1
|
Sun YL, Cheng J, Liu BB, Qiao JQ, Zhao LY, Lian HZ, Mao L. Aptamer based hybrid monolithic pipette tips supported by melamine sponge for enrichment of proteins. Anal Chim Acta 2024; 1312:342780. [PMID: 38834272 DOI: 10.1016/j.aca.2024.342780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The convenient preparation and application of functionalized organic-inorganic hybrid monolithic materials have obtained substantial interest in the pretreatment of complex samples by solid-phase extraction (SPE). Compared to the in-tube solid-phase microextraction in fused-silica capillaries, micro SPE in plastic pipette tips have fascinating merits for the easily operated enrichment of trace target analytes from biological samples. However, the poor compatibility of organic-inorganic hybrid monoliths with plastics leads to the rare appearance of commercial hybrid monolithic pipette tips (HMPTs). Therefore, how to synthesize the organic-inorganic hybrid monolithic materials with better extraction performance in plastic pipette tips becomes a challenge. RESULTS We develop a facile and cheap strategy to immobilize organic-inorganic hybrid monoliths in pipette tips. Melamine sponge was employed as the supporting skeleton to in situ assemble amine- and thiol-bifunctionalized hybrid monolithic material via "one pot" in a pipette tip, and gold nanoparticles (GNPs) and thiol-modified aptamer against human α-thrombin were sequentially attached to the hybrid monolith within the HMPTs. The average coverage density of the aptamer with GNPs as an intermediary reached as high as 818.5 pmol μL-1. The enriched thrombin concentration was determined by a sensitive enzymatic chromogenic assay with the limit of detection of 2 nM. The extraction recovery of thrombin at 10 nM in human serum was 86.1 % with a relative standard deviation of 6.1 %. This proposed protocol has been applied to the enrichment and determination of thrombin in real serum sample with strong anti-interference ability, low limit of detection and high recovery. SIGNIFICANCE The amine- and thiol-bifunctionalized HMPTs prepared with sponge as the skeleton frame provided a novel substrate material to decorate aptamers for efficient enrichment of proteins. This enlightens us that we can take advantage of the tunability of sponge assisted HMPTs to produce and tailor a variety of micro SPE pipette tips for broader applications on the analysis of trace targets in complex biological, clinic and environmental samples.
Collapse
Affiliation(s)
- Yue-Lun Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Jie Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Bin-Bin Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Jun-Qin Qiao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Ling-Yu Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China.
| | - Li Mao
- Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Souza ID, Queiroz MEC. Organic-silica hybrid monolithic sorbents for sample preparation techniques: A review on advances in synthesis, characterization, and applications. J Chromatogr A 2024; 1713:464518. [PMID: 38000199 DOI: 10.1016/j.chroma.2023.464518] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Organic-silica hybrid monolithic materials have attracted considerable attention as potential stationary phases in separation science. These materials combine the advantages of organic polymer and silica-based monoliths, including easy preparation, lower back pressure, high permeability, excellent mechanical strength, thermal stability, and tunable surface chemistry with high surface area and selectivity. The outstanding chromatographic efficiency as stationary phase of hybrid monolithic capillary columns for capillary liquid chromatography and capillary electrochromatography has been reported in many papers. Organic-silica hybrid monolithic materials have also been extensively used in the field of sample preparation. Owing to their surface functionalities, these porous sorbents offer unique selectivity for pre-concentration of different analytes in the most complex matrixes by fast dynamic transport. These sorbents not only improve the analytical method sensitivity, but also introduce novelties in terms of extraction devices and instrument coupling strategies. The current review covers the period spanning from 2017 to 2023 and describes the properties of organic-inorganic hybrid monolithic materials, the present status of this technology and summarizes recent developments in their use as innovative sorbents for microextraction sample preparation techniques (solid phase microextraction with pipette tip, offline in-tube SPME, in-tube SPME online with LC, and in-tube SPME directly coupled with mass spectrometry). Aspects such as the synthesis methods (sol-gel process, one-pot approach, and polyhedral oligomeric silsesquioxanes-based procedure), characterization techniques, and strategies to improve extraction efficiency in various applications in different areas (environmental, food, bioanalysis, and proteomics) are also discussed.
Collapse
Affiliation(s)
- Israel D Souza
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, SP 14040-901, Brazil.
| | - Maria Eugênia C Queiroz
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto, SP 14040-901, Brazil
| |
Collapse
|
3
|
Kosmáková A, Zajickova Z, Urban J. Characterization of hybrid organo-silica monoliths for possible application in the gradient elution of peptides. J Sep Sci 2023; 46:e2300617. [PMID: 37880902 DOI: 10.1002/jssc.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023]
Abstract
We characterized thermally polymerized organo-silica hybrid monolithic capillaries to test their applicability in the gradient elution of peptides. We have used a single-pot approach utilizing 3-(methacryloyloxy)propyltrimethoxysilane (MPTMS), ethylene dimethacrylate (EDMA), and n-octadecyl methacrylate (ODM) as functional monomers. The organo-silica monolith containing MPTMS and EDMA was compared with the stationary phase prepared by adding ODM to the original polymerization mixture. Column prepared using a three-monomer system provided a lower accessible volume of flow-through pores, a higher proportion of mesopores, and higher efficiency. We utilized isocratic and gradient elution data to predict peak widths in gradient elution. Both protocols provided comparable results and can be used for peptide peak width prediction. However, applying gradient elution data for peak width prediction seems simpler. Finally, we tested the effect of gradient time on achievable peak capacity in the gradient elution of peptides with a column prepared with a three-monomer system providing a higher peak capacity. However, the performance of hybrid organo-silica monolithic stationary phases in gradient elution of peptides must be improved compared to other monolithic stationary phases. The limiting factor is column efficiency in highly aqueous mobile phases, which needs to be focused on.
