1
|
Sasidharan S, Knepper L, Ankrom E, Cucé G, Kong L, Ratajczak A, Im W, Thévenin D, Honerkamp-Smith A. Microfluidic measurement of the size and shape of lipid-anchored proteins. Biophys J 2024; 123:3478-3489. [PMID: 39228123 PMCID: PMC11480770 DOI: 10.1016/j.bpj.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
The surface of a cell is crowded with membrane proteins. The size, shape, density, and mobility of extracellular surface proteins mediate cell surface accessibility to external molecules, viral particles, and other cells. However, predicting these qualities is not always straightforward, even when protein structures are known. We previously developed an experimental method for measuring flow-driven lateral transport of neutravidin bound to biotinylated lipids in supported lipid bilayers. Here, we use this method to detect hydrodynamic force applied to a series of lipid-anchored proteins with increasing size. We find that the measured force reflects both protein size and shape, making it possible to distinguish these features of intact, folded proteins in their undisturbed orientation and proximity to the lipid membrane. In addition, our results demonstrate that individual proteins are transported large distances by flow forces on the order of femtoNewtons, similar in magnitude to the shear forces resulting from blood circulation or from the swimming motion of microorganisms. Similar protein transport across living cells by hydrodynamic force may contribute to biological flow sensing.
Collapse
Affiliation(s)
| | - Leah Knepper
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | - Emily Ankrom
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | - Gabriel Cucé
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Lingyang Kong
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Amanda Ratajczak
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania
| | | |
Collapse
|
2
|
Liu TT, Huang SH, Chao L. Rapid Enrichment of a Native Multipass Transmembrane Protein via Cell Membrane Electrophoresis through Buffer pH and Ionic Strength Adjustment. J Am Chem Soc 2024; 146:11634-11647. [PMID: 38628144 PMCID: PMC11066866 DOI: 10.1021/jacs.3c13579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
Supported membrane electrophoresis is a promising technique for collecting membrane proteins in native bilayer environments. However, the slow mobility of typical transmembrane proteins has impeded the technique's advancement. Here, we successfully applied cell membrane electrophoresis to rapidly enrich a 12-transmembrane helix protein, glucose transporter 1 with antibodies (GLUT1 complex), by tuning the buffer pH and ionic strength. The identified conditions allowed the separation of the GLUT1 complex and a lipid probe, Fast-DiO, within a native-like environment in a few minutes. A force model was developed to account for distinct electric and drag forces acting on the transmembrane and aqueous-exposed portion of a transmembrane protein as well as the electroosmotic force. This model not only elucidates the impact of size and charge properties of transmembrane proteins but also highlights the influence of pH and ionic strength on the driving forces and, consequently, electrophoretic mobility. Model predictions align well with experimentally measured electrophoretic mobilities of the GLUT1 complex and Fast-DiO at various pH and ionic strengths as well as with several lipid probes, lipid-anchored proteins, and reconstituted membrane proteins from previous studies. Force analyses revealed the substantial membrane drag of the GLUT1 complex, significantly slowing down electrophoretic mobility. Besides, the counterbalance of similar magnitudes of electroosmotic and electric forces results in a small net driving force and, consequently, reduced mobility under typical neutral pH conditions. Our results further highlight how the size and charge properties of transmembrane proteins influence the suitable range of operating conditions for effective movement, providing potential applications for concentrating and isolating membrane proteins within this platform.
Collapse
Affiliation(s)
- Tzu-Tzu Liu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Sin-Han Huang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Ling Chao
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| |
Collapse
|
3
|
Ito H, Shimokawa N, Higuchi Y. Lateral Transport of Domains in Anionic Lipid Bilayer Membranes under DC Electric Fields: A Coarse-Grained Molecular Dynamics Study. J Phys Chem B 2023; 127:8860-8868. [PMID: 37801068 DOI: 10.1021/acs.jpcb.3c04351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Dynamic lateral transport of lipids, proteins, and self-assembled structures in biomembranes plays a crucial role in diverse cellular processes. In this study, we perform coarse-grained molecular dynamics simulations on a vesicle composed of a binary mixture of neutral and anionic lipids to investigate the lateral transport of individual lipid molecules and the self-assembled lipid domains upon an applied direct current (DC) electric field. Under the potential force of the electric field, a phase-separated domain rich in anionic lipids is trapped in the opposite direction of the electric field. The subsequent reversal of the electric field induces unidirectional domain motion. During the domain motion, the domain size remains constant, but a considerable amount of the anionic lipids is exchanged between the anionic-lipid-rich domain and the surrounding bulk. While the speed of the domain motion (collective lipid motion) shows a significant positive correlation with the electric field strength, the exchange of anionic lipids between the domain and bulk (individual lipid motion) exhibits no clear correlation with the field strength. The mean velocity field of the lipids surrounding the domain displays a two-dimensional (2D) source dipole. We revealed that the balance between the potential force of the applied electric field and the quasi-2D hydrodynamic frictional force well explains the dependence of the domain motions on the electric field strengths. The present results provide insight into the hierarchical dynamic responses of self-assembled lipid domains to the applied electric field and contribute to controlling the lateral transportation of lipids and membrane inclusions.
