1
|
Wang T, Ding K, Wang X, Wang Z, Liu G, Zang Y, Lin S, Zhou H, Wang Q. Dual amplification dynamic DNA network system for CRISPR/Cas12a based p53 gene detection. Anal Chim Acta 2024; 1321:343048. [PMID: 39155100 DOI: 10.1016/j.aca.2024.343048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND It is estimated that over 50 % of human cancers are caused by mutations in the p53 gene. Early sensitive and accurate detection of the p53 gene is important for diagnosis of cancers in the early stage. However, conventional detection techniques often suffer from strict reaction conditions, or unsatisfied sensitivity, so we need to develop a new strategy for accurate detection of p53 gene with smart designability, multiple signal amplification in mild reaction conditions. RESULTS In this study, CRISPR/Cas system is exploited in entropy-driven catalysis (EDC) and hybridization chain reaction (CHA) dual signal amplification sensing strategies. The products of both reactions can efficiently and separately activate CRISPR/Cas12a which greatly amplifies the fluorescent signal. The method has good linearity in p53 detection with the concentration ranged from 0.1 fM to 0.5 pM with ultra-low detection limit of 0.096 fM. It also showed good performance in serum, offering potentials for early disease detection. SIGNIFICANCE The designed dual amplification dynamic DNA network system exhibits an ultra-sensitive fluorescence biosensing for p53 gene identification. The method is simple to operate and requires only one buffer for the experiment, and meanwhile shows smart designability which could be used for a wide range of markers. Thus, we believe the present work will provide a potential tool for the construction and development of sensitive fluorescent biosensors for diseases.
Collapse
Affiliation(s)
- Tengkai Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China; Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Jinan, Shandong, 250012, China
| | - Kexin Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xinli Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zehua Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), 758 Hefei Road, Qingdao, Shandong, 266035, China
| | - Gengjun Liu
- Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Jinan, Shandong, 250012, China; Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Yufei Zang
- Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Jinan, Shandong, 250012, China; Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Shengxiang Lin
- CHU de Québec Research Center and Department of Molecular Medicine, Laval University, Québec, QC, Canada
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qian Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), 758 Hefei Road, Qingdao, Shandong, 266035, China; Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Wang L, He Z, Li J. Development of a Competitive Chemiluminescent Assay for Quantitative Determination of TP53 Fusion Protein Using Reagent Strips. Appl Biochem Biotechnol 2024; 196:6315-6329. [PMID: 38351430 DOI: 10.1007/s12010-024-04860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 11/29/2024]
Abstract
Recent studies have shown that almost half of all cancers occur due to DNA damage. For the early diagnosis of cancer, a highly sensitized and swift identification for TP53 is needed since the corresponding TP53 protein is effectively recognized as "the guardian of the genome." To improve the detection sensitivity, numerous analytical methods were previously used for the determination of the TP53 protein, including denaturing high-performance liquid chromatography and enzyme-linked immunosorbent assay (ELISA). Currently, immunochromatographic tests (ICTs) that are simple to use, stable over time, and show low interference are regarded as valuable tools for the quick screening of food and environmental monitoring along with clinical diagnosis. ICTs often have limited sensitivity even if a variety of novel reporters possessing optimum photostability and improved brightness are used as signal-intensity reporters. Compared with N-(4-aminobutyl)-N-(ethylisoluminol) or luminol, a novel luminescent probe, 2',6'-diMethyl-4'-(N-succiniMidyloxycarbonyl) phenyl-10-sulfopropylacridiniuM-9-carboxylate (NSP-DMAE-NHS) has achieved a much higher efficiency, improvement in the biosensor's performance, and amplification of the signal without causing any damage to the biomolecule in terms of its biochemical activity. In this study, the reagent strip method was initially used to detect TP53 fusion protein by combining the advantages of NSP-DMAE-NHS and immunochromatography. In our experiment, the control and study lines on the strips were immobilized through HRP-conjugated goat anti-rabbit IgG and TP53 antigen, respectively. The optimized concentration of the anti-TP53 antibody-NSP-DMAE-NHS immunoconjugates was then added to the TP53 antigen samples. After, the test strips were inserted and left in the aforementioned buffer solution for an additional 20 min. Finally, a lab-made luminous measurement device was used to analyze the corresponding control and study lines on the strips. Under optimized conditions, this method was found to be ultrasensitive, with a wide range of linear responses from 0.0008 ng mL-1 to 1 µg mL-1 and a limit of detection of 0.0008 ng mL-1 (0.013 pM). Thus, a novel competitive chemiluminescent assay based on reagent strips was established for the determination of the TP53 fusion proteins. The strategy has potential applications for ultrasensitive detection in the early diagnosis of cancer.
Collapse
Affiliation(s)
- Linyu Wang
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering & Material, Handan University, Handan, 056005, People's Republic of China.
| | - Zhifang He
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering & Material, Handan University, Handan, 056005, People's Republic of China
| | - Jianye Li
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering & Material, Handan University, Handan, 056005, People's Republic of China
| |
Collapse
|
3
|
Sariga, Varghese A. The Renaissance of Ferrocene-Based Electrocatalysts: Properties, Synthesis Strategies, and Applications. Top Curr Chem (Cham) 2023; 381:32. [PMID: 37910233 DOI: 10.1007/s41061-023-00441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
The fascinating electrochemical properties of the redox-active compound ferrocene have inspired researchers across the globe to develop ferrocene-based electrocatalysts for a wide variety of applications. Advantages including excellent chemical and thermal stability, solubility in organic solvents, a pair of stable redox states, rapid electron transfer, and nontoxic nature improve its utility in various electrochemical applications. The use of ferrocene-based electrocatalysts enables control over the intrinsic properties and electroactive sites at the surface of the electrode to achieve specific electrochemical activities. Ferrocene and its derivatives can function as a potential redox medium that promotes electron transfer rates, thereby enhancing the reaction kinetics and electrochemical responses of the device. The outstanding electrocatalytic activity of ferrocene-based compounds at lower operating potentials enhances the specificity and sensitivity of reactions and also amplifies the response signals. Owing to their versatile redox chemistry and catalytic activities, ferrocene-based electrocatalysts are widely employed in various energy-related systems, molecular machines, and agricultural, biological, medicinal, and sensing applications. This review highlights the importance of ferrocene-based electrocatalysts, with emphasis on their properties, synthesis strategies for obtaining different ferrocene-based compounds, and their electrochemical applications.