Collapse
Affiliation(s)
- Anna Kosmáková
- Department of Chemistry Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Zajickova
- Department of Chemistry and Physics, Barry University, Miami Shores, Florida, USA
| | - Jiří Urban
- Department of Chemistry Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Rusli H, Putri RM, Alni A. Recent Developments of Liquid Chromatography Stationary Phases for Compound Separation: From Proteins to Small Organic Compounds. Molecules 2022; 27:907. [PMID: 35164170 PMCID: PMC8840574 DOI: 10.3390/molecules27030907] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Compound separation plays a key role in producing and analyzing chemical compounds. Various methods are offered to obtain high-quality separation results. Liquid chromatography is one of the most common tools used in compound separation across length scales, from larger biomacromolecules to smaller organic compounds. Liquid chromatography also allows ease of modification, the ability to combine compatible mobile and stationary phases, the ability to conduct qualitative and quantitative analyses, and the ability to concentrate samples. Notably, the main feature of a liquid chromatography setup is the stationary phase. The stationary phase directly interacts with the samples via various basic mode of interactions based on affinity, size, and electrostatic interactions. Different interactions between compounds and the stationary phase will eventually result in compound separation. Recent years have witnessed the development of stationary phases to increase binding selectivity, tunability, and reusability. To demonstrate the use of liquid chromatography across length scales of target molecules, this review discusses the recent development of stationary phases for separating macromolecule proteins and small organic compounds, such as small chiral molecules and polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Handajaya Rusli
- Analytical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Rindia M. Putri
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Anita Alni
- Organic Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| |
Collapse
|
5
|
Walter TH, Alden BA, Berthelette K, Field JA, Lawrence NL, McLaughlin J, Patel AV. Characterization of a highly stable zwitterionic hydrophilic interaction chromatography stationary phase based on hybrid organic/inorganic particles. J Sep Sci 2021; 45:1389-1399. [PMID: 34937126 PMCID: PMC9487986 DOI: 10.1002/jssc.202100859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022]
Abstract
We have characterized a sulfobetaine stationary phase based on 1.7 μm ethylene-bridged hybrid organic/inorganic particles, which is intended for use in hydrophilic interaction chromatography. The efficiency of columns packed with this material were determined as a function of flow rate, demonstrating a minimum reduced plate height of 2.4. The batch-to-batch reproducibility was assessed using the separation of a mixture of acids, bases and neutrals. We compared the retention and selectivity of the hybrid sulfobetaine stationary phase to that of several benchmark materials. The hybrid sulfobetaine material gave strong retention for polar neutrals and high selectivity for methyl groups, hydroxy groups and configurational isomers. Large differences in cation and anion retention were observed among the columns. We characterized the acid and base stability of the hybrid sulfobetaine stationary phase, using accelerated tests at pH 1.3 and 11.0, both at 70°C. The results support a recommended pH range of 2 to 10. We also investigated the performance of columns packed with this material for metal-sensitive analytes, comparing conventional stainless steel column hardware to hardware that incorporates hybrid surface technology to mitigate interactions with metal surfaces. Compared to the conventional columns, the hybrid surface technology columns showed greatly improved peak shape. This article is protected by copyright. All rights reserved.
Collapse
|
6
|
Rapid polymerization of polyhedral oligomeric siloxane-based zwitterionic sulfoalkylbetaine monolithic column in ionic liquid for hydrophilic interaction capillary electrochromatography. J Chromatogr A 2021; 1659:462651. [PMID: 34749184 DOI: 10.1016/j.chroma.2021.462651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022]
Abstract
A novel polyhedral oligomeric siloxane (POSS)-based zwitterionic monolithic capillary column was prepared via one-pot polymerization in ionic liquid porogen, using N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl)ammonium betaine (DMMSA) and methacrylic ethyl trimethylammonium chloride (META) as binary functional monomers, and methacryl substituted POSS as cross-linker. The pore structure, permeability and homogeneity were well tuned by optimizing the polymerization conditions. The resultant monolith was characterized by scanning electron microscopy, nitrogen adsorption/desorption isotherm and Fourier transform infrared spectroscopy. The incorporation of zwitterionic ligand (DMMSA), quaternary amine group (META) and rigid POSS skeleton endows the hybrid organic-silica monolith with high hydrophilicity, electrostatic interaction and good mechanical stability, as well as a tunable electroosmotic flow over wide pH range. A close investigation of capillary electrochromatographic separations of different types of polar compounds such as bases, nucleosides and benzoic acids on such stationary phase exhibited a retention independent column efficiency up to 118,000 plates/m (thiourea), as well as a mixed-mode hydrophilic interaction chromatography (HILIC) retention mechanism including weak electrostatic interaction, hydrophobic interaction and anion exchange.