Collapse
Affiliation(s)
- Hiroaki Ito
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| | - Yuji Higuchi
- Research Institute for Information Technology, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Meredith SA, Kusunoki Y, Connell SD, Morigaki K, Evans SD, Adams PG. Self-Quenching Behavior of a Fluorescent Probe Incorporated within Lipid Membranes Explored Using Electrophoresis and Fluorescence Lifetime Imaging Microscopy. J Phys Chem B 2023; 127:1715-1727. [PMID: 36802586 PMCID: PMC9986866 DOI: 10.1021/acs.jpcb.2c07652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Fluorescent probes are useful in biophysics research to assess the spatial distribution, mobility, and interactions of biomolecules. However, fluorophores can undergo "self-quenching" of their fluorescence intensity at high concentrations. A greater understanding of concentration-quenching effects is important for avoiding artifacts in fluorescence images and relevant to energy transfer processes in photosynthesis. Here, we show that an electrophoresis technique can be used to control the migration of charged fluorophores associated with supported lipid bilayers (SLBs) and that quenching effects can be quantified with fluorescence lifetime imaging microscopy (FLIM). Confined SLBs containing controlled quantities of lipid-linked Texas Red (TR) fluorophores were generated within 100 × 100 μm corral regions on glass substrates. Application of an electric field in-plane with the lipid bilayer induced the migration of negatively charged TR-lipid molecules toward the positive electrode and created a lateral concentration gradient across each corral. The self-quenching of TR was directly observed in FLIM images as a correlation of high concentrations of fluorophores to reductions in their fluorescence lifetime. By varying the initial concentration of TR fluorophores incorporated into the SLBs from 0.3% to 0.8% (mol/mol), the maximum concentration of fluorophores reached during electrophoresis could be modulated from 2% up to 7% (mol/mol), leading to the reduction of fluorescence lifetime down to 30% and quenching of the fluorescence intensity down to 10% of their original levels. As part of this work, we demonstrated a method for converting fluorescence intensity profiles into molecular concentration profiles by correcting for quenching effects. The calculated concentration profiles have a good fit to an exponential growth function, suggesting that TR-lipids can diffuse freely even at high concentrations. Overall, these findings prove that electrophoresis is effective at producing microscale concentration gradients of a molecule-of-interest and that FLIM is an excellent approach to interrogate dynamic changes to molecular interactions via their photophysical state.
Collapse
Affiliation(s)
- Sophie A Meredith
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U. K.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U. K
| | - Yuka Kusunoki
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Simon D Connell
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U. K.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U. K
| | - Kenichi Morigaki
- Graduate School of Agricultural Science and Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U. K.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U. K
| | - Peter G Adams
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U. K.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U. K
| |
Collapse
|
5
|
Miyazako H, Hoshino T. Rapid pattern formation in model cell membranes when using an electron beam. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Huang SH, Huang BC, Chao L. Development of Cell Membrane Electrophoresis to Measure the Diffusivity of a Native Transmembrane Protein. Anal Chem 2022; 94:4531-4537. [PMID: 35230091 DOI: 10.1021/acs.analchem.2c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lateral diffusion of transmembrane proteins in cell membranes is an important process that controls the dynamics and functions of the cell membrane. Several fluorescence-based techniques have been developed to study the diffusivities of transmembrane proteins. However, it is challenging to measure the diffusivity of a transmembrane protein with slow diffusion because of the photobleaching effect caused by long exposure times or multiple exposures to light. In this study, we developed a cell membrane electrophoresis platform to measure diffusivity. We deposited cell membrane vesicles derived from HeLa cells to form supported cell membrane patches. We demonstrated that the electrophoresis platform can be used to drive the movement of not only a lipid probe but also a native transmembrane protein, GLUT1. The movements were halted by the boundaries of the membrane patches and the concentration profiles reached steady states when the diffusion mass flux was balanced with the electrical mass flux. We used the Nernst-Planck equation as the mass balance equation to describe the steady concentration profiles and fitted these equations to our data to obtain the diffusivities. The obtained diffusivities were comparable to those obtained by fluorescence recovery after photobleaching, suggesting the validity of this new method of diffusivity measurement. Only a single snapshot is required for the diffusivity measurement, addressing the problems associated with photobleaching and allowing researchers to measure the diffusivity of transmembrane proteins with slow diffusion.
Collapse
Affiliation(s)
- Sin-Han Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Bo-Chuan Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ling Chao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Recent Advancements of UF-Based Separation for Selective Enrichment of Proteins and Bioactive Peptides—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proteins are one of the primary building blocks that have significant functional properties to be applied in food and pharmaceutical industries. Proteins could be beneficial in their concentrated products or isolates, of which membrane-based filtration methods such as ultrafiltration (UF) encompass application in broad spectra of protein sources. More importantly, selective enrichment by UF is of immense interest due to the presence of antinutrients that may dominate their perspicuous bioactivities. UF process is primarily obstructed by concentration polarization and fouling; in turn, a trade-off between productivity and selectivity emerges, especially when pure isolates are an ultimate goal. Several factors such as operating conditions and membrane equipment could leverage those pervasive contributions; therefore, UF protocols should be optimized for each unique protein mixture and mode of configuration. For instance, employing charged UF membranes or combining UF membranes with electrodialysis enables efficient separation of proteins with a similar molecular weight, which is hard to achieve by the conventional UF membrane. Meanwhile, some proposed strategies, such as utilizing ultrasonic waves, tuning operating conditions, and modifying membrane surfaces, can effectively mitigate fouling issues. A plethora of advancements in UF, from their membrane material modification to the arrangement of new configurations, contribute to the quest to actualize promising potentials of protein separation by UF, and they are reviewed in this paper.