Collapse
Affiliation(s)
- Sariga
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Anitha Varghese
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India.
| |
Collapse
|
4
|
Chang Y, Liu G, Li S, Liu L, Song Q. Biorecognition element-free electrochemical detection of recombinant glycoproteins using metal-organic frameworks as signal tags. Anal Chim Acta 2023; 1273:341540. [PMID: 37423655 DOI: 10.1016/j.aca.2023.341540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023]
Abstract
Accurate and sensitive determination of recombinant glycoproteins is in great demand for the treatment of anemia-induced chronic kidney disease and the illegal use of doping agents in sports. In this study, an antibody and enzyme-free electrochemical method for the detection of recombinant glycoproteins was proposed via the sequential chemical recognition of hexahistidine (His6) tag and glycan residue on the target protein under the cooperation interaction of nitrilotriacetic acid (NTA)-Ni2+complex and boronic acid, respectively. Specifically, NTA-Ni2+ complex-modified magnetic beads (MBs-NTA-Ni2+) are employed to selectively capture the recombinant glycoprotein through the coordination interaction between His6 tag and NTA-Ni2+ complex. Then, boronic acid-modified Cu-based metal-organic frameworks (Cu-MOFs) were recruited by glycans on the glycoprotein via the formation of reversible boronate ester bonds. MOFs with abundant Cu2+ ions acted as efficient electroactive labels to directly produce amplified electrochemical signals. By using recombinant human erythropoietin as a model analyte, this method showed a wide linear detection range from 0.01 to 50 ng/mL and a low detection limit of 5.3 pg/mL. With the benefits from the simple operation and low cost, the stepwise chemical recognition-based method shows great promise in the determination of recombinant glycoproteins in the fields of biopharmaceutical research, anti-doping analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Yong Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China; College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuang Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China.
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
5
|
Gao X, Liu X, Zeng Y, Zhang Q, Zhang B, Zou G. Spectrum-Resolved Electrochemiluminescence to Multiplex the Immunoassay and DNA Probe Assay. Anal Chem 2022; 94:15801-15808. [DOI: 10.1021/acs.analchem.2c03579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiancheng Liu
- Shenzhen Lifotronic Technology Co., Ltd, Nanshan District, Shenzhen 518055, China
| | - Ying Zeng
- Shenzhen Lifotronic Technology Co., Ltd, Nanshan District, Shenzhen 518055, China
| | - Qingqing Zhang
- Shenzhen Lifotronic Technology Co., Ltd, Nanshan District, Shenzhen 518055, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
6
|
Xue C, Huang H, Wang L, Liao W, Jiang H, Wu ZS. Swelling of Serum-Stable DNA Nanoparticles upon Target-Induced Conformational Rearrangement of Sensing Probes for the Signal-On Detection of Cancer-Related Genes. Anal Chem 2022; 94:2749-2756. [PMID: 35099191 DOI: 10.1021/acs.analchem.1c03598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nuclease-resistant assay probes are of significant importance for biochemical analysis and disease diagnosis. In this contribution, a reconfigurable lipidic moiety-attached DNA nanoparticle (LDN) is constructed from a cholesterol-conjugated multifunctional hairpin-type DNA probe (Chol-DP) by hydrophobicity-mediated self-assembly. The LDN holds high serum stability and displays a low false-positive signal even in a complex biological milieu. The hydrophobic cholesterol moiety enables the hydrophobicity-mediated assembly, while hydrophilic DNA sequence serves as a recognition element and a polymerization template. The initiator-activated strand displacement amplification (SDA) reaction can convert the hairpin-shaped probe into rigid double-stranded DNA (dsDNA), causing the conformational rearrangement-based LDN swelling that can be used to reliably and fluorescently signal the cancer-related p53 gene. The size increase and structural reconfiguration are confirmed by dynamic light scattering (DLS) analysis and confocal microscopy imaging, respectively. Target p53 is specifically detected down to 10 pM. The whole assay process involved only several simple mixing steps. Recovery test and blind test further confirm the feasibility of the use of the LDN for the detection of target DNA in a complex biological milieu, indicating a promising nanotool for biomedical applications.
Collapse
Affiliation(s)
- Chang Xue
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Hong Huang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lei Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.,Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Wenqiang Liao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Hao Jiang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
7
|
Wang W, Gao Y, Wang W, Zhang J, Li Q, Wu ZS. Ultrasensitive Electrochemical Detection of cancer-Related Point Mutations Based on Surface-Initiated Three-Dimensionally Self-Assembled DNA Nanostructures from Only Two Palindromic Probes. Anal Chem 2021; 94:1029-1036. [PMID: 34932325 DOI: 10.1021/acs.analchem.1c03991] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sensitive and selective detection of proto-oncogenes, especially recognition of point mutation, is of great importance in cancer diagnosis. Here, a ligation-mediated technique is demonstrated for the construction of an intertwined three-dimensional DNA nanosheet (3D SDN) on an electrode surface from only two palindromic hairpin probes (HP1 and HP2), creating a powerful electrochemical biosensor (E-biosensor) for the detection of the p53 gene. First, a capturing probe (CP) is immobilized on an electrode surface via Au-S chemistry, forming an electrochemical sensing interface. In the presence of the target p53 (T), the triggering probe is covalently linked to CP by a ligase. Moreover, target hybridization/ligation/dehybridization process is repeated, amplifying the target hybridization event and increasing the content of surface-confined triggering fragments. As a result, HP1 is opened and in turn interacts with HP2, forming intertwined 3D SDN where HP1 and HP2 are alternately arranged in parallel. Common hybridization and interaction between palindromic fragments are responsible for the assembly in the horizontal and vertical directions, respectively. An electrochemical indicator, methylene blue (MB), can be inserted into 3D SDN, generating a strong electrochemical signal. Utilizing the 3D SDN-based E-biosensor, the target DNA is detected down to 3 fM with a linear response range from 10 fM to 10 nM. Single point mutations are reliably identified even in fetal bovine serum and cellular homogenate. Because of the several advantages of simple design, good universality, inexpensive instrumentation, high assay specificity, and sensitivity, the 3D SDN-based E-biosensor is expected to provide a potential platform for screening point mutation required by early clinical diagnostics and medical research.
