1
|
Chen T, Hu J, Chen Y, Liu Y, Li Y, Xu H. Tracking the environmental fate of fipronil and three of its metabolites in garlic based on sampling rate-corrected in vivo solid phase microextraction combined with gas chromatography-mass spectrometry. Anal Chim Acta 2022; 1190:339263. [PMID: 34857131 DOI: 10.1016/j.aca.2021.339263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/01/2022]
Abstract
In this study, a sampling rate-corrected in vivo solid-phase microextraction-gas chromatography-mass spectrometry method (SR-in vivo SPME-GC-MS) was constructed to simultaneously detect fipronil and three of its metabolites in garlic, and their environmental behavior was long-term monitored in in vivo mode. All of three fipronil metabolites were more difficult to degrade than the parent pesticide. The final degradation rates of the metabolites in garlic were in the range of 4.4%-25.1%, much lower than that of the parent (78.6%-85.8%). While their total residues amount was about 3 times as high as fipronil, exceeding the maximum residue limits regulated by China and the European Union. The steady-state concentrations of fipronil and its metabolites in garlic were positively correlated with the pesticide stress dose. In short, the established in vivo tracking method is efficient and convenient. The features of simple operation, fast analysis, acceptable sensitivity, non-harmful or non-lethal to plants, available repeated and long-term monitoring of the same organism make it attractive for in vivo tracking assay, it is of great significance for the guidance of rational use of fipronil and protection of food safety.
Collapse
Affiliation(s)
- Tiantian Chen
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Jiajia Hu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yanyan Chen
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Ying Liu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yan Li
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hui Xu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Chen T, Yu X, Tian X, Hu J, Chen Y, Long G, Xu H, Yang GF. Study on the environmental fate of three insecticides in garlic by in vivo sampling rate calibrated-solid phase microextraction-gas chromatography-mass spectrometry. Food Chem 2021; 367:130740. [PMID: 34375891 DOI: 10.1016/j.foodchem.2021.130740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022]
Abstract
Traditional sample preparation methods for insecticide analysis are laborious and fatal to living organisms. In the work, an in vivo sampling rate calibrated-solid phase microextraction-gas chromatography-mass spectrometry method was established and successfully used for in vivo sampling and quantitative determination of three insecticides (hexachlorobenzene, fipronil and chlorfenapyr) by direct exposing micron-sized fiber in living garlic. Absorption, enrichment, migration and elimination behavior of insecticides in garlic were investigated. Bioaccumulative effects with obvious tissue differences were observed to all three insecticides, especially for chlorfenapyr. Bioconcentration factors (BCFs) ranging from 0.0342 to 1.0887 were obtained, and the closer to roots, the higher BCFs. The half-life of insecticides in garlic ranged from 0.43 to 0.96 d. In the first 24 h, 55.0% - 80.3% insecticides residues in garlic were eliminated with first-order elimination kinetics. The research provides in vivo insights into the environmental fates of insecticides in complex living system with minimized organism damage.
Collapse
Affiliation(s)
- Tiantian Chen
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xinhe Yu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xinmeng Tian
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jiajia Hu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanyan Chen
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guangdou Long
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hui Xu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Guang-Fu Yang
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
3
|
Lendor S, Gómez-Ríos GA, Boyacı E, Vander Heide H, Pawliszyn J. Space-Resolved Tissue Analysis by Solid-Phase Microextraction Coupled to High-Resolution Mass Spectrometry via Desorption Electrospray Ionization. Anal Chem 2019; 91:10141-10148. [DOI: 10.1021/acs.analchem.9b02157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Ocaña-Rios I, Peña-Alvarez A, Zuñiga-Perez I, Loeza-Fuentes E. Trace analysis of UV filters and musks in living fish by in vivo SPME-GC-MS. Anal Bioanal Chem 2019; 411:3209-3218. [PMID: 30976896 DOI: 10.1007/s00216-019-01791-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Iran Ocaña-Rios
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Araceli Peña-Alvarez
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | | | - Elena Loeza-Fuentes
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Abejas, Conejos y Organismos Acuáticos, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| |
Collapse
|
5
|
Wang W, Li Z, Zhang S, Yang X, Zang X, Wang C, Wang Z. Efficient enrichment of triazole fungicides from fruit and vegetable samples by a spherical porous aromatic framework. NEW J CHEM 2019. [DOI: 10.1039/c8nj06240d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A porous aromatic framework was synthesized and utilized as a novel SPME coating for efficient enrichment of triazole fungicides.