Collapse
|
8
|
Harb F, Tinland B. Toward Electrophoretic Separation of Membrane Proteins in Supported n-Bilayers. ACS OMEGA 2020; 5:27741-27748. [PMID: 33163756 PMCID: PMC7643068 DOI: 10.1021/acsomega.0c01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Membrane proteins are key constituents of the proteome of cells but are poorly characterized, mainly because they are difficult to solubilize. Proteome analysis involves separating proteins as a preliminary step toward their characterization. Currently, the most common method is "solubilizing" them with sophisticated detergent and lipid mixtures for later separation via, for instance, sodium dodecyl sulfate polyacrylamide gel electrophoresis. However, this later step induces loss of 3D structure (denaturation). Migration in a medium that mimics the cell membrane should therefore be more appropriate. Here, we present a successful electrophoretic separation of a mixture first of two and then of three different membrane objects in supported n-bilayers. These "objects" are composed of membrane proteins sulfide quinone reductase and α-hemolysin. Sulfide quinone reductase forms an object from three monomers together and self-inserts into the upper leaflet. α-Hemolysin inserts as a spanning heptamer into a bilayer or can build stable dimers of α-hemolysin heptamers under certain conditions. By appropriately adjusting the pH, it proved possible to move them in different ways. This work holds promise for separating membrane proteins without losing their 3D structure, thus their bioactivity, within a lipidic environment that is closer to physiological conditions and for building drug/diagnostic platforms.
Collapse
Affiliation(s)
- Frédéric
F. Harb
- Department
of Biology; Faculty of Sciences − Section II, Lebanese University, Beirut 90656, Lebanon
| | - Bernard Tinland
- Aix-Marseille
Université, CNRS, CINaM UMR 7325, Marseille 13288, France
| |
Collapse
|
9
|
Electromigration of cell surface macromolecules in DC electric fields during cell polarization and galvanotaxis. J Theor Biol 2019; 478:58-73. [DOI: 10.1016/j.jtbi.2019.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022]
|
10
|
Zou X, Yang F, Sun X, Qin M, Zhao Y, Zhang Z. Functionalized Nano-adsorbent for Affinity Separation of Proteins. NANOSCALE RESEARCH LETTERS 2018; 13:165. [PMID: 29846826 PMCID: PMC5976561 DOI: 10.1186/s11671-018-2531-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/16/2018] [Indexed: 05/07/2023]
Abstract
Thiol-functionalized silica nanospheres (SiO2-SH NSs) with an average diameter of 460 nm were synthesized through a hydrothermal route. Subsequently, the prepared SiO2-SH NSs were modified by SnO2 quantum dots to afford SnO2/SiO2 composite NSs possessing obvious fluorescence, which could be used to trace the target protein. The SnO2/SiO2 NSs were further modified by reduced glutathione (GSH) to obtain SnO2/SiO2-GSH NSs, which can specifically separate glutathione S-transferase-tagged (GST-tagged) protein. Moreover, the peroxidase activity of glutathione peroxidase 3 (GPX3) separated from SnO2/SiO2-GSH NSs in vitro was evaluated. Results show that the prepared SnO2/SiO2-GSH NSs exhibit negligible nonspecific adsorption, high concentration of protein binding (7.4 mg/g), and good reused properties. In the meantime, the GST-tagged GPX3 separated by these NSs can retain its redox state and peroxidase activity. Therefore, the prepared SnO2/SiO2-GSH NSs might find promising application in the rapid separation and purification of GST-tagged proteins.
Collapse
Affiliation(s)
- Xueyan Zou
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004 China
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004 China
- Collaborative Innovation Center of Nano Functional Materials and Applications of Henan Province, Henan University, Kaifeng, 475004 China
| | - Fengbo Yang
- Institute of Plant Stress Biology-State Key Laboratory of Cotton Biology, Henan University, Kaifeng, 475004 China
| | - Xin Sun
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004 China
| | - Mingming Qin
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004 China
| | - Yanbao Zhao
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004 China
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004 China
- Collaborative Innovation Center of Nano Functional Materials and Applications of Henan Province, Henan University, Kaifeng, 475004 China
| | - Zhijun Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004 China
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004 China
- Collaborative Innovation Center of Nano Functional Materials and Applications of Henan Province, Henan University, Kaifeng, 475004 China
| |
Collapse
|
11
|
Lundgren A, Fast BJ, Block S, Agnarsson B, Reimhult E, Gunnarsson A, Höök F. Affinity Purification and Single-Molecule Analysis of Integral Membrane Proteins from Crude Cell-Membrane Preparations. NANO LETTERS 2018; 18:381-385. [PMID: 29231738 DOI: 10.1021/acs.nanolett.7b04227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The function of integral membrane proteins is critically dependent on their naturally surrounding lipid membrane. Detergent-solubilized and purified membrane proteins are therefore often reconstituted into cell-membrane mimics and analyzed for their function with single-molecule microscopy. Expansion of this approach toward a broad range of pharmaceutically interesting drug targets and biomarkers however remains hampered by the fact that these proteins have low expression levels, and that detergent solubilization and reconstitution often cause protein conformational changes and loss of membrane-specific cofactors, which may impair protein function. To overcome this limitation, we here demonstrate how antibody-modified nanoparticles can be used to achieve affinity purification and enrichment of selected integral membrane proteins directly from cell membrane preparations. Nanoparticles were first bound to the ectodomain of β-secretase 1 (BACE1) contained in cell-derived membrane vesicles. In a subsequent step, these were merged into a continuous supported membrane in a microfluidic channel. Through the extended nanoparticle tag, a weak (∼fN) hydrodynamic force could be applied, inducing directed in-membrane movement of targeted BACE1 exclusively. This enabled selective thousand-fold enrichment of the targeted membrane protein while preserving a natural lipid environment. In addition, nanoparticle-targeting also enabled simultaneous tracking analysis of each individual manipulated protein, revealing how their mobility changed when moved from one lipid environment to another. We therefore believe this approach will be particularly useful for separation in-line with single-molecule analysis, eventually opening up for membrane-protein sorting devices analogous to fluorescence-activated cell sorting.