Collapse
Affiliation(s)
- Weijun Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Yansha Gao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Wenqing Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Jingjing Zhang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Qian Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| |
Collapse
|
8
|
Yang F, Li X, Yuan R, Xiang Y. High-Fidelity and Simultaneous Sensing of Endogenous Mutant and Wild p53 Proteins for Precise Cancer Diagnosis and Drug Screening. Anal Chem 2021; 93:8084-8090. [PMID: 34034482 DOI: 10.1021/acs.analchem.1c01540] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The simultaneous sensing of endogenous wild and mutant proteins plays a critical role in disease diagnosis and drug screening, and this remains a major current challenge. Here, we present a new and highly specific target-triggered dual proximity ligation assay (dPLA) strategy for sensitive and simultaneous sensing of wild and mutant p53 proteins from cancer cells. Two proximity DNA probes bind the target protein to form the primer/circular DNA template complexes with two nicks in the presence of the hairpin and ssDNA connector sequences via the strand displacement reaction. Only when the two nicks are simultaneously ligated can the rolling circle amplification be triggered with high fidelity for yielding substantially enhanced fluorescence. By encoding the hairpin sequence, two distinct fluorescence signals can be generated for simultaneous detection of the wild and mutant p53 proteins. Importantly, our method significantly reduces the possibility of nonspecific ligation reactions by using two ligation nicks, which minimizes the background noise. With this dPLA method, the regulation transition of intracellular mutant p53 to wild p53 proteins upon anticancer drug treatment has also been demonstrated, highlighting its usefulness for potential early disease diagnosis and drug screening with high fidelity.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xia Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
9
|
Sun X, Liu Y, Liu L, Yin F, Liu R, Guo T, Li X, Xue Q. Label-free amplified fluorescence detection of DNA biomarkers based on KFP polymerase-driven double strand displacement reactions and magnetic nanoprobes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3092-3097. [PMID: 32930168 DOI: 10.1039/d0ay00338g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing a sensitive, low-cost and general sensing platform for the analysis of a DNA biomarker and its mutation is important for early cancer screening. In our work, the tumor suppressor gene-p53 DNA was chosen as the model DNA biomarker due to its vital role in preventing oncogene cancer-inhibiting activity through mediating cellular proliferation and apoptosis. Compared with tumor biopsy, the quantification of p53 DNA and its mutation in biofluids (such as urine) is more convenient due to its simple operation and non-invasiveness. Herein, a label-free amplified fluorescence assay has been developed for p53 DNA in urine samples through the KFP polymerase-driven double strand displacement reactions and a magnetic nanoprobe. First, the ssDNA probe (RP) was designed with antisense sequences for p53 DNA and the Nb.BbvCI endonuclease recognition site. In the presence of p53 DNA, the formed dsDNA between RP and p53 DNA served as an engaging primer to initiate the first strand displacement reaction (SDA) under the action of KFP DNA polymerase and Nb.BbvCI, generating abundant short ssDNA (primer). Subsequently, the resulting primers will initiate the downstream SDA through the primer-hairpin DNA (HPa) binding, opening up, and extension of HPb and HPc under the action of KFP DNA polymerase. In the process of this final DNA polymerization reaction, the primer hybridized on HPa is released and goes on to initiate another round, forming plenty of duplex Y-shaped DNA. With the integration of SYBR Green I (SG I) into these duplex DNA, the amplified label-free fluorescence detection platform for p53 DNA can be achieved. Moreover, a biotin modified nanoprobe (bio-CP) was used to capture the superfluous HP. By performing the separation function, the binding of superfluous HP and SG could be avoided and a low background can be acquired. Benefiting from the abundant SG intercalation sites of Y-shaped DNA and low background signals, this method showed excellent sensitivity with a detection limit of 0.012 nM, and the p53 DNA in urine samples was evaluated, offering a powerful tool for biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Xia Sun
- Department of Chemistry, Liaocheng University, Liao Cheng 252059, China.
| | - Yeling Liu
- Department of Chemistry, Liaocheng University, Liao Cheng 252059, China.
| | - Liqi Liu
- Department of Chemistry, Liaocheng University, Liao Cheng 252059, China.
| | - Fei Yin
- Department of Chemistry, Liaocheng University, Liao Cheng 252059, China.
| | - Ruixin Liu
- Department of Chemistry, Liaocheng University, Liao Cheng 252059, China.
| | - Tianyu Guo
- Department of Art and Science, University of Vermont, 05405, Burlington, Vermont, USA
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liao Cheng 252059, China.
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liao Cheng 252059, China.
| |
Collapse
|
10
|
Hou L, Huang Y, Hou W, Yan Y, Liu J, Xia N. Modification-free amperometric biosensor for the detection of wild-type p53 protein based on the in situ formation of silver nanoparticle networks for signal amplification. Int J Biol Macromol 2020; 158:580-586. [PMID: 32380113 DOI: 10.1016/j.ijbiomac.2020.04.271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/12/2020] [Accepted: 04/30/2020] [Indexed: 02/03/2023]
Abstract
Sensitive and accurate quantification of wild-type p53 protein is of great importance for biological research and clinical diagnosis. Herein, a modification-free amperometric biosensor was proposed for sensitive detection of wild-type p53 protein by the signal amplification of silver nanoparticles (AgNPs) networks formed in situ on electrode surface. Double-stranded DNA (dsDNA) probe containing two consensus sites was immobilized on gold electrode surface to capture wild-type p53 protein. The cysteine thiol and amine groups on the exterior of the protein allowed for the attachment of bare AgNPs through the AgS or AgN interactions. Meanwhile, benzene-1,4-dithiol (BDT) molecules in solution triggered the assembly of more AgNPs on electrode surface through the AgS interactions, thus leading to the in situ formation of AgNPs networks for signal amplification. The target at the concentration as low as 0.1 pM can be readily determined. This method was further applied to determine wild-type p53 protein in spiked human serum and cell lysates with satisfactory results. Moreover, the biosensor is regenerative and does not require the modification of AgNPs with recognition element for signal readout. The modification-free strategy can potentially be applied to develop novel biosensors for detection of other biological macromolecules.
Collapse
Affiliation(s)
- Linlin Hou
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Yaliang Huang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Weilin Hou
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Yurou Yan
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Jinlin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang, Henan 455000, People's Republic of China.
| |
Collapse
|
11
|
He Y, Wang Z, Hu Y, Yi X, Wu L, Cao Z, Wang J. Sensitive and selective monitoring of the DNA damage-induced intracellular p21 protein and unraveling the role of the p21 protein in DNA repair and cell apoptosis by surface plasmon resonance. Analyst 2020; 145:3697-3704. [DOI: 10.1039/c9an02464f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensitive and selective monitoring of DNA damage-induced intracellular p21 protein is proposed using surface plasmon resonance. The method serves as a viable means for unraveling the role of p21 protein in DNA repair and cell apoptosis.
Collapse
Affiliation(s)
- Yuhan He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Zixiao Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Yuqing Hu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Xinyao Yi
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Ling Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- School of Chemistry and Biological Engineering
- Changsha University of Science and Technology
- Changsha
- P. R. China 410114
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| |
Collapse
|
12
|
Wu L, Hu Y, He Y, Xia Y, Lu H, Cao Z, Yi X, Wang J. Dual-channel surface plasmon resonance monitoring of intracellular levels of the p53-MDM2 complex and caspase-3 induced by MDM2 antagonist Nutlin-3. Analyst 2019; 144:3959-3966. [PMID: 31134974 DOI: 10.1039/c9an00301k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MDM2 can mediate the degradation of tumor suppressor p53 through an autoregulatory feedback loop, in which MDM2 abolishes wild-type p53 function and accelerates malignant transformation. However, the incorporation of MDM2 antagonist Nutlin-3 could reactivate the transcriptional activity of p53, up-regulate caspase-3, and induce apoptosis. In this work, the simultaneous and label-free monitoring of p53-MDM2 complex and caspase-3 levels in cancer cells before and after Nutlin-3 treatment was conducted using dual-channel surface plasmon resonance (SPR). The p53-MDM2 complex was captured in one fluidic channel covered with consensus double-stranded (ds)-DNA, while the other channel was pre-immobilized with caspase-3-specific biotinylated DEVD-containing peptides. To amplify the SPR signals, the attachment of streptavidin (SA)-conjugated anti-MDM2 antibody in both channels was achieved. The signal diversity before and after Nutlin-3 treatment is indicative of the difference in the levels of the intracellular p53-MDM2 complex and caspase-3. The limit of detection for p53-MDM2 and caspase-3 down to 4.54 pM and 0.03 ng mL-1, respectively, was attained. Upon treatment with Nutlin-3, MCF-7 cancer cells with wild-type p53 showed decreased expression of the p53-MDM2 complex and an increased caspase-3 level, while MDA-MB-231 cancer cells with mutant p53 exhibited an elevated caspase-3 level and unchanged p53-MDM2 complex expression. The apoptosis of MCF-7 and MDA-MB-231 cancer cells upon Nutlin-3 treatment follows a p53-dependent and a p53-independent pathway, respectively. The proposed method is sensitive, selective and label-free, holding great promise for assaying intracellular p53-MDM2 complex and caspase-3 levels and differentiating Nutlin-3-mediated p53-dependent or p53-independent apoptotic pathways.