Collapse
|
7
|
Xie ZT, Asoh TA, Uyama H. Superfast flow reactor derived from the used cigarette filter for the degradation of pollutants in water. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123303. [PMID: 32947707 DOI: 10.1016/j.jhazmat.2020.123303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Developing high value-added products from the waste materials is highly promising from the perspective of environmental protection and resource recovery. Herein, the used cigarette filter was recycled to prepare the flow reactor via a clean and facile strategy. A continuous-flow reduction method was adopted to produce the gold nanoparticles on deacetylated cigarette filter without any extra chemical modifier, reductant or surfactant. The obtained filter was applied as a continuous-flow reactor and showed a high permeability and ultrafast flow catalytic ability. The permeability coefficient of the reactor was about 1.4 × 10-10 m2. This work provided a clean method to covert the waste cigarette filter to useful flow reactor with the relatively simple steps, and the product had a potential for the fast reduction of 4-nitrophenol and dyes including methyl blue and methylene orange.
Collapse
Affiliation(s)
- Zheng-Tian Xie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taka-Aki Asoh
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Lei X, Cui J, Wang S, Huang T, Wu X. Preparation of a biomimetic ionic liquids hybrid polyphosphorylcholine monolithic column for the high efficient capillary microextraction of glycopeptide antibiotics. J Chromatogr A 2020; 1623:461175. [DOI: 10.1016/j.chroma.2020.461175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
|
9
|
Zhao Y, Zeng J, You J, Duan Y, Li Y, Liu C, Liu Z, Yang L, Shen Q, Li Z. A Sol–gel Method for Preparing Poly (N-Isopropyl Acrylamide) Hybrid Column and Its Application in Small Molecular Analysis Using Capillary Liquid Chromatography. Chromatographia 2020. [DOI: 10.1007/s10337-020-03906-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Determination of l-norvaline and l-tryptophan in dietary supplements by nano-LC using an O-[2-(methacryloyloxy)-ethylcarbamoyl]-10,11-dihydroquinidine-silica hybrid monolithic column. J Pharm Anal 2020; 10:70-77. [PMID: 32123601 PMCID: PMC7037541 DOI: 10.1016/j.jpha.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/19/2019] [Accepted: 10/19/2019] [Indexed: 11/23/2022] Open
Abstract
An analytical methodology based on an O-[2-(methacryloyloxy)-ethylcarbamoyl]-10,11-dihydroquinidine (MQD)-silica hybrid monolithic column was developed for the enantioseparation of 9-fluorenylmethoxycarbonyl (FMOC) derivatized amino acids by nano-liquid chromatography. The mobile phase was optimized including the apparent pH, content of ACN, and concentration of the buffer to obtain a satisfactory enantioresolution performance. 27 FMOC derivatized amino acids including 19 protein and 8 non-protein amino acids were tested, and 19 out of them were enantiomerically discriminated obtaining baseline separation for 11 of them. Analytical characteristics of the method were evaluated for norvaline and tryptophan in terms of linearity, precision, accuracy, limits of detection (LOD) and quantitation (LOQ) showing good performance to be applied to the enantiomeric determination of these amino acids in dietary supplements. LOD and LOQ values were 9.3 and 31 μM for norvaline enantiomers and 7.5 and 25 μM for tryptophan enantiomers, respectively. The contents of d-norvaline and d-tryptophan were below their respective LODs in all the analyzed samples. Quantitation of l-tryptophan and l-norvaline showed good agreement with the labeled contents except for one sample which did not show presence of l-norvaline, contrary to the label indication. A method was developed for the enantiomeric separation of amino acids by nano-LC. A novel quinidine-silica hybrid monolith was employed as chiral column. 19 protein and non-protein FMOC-amino acids were enantiomerically discriminated. Analytical characteristics of the developed method were evaluated. Norvaline and tryptophan were enantiomerically determined in dietary supplements.
Collapse
|
11
|
Tan W, Chen Y, Xiong X, Huang S, Fang Z, Chen Y, Ma M, Chen B. Synthesis of a poly(sulfobetaine-co-polyhedral oligomeric silsesquioxane) hybrid monolith via an in-situ ring opening quaternization for use in hydrophilic interaction capillary liquid chromatography. Mikrochim Acta 2020; 187:109. [PMID: 31915938 DOI: 10.1007/s00604-019-4088-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/16/2019] [Indexed: 11/26/2022]
Abstract
An in-situ approach is described for synthesis of poly(sulfobetaine-co-polyhedral oligomeric silsesquioxane) [poly(sulfobetaine-co-POSS)] that can be used in a hybrid monolithic column as a hydrophilic liquid chromatography (HILIC) stationary phase. Synthesis involves (a) radical polymerization of octa(propyl methacrylate)-polyhedral oligomeric silsesquioxane (MA-POSS) and organic monomers such as dimethylaminopropyl methacrylate or vinyl imidazole, and (b) in-situ ring-opening quaternization between 1,4-butane sultone and the organic monomers. The sulfobetaine groups are generated in-situ monolith. This obviates the need for synthesis of sulfobetaine monomer previously. The pore size and permeability of the material can be tuned by using a binary porogenic system (polyethyleneglycol 600 and acetonitrile) and via the composition of the polymerization mixture. The optimized hybrid monolith owns its merits to the presence of POSS and sulfobetaine groups with good mechanical stability, the lack of residual silanol groups, and adequate hydrophilicity. The column filled with the monoliths was evaluated as a stationary phase for HILIC. Several kinds of polar compounds (including nucleosides, bases, phenols, aromatic acids and amides) were separated by using mobile phases with high organic solvent fractions in capillary liquid chromatography. Graphical abstractAn in-situ approach is described for synthesis of poly(sulfobetaine-co-polyhedral oligomeric silsesquioxane) hybrid monolithic column for use in hydrophilic liquid chromatography. The optimized monolith owns good mechanical stability, the lack of residual silanol groups and adequate hydrophilicity. Baseline separation of several kinds of polar compounds is achieved on the column. MA-POSS: octa(propyl-methacrylate) polyhedral oligomeric silsesquioxane; DMAEMA: dimethylaminoethyl methacrylate; AIBN: azodiisobutyronitrile. Poly(DMABS-co-POSS): poly(N-(4-sulfobutyl)-N-methacryloxypropyl- N,N-dimethylammonium-betaine-co-polyhedral oligomeric silsesquioxane).
