 2013; 85:11715-9. [DOI: 10.1021/ac403215g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nan Hao
- State Key Laboratory
of Analytical Chemistry for Life Science, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Meng Xiong
- State Key Laboratory
of Analytical Chemistry for Life Science, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jia-dong Zhang
- State Key Laboratory
of Analytical Chemistry for Life Science, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jing-Juan Xu
- State Key Laboratory
of Analytical Chemistry for Life Science, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hong-Yuan Chen
- State Key Laboratory
of Analytical Chemistry for Life Science, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
35
|
Pan S, Li D, Zhao L, Schenkman JB, Rusling JF. Genotoxicity-related chemistry of human metabolites of benzo[ghi]perylene (B[ghi]P) investigated using electro-optical arrays and DNA/microsome biocolloid reactors with LC-MS/MS. Chem Res Toxicol 2013; 26:1229-39. [PMID: 23879290 PMCID: PMC3763812 DOI: 10.1021/tx400147c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is limited and sometimes contradictory information about the genotoxicity of the polycyclic aromatic hydrocarbon benzo[ghi]perylene (B[ghi]P). Using recently developed metabolic toxicity screening arrays and a biocolloid reactor-LC-MS/MS approach, both featuring films of DNA and human metabolic enzymes, we demonstrated the relatively low reactivity of metabolically activated B[ghi]P toward DNA. Electro-optical toxicity screening arrays showed that B[ghi]P metabolites damage DNA at a 3-fold lower rate than benzo[a]pyrene (B[a]P), whose metabolites have a strong and well-understood propensity for DNA damage. Metabolic studies using magnetic bead biocolloid reactors coated with microsomal enzymes in 96-well plates showed that cyt P450s 1A1 and 1B1 provide high activity for B[ghi]P and B[a]P conversion. Consistent with published results, the major metabolism of B[ghi]P involved oxidations at 3,4 and 11,12 positions, leading to the formation of B[ghi]P 3,4-oxide and B[ghi]P 3,4,11,12-bisoxide. B[ghi]P 3,4-oxide was synthesized and reacted with deoxyadenosine at N6 and N7 positions and with deoxyguanosine at the N2 position. B[ghi]P 3,4-oxide is hydrolytically unstable and transforms into the 3,4-diol or converts to 3- or 4-hydroxy B[ghi]P. LC-MS/MS of reaction products from the magnetic biocolloid reactor particles coated with DNA and human enzymes revealed for the first time that a major DNA adduct results from the reaction between B[ghi]P 3,4,11,12-bisoxide and deoxyguanosine. Results also demonstrated 5-fold lower formation rates of the major DNA adduct for B[ghi]P metabolites compared to B[a]P. Overall, results from both the electro-optical array and biocolloid reactor-LC-MS/MS consistently suggest a lower human genotoxicity profile of B[ghi]P than B[a]P.
Collapse
Affiliation(s)
- Shenmin Pan
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Dandan Li
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Linlin Zhao
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - John B. Schenkman
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032
| |
Collapse
|
36
|
Hewitt NJ, Edwards RJ, Fritsche E, Goebel C, Aeby P, Scheel J, Reisinger K, Ouédraogo G, Duche D, Eilstein J, Latil A, Kenny J, Moore C, Kuehnl J, Barroso J, Fautz R, Pfuhler S. Use of Human In Vitro Skin Models for Accurate and Ethical Risk Assessment: Metabolic Considerations. Toxicol Sci 2013; 133:209-17. [DOI: 10.1093/toxsci/kft080] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
37
|
Mani V, Kadimisetty K, Malla S, Joshi AA, Rusling JF. Paper-based electrochemiluminescent screening for genotoxic activity in the environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:1937-44. [PMID: 23331021 PMCID: PMC3578158 DOI: 10.1021/es304426j] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A low cost, microfluidic paper electrochemical device (μPED) was fabricated using screen printing of electrodes and heat transfer of patterned wax paper onto filter paper. The μPED features films of a light-emitting ruthenium metallopolymer, microsomal metabolic enzymes, and DNA to detect potential genotoxic pollutant activity in environmental samples. Unlike conventional analytical methods that detect specific pollutant compounds, the μPED was designed to rapidly measure the presence of genotoxic equivalents in environmental samples with the signal related to benzo[a]pyrene (B[a]P) as a reference standard. The analytical end point is the detection of DNA damage from metabolites produced in the device using an electrochemiluminescence output measured with a charge-coupled device (CCD) camera. Proof-of-concept of this measurement was established for smoke, water, and food samples. The μPED provides a rapid screening tool for on-site environmental monitoring that specifically monitors the genotoxic reactivity of metabolites of toxic compounds present in the samples.