Collapse
Affiliation(s)
- Ling Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wu L, He Y, Hu Y, Lu H, Cao Z, Yi X, Wang J. Real-time surface plasmon resonance monitoring of site-specific phosphorylation of p53 protein and its interaction with MDM2 protein. Analyst 2019; 144:6033-6040. [DOI: 10.1039/c9an01121h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Real-time monitoring of site-specific phosphorylation of p53 protein and its binding to MDM2 is conducted using dual-channel surface plasmon resonance (SPR).
Collapse
Affiliation(s)
- Ling Wu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Yuhan He
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Yuqing Hu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Hanwen Lu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- School of Chemistry and Biological Engineering
- Changsha University of Science and Technology
- Changsha
- P. R. China 410114
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China 410083
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety
| |
Collapse
|
14
|
Mu Q, Liu G, Yang D, Kou X, Cao N, Tang Y, Miao P. Ultrasensitive Detection of DNA Based on Exonuclease III-Assisted Recycling Amplification and DNAzyme Motor. Bioconjug Chem 2018; 29:3527-3531. [DOI: 10.1021/acs.bioconjchem.8b00774] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qianhui Mu
- Bureau of Facility Support and Budget, Chinese Academy of Sciences, Beijing, 100864, P. R. China
| | - Guangxing Liu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dawei Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Xinyue Kou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ning Cao
- Bureau of Facility Support and Budget, Chinese Academy of Sciences, Beijing, 100864, P. R. China
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
15
|
Xu Q, Liang K, Liu RY, Deng L, Zhang M, Shen L, Liu YN. Highly sensitive fluorescent detection of p53 protein based on DNA functionalized Fe3O4 nanoparticles. Talanta 2018; 187:142-147. [DOI: 10.1016/j.talanta.2018.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/25/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
|
16
|
Novel Competitive Chemiluminescence DNA Assay Based on Fe3O4@SiO2@Au-Functionalized Magnetic Nanoparticles for Sensitive Detection of p53 Tumor Suppressor Gene. Appl Biochem Biotechnol 2018; 187:152-162. [DOI: 10.1007/s12010-018-2808-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/03/2018] [Indexed: 10/25/2022]
|
17
|
Wu L, Tang H, Hu S, Xia Y, Lu Z, Fan Y, Wang Z, Yi X, Zhou F, Wang J. Sensitive and simultaneous surface plasmon resonance detection of free and p53-bound MDM2 proteins from human sarcomas. Analyst 2018; 143:2029-2034. [PMID: 29637949 DOI: 10.1039/c7an01918a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Murine double minute 2 (MDM2) is an oncoprotein mediating the degradation of the tumor suppressor p53 protein. The physiological levels of MDM2 protein are closely related to malignant transformation and tumor growth. In this work, the simultaneous and label-free determination of free and p53-bound MDM2 proteins from sarcoma tissue extracts was conducted using a dual-channel surface plasmon resonance (SPR) instrument. Free MDM2 protein was measured in one fluidic channel covered with the consensus double-stranded (ds)-DNA/p53 conjugate, while MDM2 bound to p53 was captured by the consensus ds-DNA immobilized onto the other channel. To achieve higher sensitivity and to confirm specificity, an MDM2-specific monoclonal antibody (2A10) was used to recognize both the free and p53-bound MDM2 proteins. The resultant method afforded a detection limit of 0.55 pM of MDM2. The amenability of the method to the analysis of free and p53-bound MDM2 proteins was demonstrated for normal and sarcoma tissue extracts from three patients. Our data reveal that both free and total MDM2 (free and bound forms combined) proteins from sarcoma tissue extracts are of much higher concentrations than those from normal tissue extracts and the p53-bound MDM2 protein only constitutes a small fraction of the total MDM2 concentration. In comparison with enzyme-linked immunosorbent assay (ELISA), the proposed method possesses higher sensitivity, is more cost-effective, and is capable of determining free and p53-bound MDM2 proteins in clinical samples.
Collapse
Affiliation(s)
- Ling Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Devillers M, Ahmad L, Korri-Youssoufi H, Salmon L. Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma. Biosens Bioelectron 2017; 96:178-185. [DOI: 10.1016/j.bios.2017.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
19
|
Dubacheva GV, Araya-Callis C, Geert Volbeda A, Fairhead M, Codée J, Howarth M, Richter RP. Controlling Multivalent Binding through Surface Chemistry: Model Study on Streptavidin. J Am Chem Soc 2017; 139:4157-4167. [PMID: 28234007 PMCID: PMC5364436 DOI: 10.1021/jacs.7b00540] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 12/22/2022]
Abstract
Although multivalent binding to surfaces is an important tool in nanotechnology, quantitative information about the residual valency and orientation of surface-bound molecules is missing. To address these questions, we study streptavidin (SAv) binding to commonly used biotinylated surfaces such as supported lipid bilayers (SLBs) and self-assembled monolayers (SAMs). Stability and kinetics of SAv binding are characterized by quartz crystal microbalance with dissipation monitoring, while the residual valency of immobilized SAv is quantified using spectroscopic ellipsometry by monitoring binding of biotinylated probes. Purpose-designed SAv constructs having controlled valencies (mono-, di-, trivalent in terms of biotin-binding sites) are studied to rationalize the results obtained on regular (tetravalent) SAv. We find that divalent interaction of SAv with biotinylated surfaces is a strict requirement for stable immobilization, while monovalent attachment is reversible and, in the case of SLBs, leads to the extraction of biotinylated lipids from the bilayer. The surface density and lateral mobility of biotin, and the SAv surface coverage are all found to influence the average orientation and residual valency of SAv on a biotinylated surface. We demonstrate how the residual valency can be adjusted to one or two biotin binding sites per immobilized SAv by choosing appropriate surface chemistry. The obtained results provide means for the rational design of surface-confined supramolecular architectures involving specific biointeractions at tunable valency. This knowledge can be used for the development of well-defined bioactive coatings, biosensors and biomimetic model systems.