Collapse
Affiliation(s)
- Anders Lundgren
- Department of Physics, Chalmers University of Technology , 41296 Göteborg, Sweden
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences , 1190 Vienna, Austria
| | - Björn Johansson Fast
- Department of Physics, Chalmers University of Technology , 41296 Göteborg, Sweden
| | - Stephan Block
- Department of Physics, Chalmers University of Technology , 41296 Göteborg, Sweden
| | - Björn Agnarsson
- Department of Physics, Chalmers University of Technology , 41296 Göteborg, Sweden
| | - Erik Reimhult
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences , 1190 Vienna, Austria
| | - Anders Gunnarsson
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , 43183 Mölndal, Sweden
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology , 41296 Göteborg, Sweden
| |
Collapse
|
12
|
Ferhan AR, Jackman JA, Cho NJ. Probing Spatial Proximity of Supported Lipid Bilayers to Silica Surfaces by Localized Surface Plasmon Resonance Sensing. Anal Chem 2017; 89:4301-4308. [PMID: 28293950 DOI: 10.1021/acs.analchem.7b00370] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
On account of high surface sensitivity, localized surface plasmon resonance (LSPR) sensors have proven widely useful for studying lipid membrane configurations at solid-liquid interfaces. Key measurement capabilities include distinguishing adsorbed vesicles from supported lipid bilayers (SLBs) as well as profiling the extent of deformation among adsorbed vesicles. Such capabilities rely on detecting geometrical changes in lipid membrane configuration on a length scale that is comparable to the decay length of the LSPR-induced electromagnetic field enhancement (∼5-20 nm). Herein, we report that LSPR sensors are also capable of probing nanoscale (∼1 nm) variations in the distance between SLBs and underlying silica-coated surfaces. By tuning the electrostatic properties of lipid membranes, we could modulate the bilayer-substrate interaction and corresponding separation distance, as verified by simultaneous LSPR and quartz crystal microbalance-dissipation (QCM-D) measurements. Theoretical calculations of the expected variation in the LSPR measurement response agree well with experimental results and support that the LSPR measurement response is sensitive to subtle variations in the bilayer-substrate separation distance.
Collapse
Affiliation(s)
- Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
13
|
Gunnarsson A, Simonsson Nyström L, Burazerovic S, Gunnarsson J, Snijder A, Geschwindner S, Höök F. Affinity Capturing and Surface Enrichment of a Membrane Protein Embedded in a Continuous Supported Lipid Bilayer. ChemistryOpen 2016; 5:445-449. [PMID: 27777836 PMCID: PMC5062009 DOI: 10.1002/open.201600070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 11/26/2022] Open
Abstract
Investigations of ligand-binding kinetics to membrane proteins are hampered by their poor stability and low expression levels, which often translates into sensitivity-related limitations impaired by low signal-to-noise ratios. Inspired by affinity capturing of water-soluble proteins, which utilizes water as the mobile phase, we demonstrate affinity capturing and local enrichment of membrane proteins by using a fluid lipid bilayer as the mobile phase. Specific membrane-protein capturing and enrichment in a microfluidic channel was accomplished by immobilizing a synthesized trivalent nitrilotriacetic acid (tris-NTA)-biotin conjugate. A polymer-supported lipid bilayer containing His6-tagged β-secretase (BACE) was subsequently laterally moved over the capture region by using a hydrodynamic flow. Specific enrichment of His6-BACE in the Ni2+-NTA-modified region of the substrate resulted in a stationary three-fold increase in surface coverage, and an accompanied increase in ligand-binding response.
Collapse
Affiliation(s)
| | | | - Sabina Burazerovic
- Department of Applied PhysicsChalmers University of Technology412 96GöteborgSweden
| | | | - Arjan Snijder
- Discovery SciencesAstraZeneca R&D Mölndal43183MölndalSweden
| | | | - Fredrik Höök
- Department of Applied PhysicsChalmers University of Technology412 96GöteborgSweden
| |
Collapse
|
14
|
van Weerd J, Karperien M, Jonkheijm P. Supported Lipid Bilayers for the Generation of Dynamic Cell-Material Interfaces. Adv Healthc Mater 2015; 4:2743-79. [PMID: 26573989 DOI: 10.1002/adhm.201500398] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/03/2015] [Indexed: 12/13/2022]
Abstract
Supported lipid bilayers (SLB) offer unique possibilities for studying cellular membranes and have been used as a synthetic architecture to interact with cells. Here, the state-of-the-art in SLB-based technology is presented. The fabrication, analysis, characteristics and modification of SLBs are described in great detail. Numerous strategies to form SLBs on different substrates, and the means to patteren them, are described. The use of SLBs as model membranes for the study of membrane organization and membrane processes in vitro is highlighted. In addition, the use of SLBs as a substratum for cell analysis is presented, with discrimination between cell-cell and cell-extracellular matrix (ECM) mimicry. The study is concluded with a discussion of the potential for in vivo applications of SLBs.
Collapse
Affiliation(s)
- Jasper van Weerd
- Bioinspired Molecular Engineering; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Dept. of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Molecular Nanofabrication Group, MESA+; University of Twente; Enschede 7500 AE The Netherlands
| | - Marcel Karperien
- Dept. of Developmental BioEngineering; MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
| | - Pascal Jonkheijm
- Bioinspired Molecular Engineering; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- Molecular Nanofabrication Group, MESA+; University of Twente; Enschede 7500 AE The Netherlands
| |
Collapse
|
15
|
Beutel O, Roder F, Birkholz O, Rickert C, Steinhoff HJ, Grzybek M, Coskun Ü, Piehler J. Two-Dimensional Trap for Ultrasensitive Quantification of Transient Protein Interactions. ACS NANO 2015; 9:9783-9791. [PMID: 26331529 DOI: 10.1021/acsnano.5b02696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present an ultrasensitive technique for quantitative protein-protein interaction analysis in a two-dimensional format based on phase-separated, micropatterned membranes. Interactions between proteins captured to lipid probes via an affinity tag trigger partitioning into the liquid-ordered phase, which is readily quantified by fluorescence imaging. Based on a calibration with well-defined low-affinity protein-protein interactions, equilibrium dissociation constants >1 mM were quantified. Direct capturing of proteins from mammalian cell lysates enabled us to detect homo- and heterodimerization of signal transducer and activator of transcription proteins. Using the epidermal growth factor receptor (EGFR) as a model system, quantification of low-affinity interactions between different receptor domains contributing to EGFR dimerization was achieved. By exploitation of specific features of the membrane-based assay, the regulation of EGFR dimerization by lipids was demonstrated.