Collapse
Affiliation(s)
- Wenjin Wang
- Department of Chemistry
- College of Science
- Hebei Agricultural University
- Baoding 071001
- China
| | - Zhi Li
- Department of Chemistry
- College of Science
- Hebei Agricultural University
- Baoding 071001
- China
| | - Shuaihua Zhang
- Department of Chemistry
- College of Science
- Hebei Agricultural University
- Baoding 071001
- China
| | - Xiumin Yang
- Department of Chemistry
- College of Science
- Hebei Agricultural University
- Baoding 071001
- China
| | - Xiaohuan Zang
- Department of Chemistry
- College of Science
- Hebei Agricultural University
- Baoding 071001
- China
| | - Chun Wang
- Department of Chemistry
- College of Science
- Hebei Agricultural University
- Baoding 071001
- China
| | - Zhi Wang
- Department of Chemistry
- College of Science
- Hebei Agricultural University
- Baoding 071001
- China
| |
Collapse
|
6
|
Roszkowska A, Tascon M, Bojko B, Goryński K, Dos Santos PR, Cypel M, Pawliszyn J. Equilibrium ex vivo calibration of homogenized tissue for in vivo SPME quantitation of doxorubicin in lung tissue. Talanta 2018; 183:304-310. [PMID: 29567180 DOI: 10.1016/j.talanta.2018.02.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/12/2018] [Accepted: 02/12/2018] [Indexed: 01/26/2023]
Abstract
The fast and sensitive determination of concentrations of anticancer drugs in specific organs can improve the efficacy of chemotherapy and minimize its adverse effects. In this paper, ex vivo solid-phase microextraction (SPME) coupled to LC-MS/MS as a method for rapidly quantitating doxorubicin (DOX) in lung tissue was optimized. Furthermore, the theoretical and practical challenges related to the real-time monitoring of DOX levels in the lung tissue of a living organism (in vivo SPME) are presented. In addition, several parameters for ex vivo/in vivo SPME studies, such as extraction efficiency of autoclaved fibers, intact/homogenized tissue differences, critical tissue amount, and the absence of an internal standard are thoroughly examined. To both accurately quantify DOX in solid tissue and minimize the error related to the lack of an internal standard, a calibration method at equilibrium conditions was chosen. In optimized ex vivo SPME conditions, the targeted compound was extracted by directly introducing a 15 mm (45 µm thickness) mixed-mode fiber into 15 g of homogenized tissue for 20 min, followed by a desorption step in an optimal solvent mixture. The detection limit for DOX was 2.5 µg g-1 of tissue. The optimized ex vivo SPME method was successfully applied for the analysis of DOX in real pig lung biopsies, providing an averaged accuracy and precision of 103.2% and 12.3%, respectively. Additionally, a comparison between SPME and solid-liquid extraction revealed good agreement. The results presented herein demonstrate that the developed SPME method radically simplifies the sample preparation step and eliminates the need for tissue biopsies. These results suggest that SPME can accurately quantify DOX in different tissue compartments and can be potentially useful for monitoring and adjusting drug dosages during chemotherapy in order to achieve effective and safe concentrations of doxorubicin.
Collapse
Affiliation(s)
- Anna Roszkowska
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Marcos Tascon
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Barbara Bojko
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Krzysztof Goryński
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Pedro Reck Dos Santos
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network and Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network and Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
7
|
High-Quality Metal-Organic Framework ZIF-8 Membrane Supported on Electrodeposited ZnO/2-methylimidazole Nanocomposite: Efficient Adsorbent for the Enrichment of Acidic Drugs. Sci Rep 2017; 7:39778. [PMID: 28051129 PMCID: PMC5209695 DOI: 10.1038/srep39778] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/28/2016] [Indexed: 11/18/2022] Open
Abstract
Metal–organic framework (MOF) membranes have received increasing attention as adsorbents, yet the defects in most membrane structures greatly thwart their capacity performance. In this work, we fabricated a novel ZnO/2-methylimidazole nanocomposite with multiple morphology by electrochemical method. The nanocomposite provided sufficient and strong anchorages for the zeolitic imidazolate frameworks-8 (ZIF-8) membrane. Thus, a crack-free and uniform MOF membrane with high performance was successfully obtained. In this case, 2-methylimidazole was believed to react with ZnO to form uniform ZIF nuclei, which induced and guided the growth of ZIF-8 membrane. The as-prepared ZIF-8 membrane had large surface area and good thermal stability. As expected, it displayed high adsorption capacity for acidic drugs (e.g., ibuprofen, ketoprofen and acetylsalicylic acid) as they could interact through hydrophobic, hydrogen bonding and π-π stacking interaction. Accordingly, by coupling with gas chromatography the ZIF-8 membrane was successfully applied to the real-time dynamic monitoring of ibuprofen in patient’s urine.