Collapse
Affiliation(s)
- Galina V. Dubacheva
- Biosurfaces
Lab, CIC biomaGUNE, Paseo Miramon 182, 20014 Donostia − San Sebastian, Spain
- PPSM
CNRS UMR8531, ENS Cachan, Université
Paris-Saclay, 61 Avenue du Président Wilson, 94235 Cachan, France
| | - Carolina Araya-Callis
- Biosurfaces
Lab, CIC biomaGUNE, Paseo Miramon 182, 20014 Donostia − San Sebastian, Spain
| | - Anne Geert Volbeda
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Michael Fairhead
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Mark Howarth
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Ralf P. Richter
- Biosurfaces
Lab, CIC biomaGUNE, Paseo Miramon 182, 20014 Donostia − San Sebastian, Spain
- School
of Biomedical Sciences and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
- Laboratory
of Interdisciplinary Physics, University
Grenoble Alpes − CNRS, 140 Rue de la Physique, 38402 Saint Martin d’Hères, France
| |
Collapse
|
20
|
Yang S, You M, Yang L, Zhang F, Wang Q, He P. A recyclable electrochemical sensing platform for breast cancer diagnosis based on homogeneous DNA hybridization and host-guest interaction between cucurbit [7]uril and ferrocene-nanosphere with signal amplification. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
New acetaminophen amperometric sensor based on ferrocenyl dendrimers deposited onto Pt nanoparticles. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3160-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
A sandwich type immunosensor for ultrasensitive electrochemical quantification of p53 protein based on gold nanoparticles/graphene oxide. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.133] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Qian R, Cao Y, Long YT. Dual-Targeting Nanovesicles for In Situ Intracellular Imaging of and Discrimination between Wild-type and Mutant p53. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201510142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Dual-Targeting Nanovesicles for In Situ Intracellular Imaging of and Discrimination between Wild-type and Mutant p53. Angew Chem Int Ed Engl 2015; 55:719-23. [DOI: 10.1002/anie.201510142] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Indexed: 12/22/2022]
|
25
|
Affiliation(s)
- Wen Zhou
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xia Gao
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| |
Collapse
|
26
|
Jo H, Gu H, Jeon W, Youn H, Her J, Kim SK, Lee J, Shin JH, Ban C. Electrochemical aptasensor of cardiac troponin I for the early diagnosis of acute myocardial infarction. Anal Chem 2015; 87:9869-75. [PMID: 26352249 DOI: 10.1021/acs.analchem.5b02312] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiac troponin I (cTnI) is well-known as a promising biomarker for the early diagnosis of acute myocardial infarction (AMI). In this work, single-stranded DNA aptamers against cTnI were identified by the Systematic Evolution of Ligands by Exponential enrichment (SELEX) method. The aptamer candidates exhibited a high selectivity and sensitivity toward both cTnI and the cardiac Troponin complex. The binding affinities of each aptamer were evaluated based on their dissociation constants (Kd) by surface plasma resonance. The Tro4 aptamer that had the highest binding capacity to cTnI showed a very low Kd value (270 pM) compared with that of a cTnI antibody (20.8 nM). Furthermore, we designed a new electrochemical aptasensor based on square wave voltammetry using ferrocene-modified silica nanoparticles. The developed aptasensor demonstrated an excellent analytical performance for cTnI with a wide linear range of 1-10 000 pM in a buffer and a detection limit of 1.0 pM (24 pg/mL; S/N = 3), which was noticeably lower than the cutoff values (70-400 pg/mL). The specificity of the aptamers was also examined using nontarget proteins, demonstrating that the proposed sensor responded to only cTnI. In addition, cTnI was successfully detected in a human serum albumin solution. On the basis of the calibration curve that was constructed, the concentrations of cTnI in a solution supplemented with human serum were effectively measured. The calculated values correlated well with the actual concentrations of cTnI. It is anticipated that the highly sensitive and selective aptasensor for cTnI could be readily applicable for the accurate diagnosis of AMI.
Collapse
Affiliation(s)
- Hunho Jo
- Department of Chemistry, Pohang University of Science and Technology , 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Hyunwoo Gu
- Department of Chemistry, Kwangwoon University , Wolgye-Dong, Nowon-Gu, Seoul 139-701, South Korea
| | - Weejeong Jeon
- Department of Chemistry, Pohang University of Science and Technology , 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Hyungjun Youn
- Department of Chemistry, Pohang University of Science and Technology , 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Jin Her
- Department of Chemistry, Pohang University of Science and Technology , 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Seong-Kyeong Kim
- Department of Chemistry, Pohang University of Science and Technology , 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Jeongbong Lee
- Department of Chemistry, Kwangwoon University , Wolgye-Dong, Nowon-Gu, Seoul 139-701, South Korea
| | - Jae Ho Shin
- Department of Chemistry, Kwangwoon University , Wolgye-Dong, Nowon-Gu, Seoul 139-701, South Korea
| | - Changill Ban
- Department of Chemistry, Pohang University of Science and Technology , 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea
| |
Collapse
|
27
|
Deol S, Weerasuriya N, Shon YS. Stability, cytotoxicity and cell uptake of water-soluble dendron-conjugated gold nanoparticles with 3, 12 and 17 nm cores. J Mater Chem B 2015; 3:6071-6080. [PMID: 26366289 PMCID: PMC4540059 DOI: 10.1039/c5tb00608b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/19/2015] [Indexed: 01/24/2023]
Abstract
This article describes the synthesis of water-soluble dendron-conjugated gold nanoparticles (Den-AuNPs) with various average core sizes and the evaluation of stability, cytotoxicity, cell permeability and uptake of these materials. The characterization of Den-AuNPs using various techniques including transmission electron microscopy (TEM), matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS), 1H NMR, FT-IR, and UV-vis spectroscopy confirms the dendron conjugation to the glutathione-capped gold nanoparticles (AuNPs). The stability of AuNPs and Den-AuNPs in solutions of different pH and salt concentration is determined by monitoring the changes in surface plasmon bands of gold using UV-vis spectroscopy. The stability of Den-AuNPs at different pH remained about the same compared to that of AuNPs. In comparison, the Den-AuNPs are found to be more stable than the precursor AuNPs maintaining their solubility in the aqueous solution with the salt concentration of up to 100 mM. The improved stability of Den-AuNPs suggests that the post-functionalization of thiol-capped gold nanoparticle surfaces with dendrons can further improve the physiological stability and biocompatibility of gold nanoparticle-based materials. Cytotoxicity studies of AuNPs and Den-AuNPs with and without fluorophores are also performed by examining cell viability for 3T3 fibroblasts using a MTT cell proliferation assay. The conjugation of dendrons to the AuNPs with a fluorophore is able to decrease the cytotoxicity brought about by the fluorophore. The successful uptake of Den-AuNPs in mouse fibroblast 3T3 cells shows the physiological viability of the hybrid materials.