Collapse
Affiliation(s)
- Wangming Tan
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Ye Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Xiyue Xiong
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, 410081, China
| | - Si Huang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Zhengfa Fang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Yingzhuang Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
12
|
Ma C, Ma S, Chen Y, Wang Y, Ou J, Zhang J, Ye M. Fast fabrication and modification of polyoctahedral silsesquioxane-containing monolithic columns via two-step photo-initiated reactions and their application in proteome analysis of tryptic digests. Talanta 2019; 209:120526. [PMID: 31892036 DOI: 10.1016/j.talanta.2019.120526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023]
Abstract
A fast and robust approach was developed to fabricate and modify hybrid monolithic columns via two-step photo-initiated reactions. At first, acrylopropyl polyoctahedral silsesquioxane (acryl-POSS) and 3-(triallyl silyl) propyl acrylate (TAPA) were chosen as precursors to synthesize poly (POSS-co-TAPA) monolithic column (monolith I) via photo-initiated free-radical polymerization within 10 min, which left lots of allyl groups on the surface of monolith. Secondly, two thiol-containing compounds, penicillamine and 1-octadecanethiol (ODT), were introduced to modify the prepared poly (POSS-co-TAPA) column via photo-initiated thiol-ene click reaction within 20 min. Finally, three resulting monolithic columns were applied to separate phenolic, anilines and antibiotics mixtures. These mixtures were baseline-separated on the monolith modified with penicillamine (monolith II), exhibiting better selectivity than both pristine monolith I and that modified with ODT (monolith III). Additionally, these columns were further used for separation of tryptic digest of HeLa cells by cLC-MS/MS. The 5071 unique peptides mapped to 2442 proteins were identified from HeLa cells digest on monolith II, which were superior over those on monolith III, but slightly lower than those on monolith I. These results demonstrated that these POSS-containing columns exhibited great separation ability for complex samples.
Collapse
Affiliation(s)
- Chen Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yao Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Jing Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
13
|
Li F, Qiu D, He J, Kang J. Preparation of Novel Zwitterionic Monolith for Capillary Electrochromatography and Nano LC–MS Applications. Chromatographia 2019. [DOI: 10.1007/s10337-019-03823-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Xu D, Wang Q, Sánchez-López E, Jiang Z, Marina ML. Preparation of an O-[2-(methacryloyloxy)-ethylcarbamoyl]-10,11-dihydroquinidine-silica hybrid monolithic column for the enantioseparation of amino acids by nano-liquid chromatography. J Chromatogr A 2019; 1593:63-72. [DOI: 10.1016/j.chroma.2019.01.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/16/2022]
|
15
|
Liu Z, Jiang P, Huang G, Yan X, Li XF. Silica Monolith Nested in Sponge (SiMNS): A Composite Monolith as a New Solid Phase Extraction Material for Environmental Analysis. Anal Chem 2019; 91:3659-3666. [DOI: 10.1021/acs.analchem.8b05707] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhongshan Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Ping Jiang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Guang Huang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xiaowen Yan
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
16
|
Zhang W, Jiang L, Fu L, Jia Q. Selective enrichment of glycopeptides based on copper tetra(N-carbonylacrylic) aminephthalocyanine and iminodiacetic acid functionalized polymer monolith. J Sep Sci 2019; 42:1037-1044. [DOI: 10.1002/jssc.201801030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Wenjuan Zhang
- College of Chemistry; Jilin University; Changchun China
| | - Liyan Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; School of Life Sciences; Jilin University; Changchun China
| | - Li Fu
- The Second Hospital of Jilin University; Changchun China
| | - Qiong Jia
- College of Chemistry; Jilin University; Changchun China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education; School of Life Sciences; Jilin University; Changchun China
| |
Collapse
|
17
|
Zhao X, Liu S, Peng J, Li X, Niu H, Zhang H, Wang L, Wu R. Facile one-pot synthesized hydrothermal carbon from cyclodextrin: A stationary phase for hydrophilic interaction liquid chromatography. J Chromatogr A 2019; 1585:144-151. [DOI: 10.1016/j.chroma.2018.11.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 11/30/2022]
|
18
|
Chai M, Chen Y, Xuan R, Ma J, Wang T, Qiu D, Zhang L, Zhang Y. Preparation of attapulgite nanoparticles-based hybrid monolithic column with covalent bond for hydrophilic interaction liquid chromatography. Talanta 2018; 189:397-403. [DOI: 10.1016/j.talanta.2018.07.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022]
|
19
|
Abstract
A strategy for the preparation of silica-based monolithic capillary columns (150 × 0.1 mm) with high selectivity to amino acids is presented. The zwitterionic columns were prepared by coating the silica monolith with [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)-ammonium hydroxide via 3-(trimethoxysilyl)propyl methacrylate. The columns were evaluated under isocratic conditions in hydrophilic interaction liquid chromatography. The best separation of amino acids was obtained on the monolithic column prepared by a stepwise modification procedure where the modification step was repeated four times. The mixture of fifteen amino acids was separated within 13 min using the mobile phase consisting of 75% acetonitrile and 25% 5 mmol/L ammonium acetate at pH 4.5.