Collapse
Affiliation(s)
- Vigneshwaran Mani
- Department of Chemistry, University of Connecticut, Storrs, CT, USA 06269
| | | | - Spundana Malla
- Department of Chemistry, University of Connecticut, Storrs, CT, USA 06269
| | - Amit A. Joshi
- Department of Chemistry, University of Connecticut, Storrs, CT, USA 06269
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT, USA 06269
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA 06032
- School of Chemistry, National University of Ireland, Galway
| |
Collapse
|
38
|
Wasalathanthri DP, Faria RC, Malla S, Joshi AA, Schenkman JB, Rusling JF. Screening reactive metabolites bioactivated by multiple enzyme pathways using a multiplexed microfluidic system. Analyst 2013; 138:171-8. [PMID: 23095952 PMCID: PMC3509269 DOI: 10.1039/c2an35993f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A multiplexed, microfluidic platform to detect reactive metabolites is described, and its performance is illustrated for compounds metabolized by oxidative and bioconjugation enzymes in multi-enzyme pathways to mimic natural human drug metabolism. The device features four 8-electrode screen printed carbon arrays coated with thin films of DNA, a ruthenium-polyvinylpyridine (RuPVP) catalyst, and multiple enzyme sources including human liver microsomes (HLM), cytochrome P450 (cyt P450) 1B1 supersomes, microsomal epoxide hydrolase (EH), human S9 liver fractions (Hs9) and N-acetyltransferase (NAT). Arrays are arranged in parallel to facilitate multiple compound screening, enabling up to 32 enzyme reactions and measurements in 20-30 min. In the first step of the assay, metabolic reactions are achieved under constant flow of oxygenated reactant solutions by electrode driven natural catalytic cycles of cyt P450s and cofactor-supported bioconjugation enzymes. Reactive metabolites formed in the enzyme reactions can react with DNA. Relative DNA damage is measured in the second assay step using square wave voltammetry (SWV) with RuPVP as catalyst. Studies were done on chemicals known to require metabolic activation to induce genotoxicity, and results reproduced known features of metabolite DNA-reactivity for the test compounds. Metabolism of benzo[a]pyrene (B[a]P) by cyt P450s and epoxide hydrolase showed an enhanced relative DNA damage rate for DNA compared to cyt P450s alone. DNA damage rates for arylamines by pathways featuring both oxidative and conjugative enzymes at pH 7.4 gave better correlation with rodent genotoxicity metric TD(50). Results illustrate the broad utility of the reactive metabolite screening device.
Collapse
Affiliation(s)
| | - Ronaldo C. Faria
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Spundana Malla
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Amit A. Joshi
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - John B. Schenkman
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06032, United States
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- NationalUniversity of Ireland at Galway, Ireland
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06032, United States
| |
Collapse
|
39
|
Satterwhite JE, Trumbo CM, Danell AS, Hvastkovs EG. Electrochemical study on the effects of epigenetic cytosine methylation on anti-benzo[a]pyrene diol epoxide damage at TP53 oligomers. Anal Chem 2013; 85:1183-91. [PMID: 23244159 DOI: 10.1021/ac303077h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Anti-benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide (anti-BPDE) is a known carcinogen that damages DNA, and this damage is influenced by the DNA sequence and epigenetic factors. The influence of epigenetic cytosine methylation on the reaction with anti-BPDE at a known hotspot DNA damage site was studied electrochemically. Gold electrodes were modified with thiolated DNA oligomers spanning codons 270-276 of the TP53 gene. The oligomers exhibited 5-carbon cytosine methylation at the codon 273 location on the bound probe, the acquired complementary target, or both. Redox active diviologen compounds of the form C(12)H(25)V(2+)C(6)H(12)V(2+)C(12)H(25) (V(2+) = 4,4'-bipyridyl or viologen, C12-Viologen) were employed to detect anti-BPDE damage to DNA. DNA was exposed to racemic (±)- or enantiomerically pure (+)-anti-BPDE solutions followed by electrochemical interrogation in the presence of C12-Viologen. Background subtracted square wave voltammograms (SWV) showed the appearance of two peaks at approximately -0.38 V and -0.55 V vs Ag/AgCl upon anti-BPDE exposure. The acquired voltammetry is consistent with singly reduced C12-Viologen dimers bound at two different DNA environments, which arise from BPDE damage and are influenced by cytosine methylation and BPDE stereochemical considerations. UV spectroscopic and mass spectrometric methods employed to validate the electrochemical responses showed that (+)-anti-BPDE primarily adopts a minor groove bound orientation within the oligomers while selectively targeting the nontranscribed ssDNA sequence within the duplexes.