Collapse
Affiliation(s)
- Oliver Beutel
- Department of Biology, University of Osnabrück , 49074 Osnabrück, Germany
| | - Friedrich Roder
- Department of Biology, University of Osnabrück , 49074 Osnabrück, Germany
| | - Oliver Birkholz
- Department of Biology, University of Osnabrück , 49074 Osnabrück, Germany
| | - Christian Rickert
- Department of Physics, University of Osnabrück , 49076 Osnabrück, Germany
| | | | - Michał Grzybek
- Paul Langerhans Institute Dresden of the Helmholtz Centre Munich at the University Clinic Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
- German Center for Diabetes Research (DZD) , 85764 Neuherberg, Germany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden of the Helmholtz Centre Munich at the University Clinic Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
- German Center for Diabetes Research (DZD) , 85764 Neuherberg, Germany
| | - Jacob Piehler
- Department of Biology, University of Osnabrück , 49074 Osnabrück, Germany
| |
Collapse
|
16
|
Wang F, Liu J. A Stable Lipid/TiO2 Interface with Headgroup-Inversed Phosphocholine and a Comparison with SiO2. J Am Chem Soc 2015; 137:11736-42. [PMID: 26302371 DOI: 10.1021/jacs.5b06642] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Zwitterionic phosphocholine (PC) lipids are highly biocompatible, representing a major component of the cell membrane. A simple mixing of PC liposomes and silica (SiO2) surface results in liposome fusion with the surface and formation of supported lipid bilayers. However, the stability of this bilayer is relatively low because adsorption is based mainly on weak van der Waals force. PC lipids strongly adsorb by TiO2 via chemical bonding with the lipid phosphate. The lack of fusion on TiO2 is attributable to the steric effect from the choline group in PC. In this study, inverse phosphocholine lipids (CP) are used, directly exposing the phosphate. Using a calcein leakage assay and cryo-TEM, fusion of CP liposome with TiO2 is demonstrated. The stability of this supported bilayer is significantly higher than that of the PC/SiO2 system, as indicated by washing the membrane under harsh conditions. Adsorption of CP liposomes by TiO2 is inhibited at high pH. Interestingly, the CP liposome cannot fuse with silica surface because of a strong charge repulsion. This study demonstrates an interesting interplay between a soft matter surface and metal oxides. By tuning the lipid structure, it is possible to rationally control the interaction force. This study provides an alternative system for forming stable supported bilayers on TiO2, and represents the first example of interfacing inverse lipids with inorganic surfaces.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
17
|
Pace H, Simonsson Nyström L, Gunnarsson A, Eck E, Monson C, Geschwindner S, Snijder A, Höök F. Preserved transmembrane protein mobility in polymer-supported lipid bilayers derived from cell membranes. Anal Chem 2015; 87:9194-203. [PMID: 26268463 DOI: 10.1021/acs.analchem.5b01449] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Supported lipid bilayers (SLBs) have contributed invaluable information about the physiochemical properties of cell membranes, but their compositional simplicity often limits the level of knowledge that can be gained about the structure and function of transmembrane proteins in their native environment. Herein, we demonstrate a generic protocol for producing polymer-supported lipid bilayers on glass surfaces that contain essentially all naturally occurring cell-membrane components of a cell line while still retaining transmembrane protein mobility and activity. This was achieved by merging vesicles made from synthetic lipids (PEGylated lipids and POPC lipids) with native cell-membrane vesicles to generate hybrid vesicles which readily rupture into a continuous polymer-supported lipid bilayer. To investigate the properties of these complex hybrid SLBs and particularly the behavior of their integral membrane-proteins, we used total internal reflection fluorescence imaging to study a transmembrane protease, β-secretase 1 (BACE1), whose ectoplasmic and cytoplasmic domains could both be specifically targeted with fluorescent reporters. By selectively probing the two different orientations of BACE1 in the resulting hybrid SLBs, the role of the PEG-cushion on transmembrane protein lateral mobility was investigated. The results reveal the necessity of having the PEGylated lipids present during vesicle adsorption to prevent immobilization of transmembrane proteins with protruding domains. The proteolytic activity of BACE1 was unadulterated by the sonication process used to merge the synthetic and native membrane vesicles; importantly it was also conserved in the SLB. The presented strategy could thus serve both fundamental studies of membrane biophysics and the production of surface-based bioanalytical sensor platforms.