Collapse
Affiliation(s)
- Suprit Deol
- Department of Chemistry and Biochemistry , California State University , Long Beach , 1250 Bellflower Blvd. , Long Beach , California 90840 , USA .
| | - Nisala Weerasuriya
- Department of Chemistry and Biochemistry , California State University , Long Beach , 1250 Bellflower Blvd. , Long Beach , California 90840 , USA .
| | - Young-Seok Shon
- Department of Chemistry and Biochemistry , California State University , Long Beach , 1250 Bellflower Blvd. , Long Beach , California 90840 , USA .
| |
Collapse
|
28
|
Han Y, Chabu JM, Hu S, Deng L, Liu YN, Guo S. Rational Tuning of the Electrocatalytic Nanobiointerface for a “Turn-Off” Biofuel-Cell-Based Self-Powered Biosensor for p53 Protein. Chemistry 2015. [DOI: 10.1002/chem.201502062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Esteban-Fernández de Ávila B, Araque E, Campuzano S, Pedrero M, Dalkiran B, Barderas R, Villalonga R, Kiliç E, Pingarrón JM. Dual Functional Graphene Derivative-Based Electrochemical Platforms for Detection of the TP53 Gene with Single Nucleotide Polymorphism Selectivity in Biological Samples. Anal Chem 2015; 87:2290-8. [DOI: 10.1021/ac504032d] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Elena Araque
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Susana Campuzano
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - María Pedrero
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Berna Dalkiran
- Faculty
of Science, Department of Chemistry, Ankara University, 06100-Tandoğan, Ankara, Turkey
| | - Rodrigo Barderas
- Departamento
de Bioquímica y Biología Molecular, Facultad de CC.
Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Reynaldo Villalonga
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
- IMDEA
Nanoscience, City University of Cantoblanco, 28049 Madrid, Spain
| | - Esma Kiliç
- Faculty
of Science, Department of Chemistry, Ankara University, 06100-Tandoğan, Ankara, Turkey
| | - José M. Pingarrón
- Departamento
de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
- IMDEA
Nanoscience, City University of Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
30
|
Wu L, Xiong E, Yao Y, Zhang X, Zhang X, Chen J. A new electrochemical aptasensor based on electrocatalytic property of graphene toward ascorbic acid oxidation. Talanta 2014; 134:699-704. [PMID: 25618724 DOI: 10.1016/j.talanta.2014.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 11/26/2022]
Abstract
Based on the superior electrocatalytic property of graphene (GN) toward ascorbic acid (AA) oxidation, a new electrochemical aptasensor has been developed. Here, adenosine triphosphate (ATP) is used as the model to demonstrate the performance of the developed aptasensor. Briefly, GN is attached to the thiolated ATP binding aptamer (ABA) modified gold electrode through π-π stacking interaction, resulting in a significant oxidation signal of AA. In the presence of ATP, the formation of ATP-ABA complex leads to the release of GN from sensing interface, resulting in a sharp decrease of the oxidation peak current of AA and an obviously positive shift of the related peak potential. Taking both the change values of the peak current and peak potential of AA oxidation as the response signals, ATP can be detected sensitively. This is the first time to demonstrate the application of GN as the nanocatalyst in an amplified aptasensor. It can be expected that GN, as nanocatalyst, should become the very promising amplifying-elements in DNA-based electrochemical biosensors.
Collapse
Affiliation(s)
- Liang Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Erhu Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Yue Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xia Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China.
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China.
| |
Collapse
|
31
|
Zhou Y, Tang L, Zeng G, Chen J, Wang J, Fan C, Yang G, Zhang Y, Xie X. Amplified and selective detection of manganese peroxidase genes based on enzyme-scaffolded-gold nanoclusters and mesoporous carbon nitride. Biosens Bioelectron 2014; 65:382-9. [PMID: 25461185 DOI: 10.1016/j.bios.2014.10.063] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 11/28/2022]
Abstract
This work has demonstrated an amplified and selective detection platform using enzyme-scaffolded-gold nanoclusters as signal label, coupling with mesoporous carbon nitride (MCN) and gold nanoparticles (GNPs) modified glassy carbon electrode (GCE). Streptavidin-horseradish peroxidase (SA-HRP) has been integrated with gold nanoclusters (GNCs) as scaffold using a simple, fast and non-toxic method. The mechanisms of enzymatic amplification, redox cycling and signal amplification by this biosensor were discussed in detail. GNCs might perform important roles as electrocatalyst as well as electron transducer in these processes. The concentrations of reagents and the reaction times of these reagents were optimized to improve the analytical performances. Under the optimized condition, the signal response to enzyme-scaffolded-gold nanoclusters catalyzed reaction was linearly related to the natural logarithm of the target nucleic acid concentration in the range from 10(-17)M to 10(-9)M with a correlation coefficient of 0.9946, and the detection limit was 8.0×10(-18)M (S/N=3). Besides, synthesized oligonucleotide as well as Phanerochaete chrysosporium MnP fragments amplified using polymerase chain reaction and digested by restriction endonucleases were tested. Furthermore, this biosensor exhibited good precision, stability, sensitivity, and selectivity, and discriminated satisfactorily against mismatched nucleic acid samples of similar lengths.
Collapse
Affiliation(s)
- Yaoyu Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China.
| | - Jun Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Guide Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Xia Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| |
Collapse
|
32
|
Synthesis of Water-Dispersed Ferrecene/Phenylboronic Acid-Modified Bifunctional Gold Nanoparticles and the Application in Biosensing. MATERIALS 2014; 7:5554-5564. [PMID: 28788145 PMCID: PMC5456178 DOI: 10.3390/ma7085554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/17/2014] [Accepted: 07/24/2014] [Indexed: 01/09/2023]
Abstract
Phenylboronic acids can form tight covalent bonds with diol-containing biomolecules. In this work, water-dispersed bifunctional gold nanoparticles (AuNPs) modified with ferrecene (Fc)-derivatized peptides and 4-mercaptophenylboronic acids (MBA) (denoted as Fc–MBA–AuNPs) were synthesized and characterized by UV/vis spectrometry and transmission electron microscopy. To demonstrate the application and the analytical merits of the nanoparticles in biosensing, glycoprotein avidin was tested as a model analyte. Specifically, avidin was captured by the biotin-covered gold electrode via the strong biotin-avidin interaction. Then, Fc–MBA–AuNPs were attached by the captured avidin through the formation of tight covalent bonds between the boronic acid moieties of Fc–MBA–AuNPs and the oligosaccharides of avidin. As a result, a detection limit of 0.2 pM was achieved. We believe that the bifunctional nanoparticles would found many applications in amplified detection of diol-containing species by rational design of the surface chemistry of electrode.