Collapse
Affiliation(s)
- Jennifer E Satterwhite
- East Carolina University, Department of Chemistry, 300 Science and Technology Building, Greenville, North Carolina 27858, USA
| | | | | | | |
Collapse
|
40
|
Deng S, Ju H. Electrogenerated chemiluminescence of nanomaterials for bioanalysis. Analyst 2013; 138:43-61. [DOI: 10.1039/c2an36122a] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Evaluation of chemicals requiring metabolic activation in the EpiDerm™ 3D human reconstructed skin micronucleus (RSMN) assay. Mutat Res 2012; 750:40-9. [PMID: 23022594 DOI: 10.1016/j.mrgentox.2012.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 07/25/2012] [Accepted: 08/30/2012] [Indexed: 01/28/2023]
Abstract
The in vitro human reconstructed skin micronucleus (RSMN) assay in EpiDerm™ is a promising new assay for evaluating genotoxicity of dermally applied chemicals. A global pre-validation project sponsored by the European Cosmetics Association (Cosmetics Europe - formerly known as COLIPA), and the European Center for Validation of Alternative Methods (ECVAM), is underway. Results to date demonstrate international inter-laboratory and inter-experimental reproducibility of the assay for chemicals that do not require metabolism [Aardema et al., Mutat. Res. 701 (2010) 123-131]. We have expanded these studies to investigate chemicals that do require metabolic activation: 4-nitroquinoline-N-oxide (4NQO), cyclophosphamide (CP), dimethylbenzanthracene (DMBA), dimethylnitrosamine (DMN), dibenzanthracene (DBA) and benzo(a)pyrene (BaP). In this study, the standard protocol of two applications over 48h was compared with an extended protocol involving three applications over 72h. Extending the treatment period to 72h changed the result significantly only for 4NQO, which was negative in the standard 48h dosing regimen, but positive with the 72h treatment. DMBA and CP were positive in the standard 48h assay (CP induced a more reproducible response with the 72h treatment) and BaP gave mixed results; DBA and DMN were negative in both the 48h and the 72h dosing regimens. While further work with chemicals that require metabolism is needed, it appears that the RMSN assay detects some chemicals that require metabolic activation (4 out of 6 chemicals were positive in one or both protocols). At this point in time, for general testing, the use of a longer treatment period in situations where the standard 48h treatment is negative or questionable is recommended.
Collapse
|
42
|
Zhou J, Lu Q, Tong Y, Wei W, Liu S. Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide. Talanta 2012; 99:625-30. [DOI: 10.1016/j.talanta.2012.06.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/12/2012] [Accepted: 06/20/2012] [Indexed: 11/25/2022]
|
43
|
Rampazzo E, Bonacchi S, Genovese D, Juris R, Marcaccio M, Montalti M, Paolucci F, Sgarzi M, Valenti G, Zaccheroni N, Prodi L. Nanoparticles in metal complexes-based electrogenerated chemiluminescence for highly sensitive applications. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Xu L, Li Y, Wu S, Liu X, Su B. Imaging latent fingerprints by electrochemiluminescence. Angew Chem Int Ed Engl 2012; 51:8068-72. [PMID: 22865566 DOI: 10.1002/anie.201203815] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Linru Xu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|
45
|
Xu L, Li Y, Wu S, Liu X, Su B. Imaging Latent Fingerprints by Electrochemiluminescence. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203815] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Hvastkovs EG, Schenkman JB, Rusling JF. Metabolic toxicity screening using electrochemiluminescence arrays coupled with enzyme-DNA biocolloid reactors and liquid chromatography-mass spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2012; 5:79-105. [PMID: 22482786 PMCID: PMC3399491 DOI: 10.1146/annurev.anchem.111808.073659] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
New chemicals or drugs must be guaranteed safe before they can be marketed. Despite widespread use of bioassay panels for toxicity prediction, products that are toxic to a subset of the population often are not identified until clinical trials. This article reviews new array methodologies based on enzyme/DNA films that form and identify DNA-reactive metabolites that are indicators of potentially genotoxic species. This molecularly based methodology is designed in a rapid screening array that utilizes electrochemiluminescence (ECL) to detect metabolite-DNA reactions, as well as biocolloid reactors that provide the DNA adducts and metabolites for liquid chromatography-mass spectrometry (LC-MS) analysis. ECL arrays provide rapid toxicity screening, and the biocolloid reactor LC-MS approach provides a valuable follow-up on structure, identification, and formation rates of DNA adducts for toxicity hits from the ECL array screening. Specific examples using this strategy are discussed. Integration of high-throughput versions of these toxicity-screening methods with existing drug toxicity bioassays should allow for better human toxicity prediction as well as more informed decision making regarding new chemical and drug candidates.