Collapse
Affiliation(s)
- Hudson Pace
- Department of Applied Physics, Chalmers University of Technology , SE-41296 Gothenburg, Sweden
| | - Lisa Simonsson Nyström
- Department of Applied Physics, Chalmers University of Technology , SE-41296 Gothenburg, Sweden
| | - Anders Gunnarsson
- Discovery Sciences, AstraZeneca R&D Mölndal , SE-43183 Mölndal, Sweden
| | - Elizabeth Eck
- Department of Applied Physics, Chalmers University of Technology , SE-41296 Gothenburg, Sweden
| | - Christopher Monson
- Department of Physical Science, Southern Utah University , Cedar City, Utah 84720 United States
| | | | - Arjan Snijder
- Discovery Sciences, AstraZeneca R&D Mölndal , SE-43183 Mölndal, Sweden
| | - Fredrik Höök
- Department of Applied Physics, Chalmers University of Technology , SE-41296 Gothenburg, Sweden
| |
Collapse
|
18
|
Liu C, Huang D, Yang T, Cremer PS. Simultaneous Detection of Multiple Proteins that Bind to the Identical Ligand in Supported Lipid Bilayers. Anal Chem 2015; 87:7163-70. [DOI: 10.1021/acs.analchem.5b00999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chunming Liu
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Da Huang
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Tinglu Yang
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Paul S. Cremer
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- Department
of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Wang Y, Wang G, Xiao Y, Yang Y, Tang R. Yolk-shell nanostructured Fe3O4@NiSiO3 for selective affinity and magnetic separation of His-tagged proteins. ACS APPLIED MATERIALS & INTERFACES 2014; 6:19092-19099. [PMID: 25303145 DOI: 10.1021/am505041a] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent developments of nanotechnology encourage novel materials for facile separations and purifications of recombinant proteins, which are of great importance in disease diagnoses and treatments. We find that Fe3O4@NiSiO3 with yolk-shell nanostructure can be used to specifically purify histidine-tagged (His-tagged) proteins from mixtures of lysed cells with a recyclable process. Each individual nanoparticle composes by a mesoporous nickel silicate shell and a magnetic Fe3O4 core in the hollow inner, which is featured by its great loading efficiency and rapid response toward magnetic fields. The abundant Ni(2+) cations on the shell provide docking sites for selective coordination of histidine and the reversible release is induced by excess imidazole solution. Because of the Fe3O4 cores, the separation, concentration, and recycling of the nanocomposites become feasible under the controls of magnets. These characteristics would be highly beneficial in nanoparticle-based biomedical applications for targeted-drug delivery and biosensors.
Collapse
Affiliation(s)
- Yang Wang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University , Hangzhou, Zhejiang 310027, China
| | | | | | | | | |
Collapse
|
20
|
Heath GR, Roth J, Connell SD, Evans SD. Diffusion in low-dimensional lipid membranes. NANO LETTERS 2014; 14:5984-8. [PMID: 25166509 DOI: 10.1021/nl503024v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The diffusion behavior of biological components in cellular membranes is vital to the function of cells. By collapsing the complexity of planar 2D membranes down to one dimension, fundamental investigations of bimolecular behavior become possible in one dimension. Here we develop lipid nanolithography methods to produce membranes, under fluid, with widths as low as 6 nm but extending to microns in length. We find reduced lipid mobility, as the width is reduced below 50 nm, suggesting different lipid packing in the vicinity of boundaries. The insertion of a membrane protein, M2, into these systems, allowed characterization of protein diffusion using high-speed AFM to demonstrate the first membrane protein 1D random walk. These quasi-1D lipid bilayers are ideal for testing and understanding fundamental concepts about the roles of dimensionality and size on physical properties of membranes from energy transfer to lipid packing.
Collapse
Affiliation(s)
- George R Heath
- School of Physics and Astronomy, University of Leeds , Leeds LS2 9JT, United Kingdom
| | | | | | | |
Collapse
|
21
|
Hu SK, Chen YM, Chao L. Phase segregation of polymerizable lipids to construct filters for separating lipid-membrane-embedded species. BIOMICROFLUIDICS 2014; 8:052005. [PMID: 25332729 PMCID: PMC4189399 DOI: 10.1063/1.4895570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/02/2014] [Indexed: 05/04/2023]
Abstract
Supported lipid bilayer (SLB) platforms have been developed to transport and separate membrane-embedded species in the species' native bilayer environment. In this study, we used the phase segregation phenomenon of lipid mixtures containing a polymerizable diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC), and a nonpolymerizable phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), to create filter barrier structures in SLBs. Upon exposing the phase segregated samples to UV light, the DiynePC-rich domains could become crosslinked and remain fixed on the surface of the support, while the DOPC-rich regions, where no crosslinking could happen, could be removed later by detergent washing, and thus became the void regions in the filter. During the filter fabrication process, we used the laminar flow configuration in a microfluidic channel to control the spatial locations of the feed region and filter region in the SLB. The flow in a microfluidic channel was also used to apply a strong hydrodynamic shear stress to the SLB to transport the membrane-embedded species from the feed region to the filter region. We varied the DiynePC/DOPC molar ratio from 60/40 to 80/20 to adjust the cutoff size of the filter barriers and used two model membrane-embedded species of different sizes to examine the filtering capability. One of the model species, Texas Red 1,2-dihexa-decanoyl-sn-glycero-3-phosphoethanolamine triethylammonium salt (Texas Red DHPE), had a single-lipid size, and the other species, cholera toxin subunit B-GM1 complex, had a multilipid size. When the DiynePC/DOPC molar ratio was 60/40, both species had high penetration ratios in the filter region. However, when the ratio was increased to 70/30, only the Texas Red DHPE, which was the smaller of the two model species, could penetrate the filter to a considerable extent. When the ratio was increased to 80/20, neither of the model species could penetrate the filter region. The results showed the possibility of using phase segregation of a mixture containing a polymerizable lipid and a nonpolymerizable lipid to fabricate filter barrier structures with tunable cutoff sizes in SLBs.