Collapse
|
33
|
Jun HJ, Nguyen AH, Kim YH, Park KH, Kim D, Kim KK, Sim SJ. Distinct Rayleigh scattering from hot spot mutant p53 proteins reveals cancer cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2954-2962. [PMID: 24700814 DOI: 10.1002/smll.201400004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 02/24/2014] [Indexed: 06/03/2023]
Abstract
The scattering of light redirects and resonances when an electromagnetic wave interacts with electrons orbits in the hot spot core protein and oscillated electron of the gold nanoparticles (AuNP). This report demonstrates convincingly that resonant Rayleigh scattering generated from hot spot mutant p53 proteins is correspondence to cancer cells. Hot spot mutants have unique local electron density changes that affect specificity of DNA binding affinity compared with wild types. Rayleigh scattering changes introduced by hot-spot mutations were monitored by localized surface plasmon resonance (LSPR) shift changes. The LSPR λmax shift for hot-spot mutants ranged from 1.7 to 4.2 nm for mouse samples and from 0.64 nm to 2.66 nm for human samples, compared to 9.6 nm and 15 nm for wild type and mouse and human proteins, respectively with a detection sensitivity of p53 concentration at 17.9 nM. It is interesting that hot-spot mutants, which affect only interaction with DNA, launches affinitive changes as considerable as wild types. These changes propose that hot-spot mutants p53 proteins can be easily detected by local electron density alterations that disturbs the specificity of DNA binding of p53 core domain on the surface of the DNA probed-nanoplasmonic sensor.
Collapse
Affiliation(s)
- Ho Joon Jun
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-701, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Ultra-sensitive electrochemical DNA biosensor based on signal amplification using gold nanoparticles modified with molybdenum disulfide, graphene and horseradish peroxidase. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1301-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Wei W, Ni Q, Pu Y, Yin L, Liu S. Electrochemical biosensor for DNA damage detection based on exonuclease III digestions. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Yang M, Yi X, Wang J, Zhou F. Electroanalytical and surface plasmon resonance sensors for detection of breast cancer and Alzheimer's disease biomarkers in cells and body fluids. Analyst 2014; 139:1814-25. [DOI: 10.1039/c3an02065g] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
37
|
Takahashi S, Anzai JI. Recent Progress in Ferrocene-Modified Thin Films and Nanoparticles for Biosensors. MATERIALS (BASEL, SWITZERLAND) 2013; 6:5742-5762. [PMID: 28788421 PMCID: PMC5452732 DOI: 10.3390/ma6125742] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/02/2013] [Accepted: 12/02/2013] [Indexed: 02/06/2023]
Abstract
This article reviews recent progress in the development of ferrocene (Fc)-modified thin films and nanoparticles in relation to their biosensor applications. Redox-active materials in enzyme biosensors commonly use Fc derivatives, which mediate electron transfer between the electrode and enzyme active site. Either voltammetric or amperometric signals originating from redox reactions of Fc are detected or modulated by the binding of analytes on the electrode. Fc-modified thin films have been prepared by a variety of protocols, including insitu polymerization, layer-by-layer (LbL) deposition, host-guest complexation and molecular recognitions. Insitu polymerization provides a facile way to form Fc thin films, because the Fc polymers are directly deposited onto the electrode surface. LbL deposition, which can modulate the film thickness and Fc content, is suitable for preparing well-organized thin films. Other techniques, such as host-guest complexation and protein-based molecular recognition, are useful for preparing Fc thin films. Fc-modified Au nanoparticles have been widely used as redox-active materials to fabricate electrochemical biosensors. Fc derivatives are often attached to Au nanoparticles through a thiol-Au linkage. Nanoparticles consisting of inorganic porous materials, such as zeolites and iron oxide, and nanoparticle-based composite materials have also been used to prepare Fc-modified nanoparticles. To construct biosensors, Fc-modified nanoparticles are immobilized on the electrode surface together with enzymes.
Collapse
Affiliation(s)
- Shigehiro Takahashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
38
|
Amplified voltammetric characterization of cleavage of the biotinylated peptide by BACE1 and screening of BACE1 inhibitors. Biosens Bioelectron 2013; 50:224-8. [DOI: 10.1016/j.bios.2013.06.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 06/05/2013] [Accepted: 06/17/2013] [Indexed: 12/25/2022]
|
39
|
Liu M, Chen Q, Lai C, Zhang Y, Deng J, Li H, Yao S. A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized Fe3O4@Au nanoparticles with graphene sheet. Biosens Bioelectron 2013; 48:75-81. [DOI: 10.1016/j.bios.2013.03.070] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 01/28/2023]
|
40
|
Ding Y, Li D, Li B, Zhao K, Du W, Zheng J, Yang M. A water-dispersible, ferrocene-tagged peptide nanowire for amplified electrochemical immunosensing. Biosens Bioelectron 2013; 48:281-6. [DOI: 10.1016/j.bios.2013.04.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/11/2022]
|
41
|
Chen X, He C, Zhang Z, Wang J. Sensitive chemiluminescence detection of wild-type p53 protein captured by surface-confined consensus DNA duplexes. Biosens Bioelectron 2013; 47:335-9. [PMID: 23603130 DOI: 10.1016/j.bios.2013.03.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/08/2013] [Accepted: 03/20/2013] [Indexed: 01/10/2023]
Abstract
A novel chemiluminescence (CL) biosensor for sensitive detection of wild-type p53 protein has been proposed. The wild-type p53 protein in solution was captured by highly specific consensus double-stranded (ds) oligonucleotides (ODNs) preimmobilized onto a gold plate. The cysteine residues on the exterior of the wild-type p53 molecules were then derivatized with N-biotinoyl-N'-(6-maleimidohexanoyl) hydrazide (biotin-Mi) for the attachment of streptavidin-horseradish peroxidase (SA-HRP) complex. The attached HRP molecules could catalyze the CL reaction between luminol and H2O2, producing an enhanced CL signal. The CL intensity was dependent on the surface coverage of the HRP molecules, which was related to the concentration of wild-type p53 protein. Under the optimal experimental conditions, the CL intensity increased linearly with the concentration of wild-type p53 protein from 0.01 to 0.5nM. The detection limit was estimated to be 3.8pM. The proposed method has been successfully utilized for the assay of wild-type p53 protein in normal and cancer cell lysates. The sensing protocol is sensitive, cost-effective, and holds great promise for clinical diagnosis.