Collapse
Affiliation(s)
- Eli G. Hvastkovs
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858;
| | - John B. Schenkman
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06269;
| | - James F. Rusling
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06269;
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269;
| |
Collapse
|
47
|
Yan C, Chen Z, Li H, Zhang G, Li F, Duerksen-Hughes PJ, Zhu X, Yang J. Nuclear proteome analysis of benzo(a)pyrene-treated HeLa cells. Mutat Res 2012; 731:75-84. [PMID: 22138005 DOI: 10.1016/j.mrfmmm.2011.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 11/03/2011] [Accepted: 11/16/2011] [Indexed: 05/31/2023]
Abstract
Previously, we employed a proteomics-based 2-D gel electrophoresis assay to show that exposure to 10μM benzo(a)pyrene (BaP) during a 24 h frame can lead to changes in nuclear protein expression and alternative splicing. To further expand our knowledge about the DNA damage response (DDR) induced by BaP, we investigated the nuclear protein expression profiles in HeLa cells treated with different concentrations of BaP (0.1, 1, and 10μM) using this proteomics-based 2-D gel electrophoresis assay. We found 125 differentially expressed proteins in BaP-treated cells compared to control cells. Among them, 79 (63.2%) were down-regulated, 46 (36.8%) were up-regulated; 8 showed changes in the 1μM and 10μM BaP-treated groups, 2 in the 0.1μM and 10μM BaP-treated groups, 4 in the 0.1μM and 1μM BaP-treated groups, and only one showed changes in all three groups. Fifty protein spots were chosen for liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification, and of these, 39 were identified, including subunits of the 26S proteasome and Annexin A1. The functions of some identified proteins were further examined and the results showed that they might be involved in BaP-induced DDR. Taken together, these data indicate that proteomics is a valuable approach in the study of environmental chemical-host interactions, and the identified proteins could provide new leads for better understanding BaP-induced mutagenesis and carcinogenesis.
Collapse
Affiliation(s)
- Chunlan Yan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Emil Paleček
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612
65 Brno, Czech Republic
| | - Martin Bartošík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, 612
65 Brno, Czech Republic
| |
Collapse
|
49
|
Shen L, Sun Y, Li J, Chen L, Li L, Zou G, Zhang X, Jin W. Heterogeneous electrochemiluminescence spectrometry of Ru(bpy)3(2+) for determination of trace DNA and its application in measurement of gene expression level. Talanta 2011; 89:427-32. [PMID: 22284513 DOI: 10.1016/j.talanta.2011.12.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
Abstract
In this paper, we reported an ultrasensitive ECL spectrometry for determination of DNA using magnetic streptavidin-coated nanobeads MNBs (SA-MNBs) as the carrier of Ru(bpy)(3)(2+)-NHS, where bpy=2,2'-bipyridyl and NHS=N-hydroxysuccinimide ester, to amplify signal. The SA-MNBs were conjugated to the hybrids consisting of capture DNA, target DNA (t-DNA) and probe DNA immobilized on a substrate, followed by releasing the SA-MNBs and binding a huge number of Ru(bpy)(3)(2+)-NHS to the SA-MNBs. The SA-MNBs with Ru(bpy)(3)(2+)-NHS were immobilized on an Au film electrode by means of a magnet. In the presence of tri-n-propylamine, the ECL spectrum of the Ru(bpy)(3)(2+)-NHS at 1.35 V was acquired by using an optical multi-channel analyzer. The maximum emission intensity on the ECL spectrum was used to quantify DNA. Using this method, not only the limit of detection for DNA determination was as low as 1.2 × 10(-15)mol/L, but also the ECL spectrum of Ru(bpy)(3)(2+)-NHS on the surface of the SA-MNBs was obtained. The ultrasensitive ECL spectrometry could be used to measure gene expression level in cells.
Collapse
Affiliation(s)
- Liping Shen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Götz C, Hewitt NJ, Jermann E, Tigges J, Kohne Z, Hübenthal U, Krutmann J, Merk HF, Fritsche E. Effects of the genotoxic compounds, benzo[a]pyrene and cyclophosphamide on phase 1 and 2 activities in EpiDerm™ models. Xenobiotica 2011; 42:526-37. [DOI: 10.3109/00498254.2011.643255] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|