Collapse
Affiliation(s)
- Shu-Kai Hu
- Department of Chemical Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ya-Ming Chen
- Department of Chemical Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ling Chao
- Department of Chemical Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
22
|
Liu C, Huang D, Yang T, Cremer PS. Monitoring phosphatidic acid formation in intact phosphatidylcholine bilayers upon phospholipase D catalysis. Anal Chem 2014; 86:1753-9. [PMID: 24456402 PMCID: PMC3983022 DOI: 10.1021/ac403580r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/15/2014] [Indexed: 12/25/2022]
Abstract
We have monitored the production of the negatively charged lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidic acid acid (POPA), in supported lipid bilayers via the enzymatic hydrolysis of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC), a zwitterionic lipid. Experiments were performed with phospholipase D (PLD) in a Ca(2+) dependent fashion. The strategy for doing this involved using membrane-bound streptavidin as a biomarker for the charge on the membrane. The focusing position of streptavidin in electrophoretic-electroosmotic focusing (EEF) experiments was monitored via a fluorescent tag on this protein. The negative charge increased during these experiments due to the formation of POPA lipids. This caused the focusing position of streptavidin to migrate toward the negatively charged electrode. With the use of a calibration curve, the amount of POPA generated during this assay could be read out from the intact membrane, an objective that has been otherwise difficult to achieve because of the lack of unique chromophores on PA lipids. On the basis of these results, other enzymatic reactions involving the change in membrane charge could also be monitored in a similar way. This would include phosphorylation, dephosphorylation, lipid biosynthesis, and additional phospholipase reactions.
Collapse
Affiliation(s)
- Chunming Liu
- Department
of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, United States
| | - Da Huang
- Department
of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, United States
| | - Tinglu Yang
- Department
of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, United States
| | - Paul S. Cremer
- Department
of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, United States
| |
Collapse
|
23
|
Synthesis of petal-like ferric oxide/cysteine architectures and their application in affinity separation of proteins. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 34:468-73. [PMID: 24268283 DOI: 10.1016/j.msec.2013.09.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/28/2013] [Accepted: 09/29/2013] [Indexed: 11/20/2022]
Abstract
Petal-like ferric oxide/cysteine (FeOOH/Cys) architectures were prepared through a solvothermal route, which possessed high thiol group density. These thiol groups as binding sites can chelate Ni(2+) ions, which can be further used to enrich and separate his-tagged proteins directly from the mixture of lysed cells without sample pretreatment. These results show that the FeOOH/Cys architectures with immobilized Ni(2+) ions present negligible nonspecific protein adsorption and high protein adsorption capacity, with the saturation capacity being 88mg/g, which are especially suitable for purification of his-tagged proteins.
Collapse
|
24
|
Abstract
While electrophoresis in lipid bilayers has been performed since the 1970s, the technique has until now been unable to accurately measure the charge on lipids and proteins within the membrane based on drift velocity measurements. Part of the problem is caused by the use of the Einstein-Smoluchowski equation to estimate the electrophoretic mobility of such species. The source of the error arises from the fact that a lipid headgroup is typically smaller than the Debye length of the adjacent aqueous solution in most electrophoresis experiments. Instead, the Henry equation can more accurately predict the electrophoretic mobility at sufficient ionic strength. This was done for three dye-labeled lipids with different sized head groups and a charge on each lipid of -1. Also, the charge was measured as a function of pH for two titratable lipids that were fluorescently labeled. Finally, it was shown that the Henry equation also has difficulties measuring the correct lipid charge at salt concentrations below 5 mM, where electroosmotic forces are more significant.
Collapse
Affiliation(s)
- Matthew F Poyton
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Penn State University , State College, Pennsylvania 16802, United States
| | | |
Collapse
|
25
|
Huang D, Zhao T, Xu W, Yang T, Cremer PS. Sensing small molecule interactions with lipid membranes by local pH modulation. Anal Chem 2013; 85:10240-8. [PMID: 24152205 DOI: 10.1021/ac401955t] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we utilized a label-free sensing platform based on pH modulation to detect the interactions between tetracaine, a positively charged small molecule used as a local anesthetic, and planar supported lipid bilayers (SLBs). The SLBs were patterned inside a flow cell, allowing for various concentrations of tetracaine to be introduced over the surface in a buffer solution. Studies with membranes containing POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) yielded an equilibrium dissociation constant value of Kd = 180 ± 47 μm for this small molecule-membrane interaction. Adding cholesterol to the SLBs decreased the affinity between tetracaine and the bilayers, while this interaction tightened when POPE (1-hexadecanoyl-2-(9-Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine) was added. Studies were also conducted with three negatively charged membrane lipids, POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt)), POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (sodium salt)), and ganglioside GM1. All three measurements gave rise to a similar tightening of the apparent Kd value compared with pure POPC membranes. The lack of chemical specificity with the identity of the negatively charged lipid indicated that the tightening was largely electrostatic. Through a direct comparison with ITC measurements, it was found that the pH modulation sensor platform offers a facile, inexpensive, highly sensitive, and rapid method for the detection of interactions between putative drug candidates and lipid bilayers. As such, this technique may potentially be exploited as a screen for drug development and analysis.