Collapse
Affiliation(s)
- Xiaolan Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, People's Republic of China
| | | | | | | |
Collapse
|
42
|
Liu L, Du J, Li S, Yuan B, Han H, Jing M, Xia N. Amplified voltammetric detection of dopamine using ferrocene-capped gold nanoparticle/streptavidin conjugates. Biosens Bioelectron 2013; 41:730-5. [DOI: 10.1016/j.bios.2012.09.061] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 11/28/2022]
|
43
|
Wu L, Wang Z, Zong S, Chen H, Wang C, Xu S, Cui Y. Simultaneous evaluation of p53 and p21 expression level for early cancer diagnosis using SERS technique. Analyst 2013; 138:3450-6. [DOI: 10.1039/c3an00181d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Xia N, Deng D, Zhang L, Yuan B, Jing M, Du J, Liu L. Sandwich-type electrochemical biosensor for glycoproteins detection based on dual-amplification of boronic acid-gold nanoparticles and dopamine-gold nanoparticles. Biosens Bioelectron 2012; 43:155-9. [PMID: 23298627 DOI: 10.1016/j.bios.2012.12.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/20/2012] [Accepted: 12/09/2012] [Indexed: 12/20/2022]
Abstract
Glycoproteins play important roles in a wide variety of biological processes. The change in the concentration levels has been associated with many cancers, as well as other diseases. Thus, rapid, sensitive and selective determination of glycoproteins is much preferred. In this work, we reported a sandwich-type electrochemical biosensor based on dual-amplification of 4-mercaptophenylboronic acid (MBA)-capped gold nanoparticles (MBA-AuNPs) and dopamine (DA)-capped AuNPs (DA-AuNPs). Biological recognition elements such as synthetic receptor and aptamer immobilized onto gold electrodes were used to capture glycoproteins. The captured glycoproteins were then derivatized with MBA-AuNPs through the formation of tight covalent bonds between the boronic acids of MBA-AuNPs and diols of glycoproteins. Electroactive DA-AuNPs were attached by the anchored MBA-AuNPs via the interaction of boronic acids with DA tags, which facilities the amplified voltammetric detection of glycoproteins. With avidin and prostate specific antigen (PSA) as model analytes, we demonstrated the feasibility and sensitivity of the proposed method. The results indicated that sub-picomolar avidin/PSA can be readily measured. We believe that this strategy will be valuable for the electrochemical detection of other glycoproteins.
Collapse
Affiliation(s)
- Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Dong H, Wang C, Xiong Y, Lu H, Ju H, Zhang X. Highly sensitive and selective chemiluminescent imaging for DNA detection by ligation-mediated rolling circle amplified synthesis of DNAzyme. Biosens Bioelectron 2012; 41:348-53. [PMID: 22981413 DOI: 10.1016/j.bios.2012.08.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/10/2012] [Accepted: 08/23/2012] [Indexed: 11/26/2022]
Abstract
A highly sensitive DNA biosensing method down to sub-femtomolar level with excellent selectivity was proposed by designing an amplified synthesis of horseradish peroxidase mimicking DNAzyme and introducing the amplified DNAzyme to chemiluminescent (CL) imaging. The amplified synthesis was achieved by combining a target DNA related ligase reaction with rolling circle amplification (RCA), which produced thousands of repeated sequences to bind hemin and form a mass of horseradish peroxidase-mimicing DNAzyme units. The amplification strategy greatly enhanced the CL emission of the luminol-H(2)O(2) system. The genotyping method displayed highly specific biochemistry in allele discrimination. The novel CL imaging strategy based on ligation-mediated RCA synthesis of DNAzyme showed high fidelity in discriminating single-base mismatch and efficiently facilitated signal amplification for sensitive target DNA detection. It could detect DNA ranging from 1×10(-15) M to 1×10(-11) M with a detection limit of 0.26 fM. The proposed approach provided a robust, cost-efficient, highly sensitive and specific platform for genetic target analysis in bioanalysis and clinic biomedical application.
Collapse
Affiliation(s)
- Haifeng Dong
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Huang KJ, Wu ZW, Wu YY, Liu YM. Electrochemical immunoassay of carcinoembryonic antigen based on TiO2–graphene / thionine / gold nanoparticles composite. CAN J CHEM 2012. [DOI: 10.1139/v2012-040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel multilayer film based on gold nanoparticles (AuNPs), thionine (Thi), and TiO2–graphene (TiO2–Gr) was exploited to develop a highly sensitive amperometric immunosensor for detecting carcinoembryonic antigen (CEA). Firstly, Nafion–TiO2–Gr homogeneous composite was dropped on the surface of a glassy carbon electrode (GCE). Then Thi was chemisorbed by the TiO2–Gr–Nafion composite. Furthermore, the negative ly charged AuNPs were chemisorbed onto Thi film through the electrostatic force with the amino groups of Thi. Cyclic voltammetry (CV) was employed to characterize the assembly process and the performance of the immunosensor. Because of the synergistic effect of the AuNPs, Thi, and the unique properties of TiO2–Gr, the obtained immunosensor exhibited a wide linear response to CEA in two ranges from 0.1 to 10.0 ng mL−1 and from 10.0 to 120.0 ng mL−1 with a relatively low detection limit of 0.01 ng mL−1 (S/N = 3), as well as good stability and repeatability.
Collapse
Affiliation(s)
- Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P.R. China
| | - Zhi-Wei Wu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P.R. China
| | - Ying-Ying Wu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P.R. China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P.R. China
| |
Collapse
|
47
|
Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012; 112:2739-79. [PMID: 22295941 PMCID: PMC4102386 DOI: 10.1021/cr2001178] [Citation(s) in RCA: 2833] [Impact Index Per Article: 217.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Krishnendu Saha
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sarit S. Agasti
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Chaekyu Kim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Xiaoning Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
48
|
Dong H, Zhu Z, Ju H, Yan F. Triplex signal amplification for electrochemical DNA biosensing by coupling probe-gold nanoparticles–graphene modified electrode with enzyme functionalized carbon sphere as tracer. Biosens Bioelectron 2012; 33:228-32. [DOI: 10.1016/j.bios.2012.01.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/09/2011] [Accepted: 01/06/2012] [Indexed: 12/11/2022]
|
49
|
Lepage PH, Peytavi R, Bergeron MG, Leclerc M. Amplification strategy using aggregates of ferrocene-containing cationic polythiophene for sensitive and specific electrochemical detection of DNA. Anal Chem 2011; 83:8086-92. [PMID: 21932839 DOI: 10.1021/ac200713f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new electrochemical amplification strategy for an ultrasensitive electrochemical detection of DNA sequences using aggregates composed of a water-soluble, ferrocene-functionalized polythiophene. A two-step hybridization is performed at one addressing surface with PNA capture probes whereas the electrochemical detection is done on an electrode nearby. Specific and quantitative detection of DNA targets with a detection limit of 4 × 10(-16) M (about 4 zeptomoles or about 2500 copies of oligonucleotides) was achieved.
Collapse
Affiliation(s)
- Patricia Harding Lepage
- Canada Research Chair on Electroactive and Photoactive Polymers, Département de Chimie, Université Laval, Québec City, Québec, Canada
| | | | | | | |
Collapse
|
50
|
Sensitive detection of p53 tumor suppressor gene using an enzyme-based solid-state electrochemiluminescence sensing platform. Biosens Bioelectron 2011; 26:3608-13. [DOI: 10.1016/j.bios.2011.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/21/2011] [Accepted: 02/09/2011] [Indexed: 11/20/2022]
|