Collapse
|
20
|
Lynch KB, Ren J, Beckner MA, He C, Liu S. Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications. Anal Chim Acta 2018; 1046:48-68. [PMID: 30482303 DOI: 10.1016/j.aca.2018.09.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
In this article we survey 256 references (with an emphasis on the papers published in the past decade) on monolithic columns for intact protein separation. Protein enrichment and purification are included in the broadly defined separation. After a brief introduction, we describe the types of monolithic columns and modes of chromatographic separations employed for protein separations. While the majority of the work is still in the research and development phase, papers have been published toward utilizing monolithic columns for practical applications. We survey these papers as well in this review. Characteristics of selected methods along with their pros and cons will also be discussed.
Collapse
Affiliation(s)
- Kyle B Lynch
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Jiangtao Ren
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Matthew A Beckner
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Chiyang He
- School of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Textile Road, Wuhan, 430073, PR China
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States.
| |
Collapse
|
21
|
Zhang W, Jiang L, Wang D, Jia Q. Preparation of copper tetra(N-carbonylacrylic) aminephthalocyanine functionalized zwitterionic-polymer monolith for highly specific capture of glycopeptides. Anal Bioanal Chem 2018; 410:6653-6661. [DOI: 10.1007/s00216-018-1278-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/21/2018] [Accepted: 07/17/2018] [Indexed: 01/05/2023]
|
22
|
Zhu M, Zhang L, Chu Z, Wang S, Chen K, Zhang W, Liu F. Preparation and evaluation of open-tubular capillary columns modified with metal-organic framework incorporated polymeric porous layer for liquid chromatography. Talanta 2018; 184:29-34. [DOI: 10.1016/j.talanta.2018.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 11/30/2022]
|
23
|
Xia C, Jiao F, Gao F, Wang H, Lv Y, Shen Y, Zhang Y, Qian X. Two-Dimensional MoS 2-Based Zwitterionic Hydrophilic Interaction Liquid Chromatography Material for the Specific Enrichment of Glycopeptides. Anal Chem 2018; 90:6651-6659. [PMID: 29742898 DOI: 10.1021/acs.analchem.8b00461] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mass spectrometry (MS)-based glycoproteomics research requires highly efficient sample preparation to eliminate interference from non-glycopeptides and to improve the efficiency of glycopeptide detection. In this work, a novel MoS2/Au-NP (gold nanoparticle)-L-cysteine nanocomposite was prepared for glycopeptide enrichment. The two-dimensional (2D) structured MoS2 nanosheets served as a matrix that could provide a large surface area for immobilizing hydrophilic groups (such as L-cysteine) with low steric hindrance between the materials and the glycopeptides. As a result, the novel nanomaterial possessed an excellent ability to capture glycopeptides. Compared to commercial zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) materials, the novel nanomaterials exhibited excellent enrichment performance with ultrahigh selectivity and sensitivity (approximately 10 fmol), high binding capacity (120 mg g-1), high enrichment recovery (more than 93%), satisfying batch-to-batch reproducibility, and good universality for glycopeptide enrichment. In addition, its outstanding specificity and efficiency for glycopeptide enrichment was confirmed by the detection of glycopeptides from an human serum immunoglobulin G (IgG) tryptic digest in quantities as low as a 1:1250 molar ratio of IgG tryptic digest to bovine serum albumin tryptic digest. The novel nanocomposites were further used for the analysis of complex samples, and 1920 glycopeptide backbones from 775 glycoproteins were identified in three replicate analyses of 50 μg of proteins extracted from HeLa cell exosomes. The resulting highly informative mass spectra indicated that this multifunctional nanomaterial-based enrichment method could be used as a promising tool for the in-depth and comprehensive characterization of glycoproteomes in MS-based glycoproteomics.