Collapse
Affiliation(s)
- Da Huang
- Department of Chemistry and §Department of Biochemistry and Molecular Biology, Penn State University , University Park, PA 16802
| | | | | | | | | |
Collapse
|
26
|
Lin CK, Yang L, Hayashi M, Zhu CY, Fujimura Y, Shen YR, Lin SH. Theory and Applications of Sum-Frequency Generations. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Hu SK, Hsiao SW, Mao HY, Chen YM, Chang Y, Chao L. Using crosslinkable diacetylene phospholipids to construct two-dimensional packed beds in supported lipid bilayer separation platforms. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2013; 14:044408. [PMID: 27877593 PMCID: PMC5090319 DOI: 10.1088/1468-6996/14/4/044408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/26/2013] [Indexed: 05/04/2023]
Abstract
Separating and purifying cell membrane-associated biomolecules has been a challenge owing to their amphiphilic property. Taking these species out of their native lipid membrane environment usually results in biomolecule degradation. One of the new directions is to use supported lipid bilayer (SLB) platforms to separate the membrane species while they are protected in their native environment. Here we used a type of crosslinkable diacetylene phospholipids, diynePC (1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine), as a packed material to create a 'two-dimensional (2D) packed bed' in a SLB platform. After the diynePC SLB is exposed to UV light, some of the diynePC lipids in the SLB can crosslink and the non-crosslinked monomer lipids can be washed away, leaving a 2D porous solid matrix. We incorporated the lipid vesicle deposition method with a microfluidic device to pattern the location of the packed-bed region and the feed region with species to be separated in a SLB platform. Our atomic force microscopy result shows that the nano-scaled structure density of the '2D packed bed' can be tuned by the UV dose applied to the diynePC membrane. When the model membrane biomolecules were forced to transport through the packed-bed region, their concentration front velocities were found to decrease linearly with the UV dose, indicating the successful creation of packed obstacles in these 2D lipid membrane separation platforms.
Collapse
Affiliation(s)
- Shu-Kai Hu
- Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Sheng-Wen Hsiao
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Jhong-Li, Taoyuan 320, Taiwan
| | - Hsun-Yen Mao
- Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ya-Ming Chen
- Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Jhong-Li, Taoyuan 320, Taiwan
| | - Ling Chao
- Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
28
|
Li B, Zou X, Zhao Y, Sun L, Li S. Biofunctionalization of silica microspheres for protein separation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2595-600. [DOI: 10.1016/j.msec.2013.02.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/24/2013] [Accepted: 02/15/2013] [Indexed: 11/28/2022]
|
29
|
Pace HP, Sherrod SD, Monson CF, Russell DH, Cremer PS. Coupling supported lipid bilayer electrophoresis with matrix-assisted laser desorption/ionization-mass spectrometry imaging. Anal Chem 2013; 85:6047-52. [PMID: 23731179 PMCID: PMC3717335 DOI: 10.1021/ac4008804] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Herein, we describe a new analytical platform utilizing advances in heterogeneous supported lipid bilayer (SLB) electrophoresis and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) imaging. This platform allowed for the separation and visualization of both charged and neutral lipid membrane components without the need for extrinsic labels. A heterogeneous SLB was created using vesicles containing monosialoganglioside GM1, disialoganglioside GD1b, POPC, as well as the ortho and para isomers of Texas Red-DHPE. These components were then separated electrophoretically into five resolved bands. This represents the most complex separation by SLB electrophoresis performed to date. The SLB samples were flash frozen in liquid ethane and dried under vacuum before imaging with MALDI-MS. Fluorescence microscopy was employed to confirm the position of the Texas Red labeled lipids, which agreed well with the MALDI-MS imaging results. These results clearly demonstrate this platform's ability to isolate and identify nonlabeled membrane components within an SLB.
Collapse
Affiliation(s)
- Hudson P. Pace
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Stacy D. Sherrod
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | | | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Paul S. Cremer
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| |
Collapse
|
30
|
Ye S, Wei F, Li H, Tian K, Luo Y. Structure and Orientation of Interfacial Proteins Determined by Sum Frequency Generation Vibrational Spectroscopy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 93:213-55. [DOI: 10.1016/b978-0-12-416596-0.00007-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Li H, Ye S, Wei F, Ma S, Luo Y. In situ molecular-level insights into the interfacial structure changes of membrane-associated prion protein fragment [118-135] investigated by sum frequency generation vibrational spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16979-16988. [PMID: 23116165 DOI: 10.1021/la302655p] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Protein aggregation is associated with many "protein deposition diseases". A precise molecular detail of the conformational transitions of such a membrane-associated protein structure is critical to understand the disease mechanism and develop effective treatments. One potential model peptide for studying the mechanism of protein deposition diseases is prion protein fragment [118-135] (PrP118-135), which shares homology with the C-terminal domain of the Alzheimer's β-amyloid peptide. In this study, sum frequency generation vibrational spectroscopy (SFG-VS) has been applied to characterize interactions between PrP118-135 and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) lipid bilayer in situ. The conformation change and orientation of PrP118-135 in lipid bilayers have been determined using SFG spectra with different polarization combinations. It is found that low-concentration PrP118-135 predominantly adopts α-helical structure but with tiny β-sheet structure. With the PrP118-135 concentration increasing, the molecular number ratio of parallel β-sheet structure increases and reaches about 44% at a concentration of 0.10 mg/mL, indicating the formation of abnormally folded scrapie isoforms. The α-helical structure inserts into the lipid bilayer with a tilt angle of ~32° versus the surface normal, while the β-sheet structure lies down on the lipid bilayer with the tilt and twist angle both of 90°. The 3300 cm(-1) N-H stretching signal in psp spectra arises from α-helical structure at low PrP concentration and from the β-sheet structure at high PrP concentration. Results from this study will provide an in-depth insight into the early events in the aggregation of PrP in cell membrane.
Collapse
Affiliation(s)
- Hongchun Li
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, People's Republic of China 230026
| | | | | | | | | |
Collapse
|
32
|
Bao P, Cheetham MR, Roth JS, Blakeston AC, Bushby RJ, Evans SD. On-Chip Alternating Current Electrophoresis in Supported Lipid Bilayer Membranes. Anal Chem 2012; 84:10702-7. [DOI: 10.1021/ac302446w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Bao
- School of Physics and
Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Matthew R. Cheetham
- School of Physics and
Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Johannes S. Roth
- School of Physics and
Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Anita C. Blakeston
- School of Physics and
Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Richard J. Bushby
- School of Physics and
Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Stephen D. Evans
- School of Physics and
Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| |
Collapse
|