Collapse
|
8
|
Xu J, Chen G, Huang S, Qiu J, Jiang R, Zhu F, Ouyang G. Application of in vivo solid-phase microextraction in environmental analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Zhang Q, Zhou L, Chen H, Wang CZ, Xia Z, Yuan CS. Solid-phase microextraction technology for in vitro and in vivo metabolite analysis. Trends Analyt Chem 2016; 80:57-65. [PMID: 27695152 DOI: 10.1016/j.trac.2016.02.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Analysis of endogenous metabolites in biological samples may lead to the identification of biomarkers in metabolomics studies. To achieve accurate sample analysis, a combined method of continuous quick sampling and extraction is required for online compound detection. Solid-phase microextraction (SPME) integrates sampling, extraction and concentration into a single solvent-free step for chemical analysis. SPME has a number of advantages, including simplicity, high sensitivity and a relatively non-invasive nature. In this article, we reviewed SPME technology in in vitro and in vivo analyses of metabolites after the ingestion of herbal medicines, foods and pharmaceutical agents. The metabolites of microorganisms in dietary supplements and in the gastrointestinal tract will also be examined. As a promising technology in biomedical and pharmaceutical research, SPME and its future applications will depend on advances in analytical technologies and material science.
Collapse
Affiliation(s)
- Qihui Zhang
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Liandi Zhou
- Department of Immunology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Hua Chen
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, U.S.A
| | - Zhining Xia
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, U.S.A
| |
Collapse
|
10
|
Souza-Silva ÉA, Reyes-Garcés N, Gómez-Ríos GA, Boyacı E, Bojko B, Pawliszyn J. A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
In vivo and ex vivo SPME: a low invasive sampling and sample preparation tool in clinical bioanalysis. Bioanalysis 2015; 6:1227-39. [PMID: 24946923 DOI: 10.4155/bio.14.91] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Solid phase microextraction (SPME) is well-established technology in bioanalysis. Current review discusses the features of SPME, which determine the non- or low-invasiveness of the method in biomedical analysis. In the first section we analyze the factors, which have significant influence on the SPME sampling device performance in the view of sampling safety and efficiency. In the later sections applicability of various SPME approaches for analysis of easily accessible samples routinely used for analysis (e.g., urine, blood) as well as limited availability samples (tissues) is discussed. Moreover, the examples of sampling alternative matrices such as hair, saliva, sweat or breath are presented. The advantages and limitation of the technology in the view of future development of SPME are also reviewed.
Collapse
|
12
|
Molecularly imprinted sol-gel nanofibers based solid phase microextraction coupled on-line with high performance liquid chromatography for selective determination of acesulfame. Talanta 2015; 134:340-347. [DOI: 10.1016/j.talanta.2014.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/27/2014] [Accepted: 11/06/2014] [Indexed: 11/21/2022]
|
13
|
Effervescent-salt-assisted dispersive micro-solid-phase extraction using mesoporous hybrid materials coupled with ultra-performance liquid chromatography for the determination of trace-level compounds in complicated plant preparations. Anal Bioanal Chem 2014; 407:1763-73. [DOI: 10.1007/s00216-014-8396-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/20/2014] [Accepted: 12/08/2014] [Indexed: 10/24/2022]
|
14
|
Polyaniline sheathed electrospun nanofiber bar for in vivo extraction of trace acidic phytohormones in plant tissue. J Chromatogr A 2014; 1342:16-23. [DOI: 10.1016/j.chroma.2014.03.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 11/22/2022]
|
15
|
Yang C, Wang J, Li D. Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: a review. Anal Chim Acta 2013; 799:8-22. [PMID: 24091369 DOI: 10.1016/j.aca.2013.07.069] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 11/25/2022]
Abstract
Vegetables and fruits are necessary for human health, and traditional Chinese medicine that uses plant materials can cure diseases. Thus, understanding the composition of plant matrix has gained increased attention in recent years. Since plant matrix is very complex, the extraction, separation and quantitation of these chemicals are challenging. In this review we focus on the microextraction techniques used in the determination of volatile and semivolatile organic compounds (such as esters, alcohols, aldehydes, hydrocarbons, ketones, terpenes, sesquiterpene, phenols, acids, plant secondary metabolites and pesticides) from plants (e.g., fruits, vegetables, medicinal plants, tree leaves, etc.). These microextraction techniques include: solid phase microextraction (SPME), stir-bar sorptive extraction (SBSE), single drop microextraction (SDME), hollow fiber liquid phase microextraction (HF-LPME), dispersive liquid liquid microextraction (DLLME), and gas purge microsyringe extraction (GP-MSE). We have taken into consideration papers published from 2008 to the end of January 2013, and provided critical and interpretative review on these techniques, and formulated future trends in microextraction for the determination of volatile and semivolatile compounds from plants.
Collapse
Affiliation(s)
- Cui Yang
- Key Laboratory of Natural Resource of the Changbai Mountain and Functional Molecular (Yanbian University), Ministry of Education, Park Road 977, Yanji City, Jilin Province 133002, China
| | | | | |
Collapse
|