Collapse
Affiliation(s)
- Chaoshuang Xia
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , China.,State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| | - Fenglong Jiao
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| | - Fangyuan Gao
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| | - Heping Wang
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China.,School of Chemistry and Chemical Engineering , Ankang University , Ankang , Shaanxi 725000 , China
| | - Yayao Lv
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , China
| | - Yangjun Zhang
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing , Beijing Institute of Life-omics , Beijing 102206 , China
| |
Collapse
|
24
|
Guo ZY, Hai X, Wang YT, Shu Y, Chen XW, Wang JH. Core–Corona Magnetic Nanospheres Functionalized with Zwitterionic Polymer Ionic Liquid for Highly Selective Isolation of Glycoprotein. Biomacromolecules 2017; 19:53-61. [DOI: 10.1021/acs.biomac.7b01231] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhi-Yong Guo
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xin Hai
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yi-Ting Wang
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yang Shu
- Institute
of Biotechnology, College of Life and Health Sciences, Northeastern University, Box H006, Shenyang 110169, China
| | - Xu-Wei Chen
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
25
|
Qiao X, Chen R, Yan H, Shen S. Polyhedral oligomeric silsesquioxane-based hybrid monolithic columns: Recent advances in their preparation and their applications in capillary liquid chromatography. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Huang L, Wu J, Liu M, Mao L, Huang H, Wan Q, Dai Y, Wen Y, Zhang X, Wei Y. Direct surface grafting of mesoporous silica nanoparticles with phospholipid choline-containing copolymers through chain transfer free radical polymerization and their controlled drug delivery. J Colloid Interface Sci 2017; 508:396-404. [DOI: 10.1016/j.jcis.2017.08.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/16/2022]
|
27
|
Lyu H, Zhao H, Qin W, Xie Z. Preparation of a long-alkyl-chain-based hybrid monolithic column with mixed-mode interactions using a "one-pot" process for pressurized capillary electrochromatography. J Sep Sci 2017; 40:4521-4529. [PMID: 28985036 DOI: 10.1002/jssc.201700772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 11/07/2022]
Abstract
A simple "one-pot" approach for the preparation of a new vinyl-functionalized organic-inorganic hybrid monolithic column is described. In this improved method, the hydrolyzed alkoxysilanes of tetramethoxysilane and triethoxyvinylsilane were used as precursors for the synthesis of a silica-based monolith, while 1-hexadecene and sodium ethylenesulfonate were used as vinyl functional monomers along with azobisisobutyronitrile as an initiator. The effects of reaction temperature, urea content, and composition of organic monomers on the column properties (e.g. morphology, mechanical stability, and chromatographic performance) were investigated. The monolithic column was used for the separation of neutral solutes by reversed-phase pressurized capillary. Furthermore, the monolith can separate various aromatic amines, which indicated its excellent cation-exchange capability and hydrophobic interactions. The baseline separation of the aromatic amines was obtained with a column efficiency of up to 78 000 plates/m.
Collapse
Affiliation(s)
- Haixia Lyu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
| | - Heqing Zhao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
| | - Wenfei Qin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
| | - Zenghong Xie
- Institute of Food Safety and Environmental Monitoring, Fuzhou University, Fuzhou, China
| |
Collapse
|
28
|
Tan W, Chang F, Shu Y, Chen Y, Liu J, Chen Y, Ma M, Chen B. The synthesis of Gemini-type sulfobetaine based hybrid monolith and its application in hydrophilic interaction chromatography for small polar molecular. Talanta 2017; 173:113-122. [DOI: 10.1016/j.talanta.2017.05.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 11/25/2022]
|
29
|
Facile and easily popularized synthesis of l-cysteine-functionalized magnetic nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides. Anal Bioanal Chem 2017; 410:989-998. [DOI: 10.1007/s00216-017-0602-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/15/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
|
30
|
Preparation and characterization of hydrophilic hybrid monoliths via thiol-ene click polymerization and their applications in chromatographic analysis and glycopeptides enrichment. J Chromatogr A 2017; 1498:37-45. [DOI: 10.1016/j.chroma.2016.12.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
31
|
Hanfa Zou, 1961–2016. J Chromatogr A 2017. [DOI: 10.1016/j.chroma.2017.03.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Functionalization of hybrid monolithic columns via thiol-ene click reaction for proteomics analysis. J Chromatogr A 2017; 1498:29-36. [DOI: 10.1016/j.chroma.2017.01.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 02/06/2023]
|
33
|
Preparation of organic-silica hybrid monolithic columns via crosslinking of functionalized mesoporous carbon nanoparticles for capillary liquid chromatography. J Chromatogr A 2017; 1498:64-71. [DOI: 10.1016/j.chroma.2017.03.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 11/22/2022]
|
34
|
Jandera P, Janás P. Recent advances in stationary phases and understanding of retention in hydrophilic interaction chromatography. A review. Anal Chim Acta 2017; 967:12-32. [DOI: 10.1016/j.aca.2017.01.060] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/01/2022]
|
35
|
Kip Ç, Demir C, Tuncel A. One pot synthesis of carboxyl functionalized-polyhedral oligomeric siloxane based monolith via photoinitiated thiol-methacrylate polymerization for nano-hydrophilic interaction chromatography. J Chromatogr A 2017; 1502:14-23. [PMID: 28457489 DOI: 10.1016/j.chroma.2017.04.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/27/2017] [Accepted: 04/23/2017] [Indexed: 01/06/2023]
Abstract
A hybrid monolith exhibiting almost retention independent separation performance in hydrophilic interaction chromatography (HILIC) was obtained by one-pot photoinitiated thiol-methacrylate polymerization. Polyhedral oligomeric silsesquioxane containing methacrylate units (POSS-MA) was used as the main monomer and crosslinking agent, together with a hydrophilic ligand with two carboxyl groups, mercaptosuccinic acid (MSA) as the thiol agent and chromatographic ligand. The isocratic separation of nucleosides, nucleotides and organic acids on MSA attached-poly(POSS-MA) monolith was investigated in HILIC mode. The van-Deemter plots for obtained for nucleosides, nucleotides and benzoic acids clearly showed that there were two regions in each graph with two different slopes in the studied range of linear flow rate (i.e. 0.2-4.3mm/s). The slope of plate height-linear velocity curve was so small in the low linear velocity region between 0.2-2.1mm/s while the slope in high linear velocity region between 2.1-4.3mm/s was so higher with respect to the first region. The van-Deemter plots sketched for all analyte grous used in HILIC mode obeyed this tendency Almost "retention independent plate height behavior" was demonstrated in HILIC, using nucleotides, nucleotides or benzoic acids as the analytes in the linear velocity range of 0.2-2.1mm/s. This behavior was explained by the porous structure of the synthesized monolith facilitating the convective transport of analytes. The variation of plate height was not retention-independent within high linear velocity range (>3.2mm/s) when nucleosides were separated in HILIC mode.
Collapse
Affiliation(s)
- Çiğdem Kip
- Chemical Engineering Department, Hacettepe University, 06800, Ankara, Turkey
| | - Cihan Demir
- Chemical Engineering Department, Hacettepe University, 06800, Ankara, Turkey
| | - Ali Tuncel
- Chemical Engineering Department, Hacettepe University, 06800, Ankara, Turkey; Division of Nanotechnology and Nanomedicine, Hacettepe University, 06800 Ankara, Turkey.
| |
Collapse
|
36
|
Ahmadi M, Elmongy H, Madrakian T, Abdel-Rehim M. Nanomaterials as sorbents for sample preparation in bioanalysis: A review. Anal Chim Acta 2017; 958:1-21. [PMID: 28110680 DOI: 10.1016/j.aca.2016.11.062] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 01/02/2023]
|
37
|
Tabasum S, Noreen A, Kanwal A, Zuber M, Anjum MN, Zia KM. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review. Int J Biol Macromol 2017; 98:748-776. [PMID: 28111295 DOI: 10.1016/j.ijbiomac.2017.01.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 02/06/2023]
Abstract
Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement.
Collapse
Affiliation(s)
- Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Arooj Kanwal
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | | | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| |
Collapse
|
38
|
Šesták J, Moravcová D, Křenková J, Planeta J, Roth M, Foret F. Bridged polysilsesquioxane-based wide-bore monolithic capillary columns for hydrophilic interaction chromatography. J Chromatogr A 2017; 1479:204-209. [DOI: 10.1016/j.chroma.2016.11.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/03/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
|
39
|
Liu LH, Yang CX, Yan XP. Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography. J Chromatogr A 2017; 1479:137-144. [DOI: 10.1016/j.chroma.2016.12.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022]
|
40
|
|
41
|
Qi X, Gao S, Ding G, Tang AN. Synthesis of surface Cr (VI)-imprinted magnetic nanoparticles for selective dispersive solid-phase extraction and determination of Cr (VI) in water samples. Talanta 2017; 162:345-353. [DOI: 10.1016/j.talanta.2016.10.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/30/2016] [Accepted: 10/08/2016] [Indexed: 11/16/2022]
|
42
|
Synthesis and evaluation of sulfobetaine zwitterionic polymer bonded stationary phase. Talanta 2016; 161:860-866. [DOI: 10.1016/j.talanta.2016.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/30/2016] [Accepted: 09/03/2016] [Indexed: 11/16/2022]
|
43
|
Wu R, Xie Y, Deng C. Thiol-ene click synthesis of L-Cysteine-bonded zwitterionic hydrophilic magnetic nanoparticles for selective and efficient enrichment of glycopeptides. Talanta 2016; 160:461-469. [DOI: 10.1016/j.talanta.2016.07.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/16/2016] [Accepted: 07/22/2016] [Indexed: 12/16/2022]
|
44
|
Zajickova Z. Advances in the development and applications of organic–silica hybrid monoliths. J Sep Sci 2016; 40:25-48. [DOI: 10.1002/jssc.201600774] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/11/2016] [Accepted: 09/04/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Zuzana Zajickova
- Department of Physical Sciences Barry University Miami Shores FL USA
| |
Collapse
|
45
|
One-Pot Approach to Prepare Organo-silica Hybrid Capillary Monolithic Column with Intact Mesoporous Silica Nanoparticle as Building Block. Sci Rep 2016; 6:34718. [PMID: 27698475 PMCID: PMC5048148 DOI: 10.1038/srep34718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/19/2016] [Indexed: 11/08/2022] Open
Abstract
A facile "one-pot" approach to prepare organo-silica hybrid capillary monolithic column with intact mesoporous silica nanoparticle (IMSN) as crosslinker and building block was described. An IMSN crosslinked octadecyl-silica hybrid capillary monolithic column (IMSN-C18 monolithic column) was successfully prepared, and the effects of fabrication conditions (e.g. concentration of intact mesoporous silica nanoparticle, polycondensation temperature, content of vinyltrimethoxysilane and stearyl methacrylate) on the structures of the IMSN-C18 monolithic column were studied in detail. The IMSN-C18 hybrid monolithic column possessed uniform morphology, good mechanical and pH stability (pH 1.1-11), which was applied to the separations of alkyl benzenes, polycyclic aromatic hydrocarbons (PAHs), as well as proteins. The minimum plate height of 10.5 μm (corresponding to 95000 N m-1) for butylbenzene and high reproducibility were achieved. The analysis of tryptic digest of bovine serum albumin (BSA) was carried out on the IMSN-C18 monolithic column by cLC coupled mass spectrometry (cLC-MS/MS), with the protein sequence coverage of 87.5% for BSA, demonstrating its potential application in proteomics.
Collapse
|
46
|
Li H, Liu C, Wang Q, Zhou H, Jiang Z. The effect of charged groups on hydrophilic monolithic stationary phases on their chromatographic properties. J Chromatogr A 2016; 1469:77-87. [PMID: 27692647 DOI: 10.1016/j.chroma.2016.09.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 01/03/2023]
Abstract
In order to investigate the effect of charged groups present in hydrophilic monolithic stationary phases on their chromatographic properties, three charged hydrophilic monomers, i.e. N,N-dimethyl-N-acryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine (SPDA), [2-(acryloyloxy)ethyl]trimethylammonium chloride (AETA), and 3-sulfopropyl acrylate potassium salt (SPA) were co-polymerized with the crosslinker N,N'-methylenebisacrylamide (MBA), respectively. The physicochemical properties of the three resulting charged hydrophilic monolithic columns were evaluated using scanning electron microscopy, ζ-potential analysis and micro-HPLC. High column efficiency was obtained on the three monolithic columns at a linear velocity of 1mm/s using thiourea as test compound. Comparative characterization of the three charged HILIC phases was then carried out using a set of model compounds, including nucleobases, nucleosides, benzoic acid derivatives, phenols, β-blockers and small peptides. Depending on the combination of stationary phase/mobile phase/solute, both hydrophilic interaction and other potential secondary interactions, including electrostatic interaction, hydrogen-bonding interaction, molecular shape selectivity, could contribute to the over-all retention of the analytes. Because of the strong electrostatic interaction provided by the quaternary ammonium groups in the poly (AETA-co-MBA) monolith, this cationic HILIC monolith exhibited the strongest retention for benzoic acid derivatives and small peptides with distorted peak shapes and the weakest retention for basic β-blockers. The sulfonyl groups on the poly (SPA-co-MBA) hydrophilic monolith could provide strong electrostatic attraction and hydrogen bonding for positively charged analytes and hydrogen-donor/acceptor containing analytes, respectively. Therefore, basic drugs, nucleobases and nucleotides exhibited the strongest retention on this anionic monolith. Because of the weak but distinct cation exchange properties of the zwitterionic poly (SPDA-co-MBA) hydrophilic monolith, it exhibited the best separation for most test analytes (including phenols, β-blockers and small peptides) in terms of selectivity, peak shape and analysis time. The poly (AETA-co-MBA) hydrophilic monolithic column provides the best separation of nucleobases and nucleosides. These results could guide the selection and application of these charged HILIC monoliths in the future.
Collapse
Affiliation(s)
- Haibin Li
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Chusheng Liu
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
47
|
Lv X, Tan W, Chen Y, Chen Y, Ma M, Chen B, Yao S. Facile “one-pot” synthesis of poly(methacrylic acid)-based hybrid monolith via thiol-ene click reaction for hydrophilic interaction chromatography. J Chromatogr A 2016; 1454:49-57. [DOI: 10.1016/j.chroma.2016.05.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/18/2016] [Accepted: 05/22/2016] [Indexed: 01/24/2023]
|
48
|
Ikegami T, Tanaka N. Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:317-342. [PMID: 27306311 DOI: 10.1146/annurev-anchem-071114-040102] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics.
Collapse
Affiliation(s)
- Tohru Ikegami
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan;
| | | |
Collapse
|
49
|
Staňková M, Jandera P. Dual Retention Mechanism in Two-Dimensional LC Separations of Barbiturates, Sulfonamides, Nucleic Bases and Nucleosides on Polymethacrylate Zwitterionic Monolithic Micro-Columns. Chromatographia 2016. [DOI: 10.1007/s10337-016-3094-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Szwed K, Ou J, Huang G, Lin H, Liu Z, Wang H, Zou H. Preparation of cyclodextrin-modified monolithic hybrid columns for the fast enantioseparation of hydroxy acids in capillary liquid chromatography. J Sep Sci 2016; 39:1110-7. [DOI: 10.1002/jssc.201501157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/04/2016] [Accepted: 01/04/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Kamila Szwed
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics; Chinese Academy of Sciences (CAS); Dalian P. R. China
| | - Junjie Ou
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics; Chinese Academy of Sciences (CAS); Dalian P. R. China
| | - Guang Huang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics; Chinese Academy of Sciences (CAS); Dalian P. R. China
| | - Hui Lin
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics; Chinese Academy of Sciences (CAS); Dalian P. R. China
| | - Zhongshan Liu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics; Chinese Academy of Sciences (CAS); Dalian P. R. China
| | - Hongwei Wang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics; Chinese Academy of Sciences (CAS); Dalian P. R. China
| | - Hanfa Zou
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics; Chinese Academy of Sciences (CAS); Dalian P. R. China
| |
Collapse
|