1
|
Temur N, Dadi S, Nisari M, Ucuncuoglu N, Avan I, Ocsoy I. UV light promoted dihydrolipoic acid and its alanine derivative directed rapid synthesis of stable gold nanoparticles and their catalytic activity. Sci Rep 2024; 14:24697. [PMID: 39433872 PMCID: PMC11494073 DOI: 10.1038/s41598-024-76772-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
In general, colloidal gold nanoparticles (AuNPs) have been synthesized in heated or boiling water containing HAuCl4 precursor with sodium citrate as reducing stabilizing reagent. Although temperature plays a driving for synthesis of AuNPs, elevated temperature in thermal reduction method causes aggregation of the AuNPs. The preferential, rapid and strong binding of dihydro-lipoic acid and its derivatives on surface of AuNPs via thiol - Au chemistry promote the production of very stable AuNPs. In this study, we have developed citric acid (CA), dihydrolipoic acid (DHLA) and DHLA-Alanine (DHLA-Ala) directed rapid synthesis of ultra-stable AuNPs, DHLA@AuNPs and DHLA-Ala@AuNPs, under the UV (311 nm) irradiation at room temperature (RT: 25 °C) in around 10 min (min). CA is used as a potential reducing agent to expedite both reduction of Au3+ ion and AuNP formation, DHLA and DHLA-Ala act as stabilizing agents by replacing CA molecules on surface of AuNPs in order to produce quite stable AuNP. It is worthy to mention that reduction of Au3+ ion, formation and surface stabilization of AuNPs are consequently occurred in one step. We also investigated how experimental parameters including reaction time and temperature, pH of reaction solution, affect formation of the AuNPs. The effects of salt concentration and storage temperature were studied to show stability of the AuNPs. The synthesized DHLA@AuNPs and DHLA-Alanine@AuNPs were characterized via UV-Vis spectrophotometer (UV-Vis), scanning transmission electron microscope (STEM), dynamic light scattering (DLS) and Zeta potential (ZT) devices. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) was efficiently catalyzed by the AuNPs in the presence of sodium borohydride in aqueous solution.
Collapse
Affiliation(s)
- Nimet Temur
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey
| | - Seyma Dadi
- Department of Nanotechnology Engineering, Abdullah Gül University, Kayseri, 38080, Turkey
| | - Mustafa Nisari
- Department of Medical Biochemistry, Faculty of Dentistry, University of Nuh Naci Yazgan, Kayseri, 38090, Turkey
| | - Neslihan Ucuncuoglu
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Ilker Avan
- Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, 26470, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey.
| |
Collapse
|
2
|
Sun YL, Cheng J, Liu BB, Qiao JQ, Zhao LY, Lian HZ, Mao L. Aptamer based hybrid monolithic pipette tips supported by melamine sponge for enrichment of proteins. Anal Chim Acta 2024; 1312:342780. [PMID: 38834272 DOI: 10.1016/j.aca.2024.342780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND The convenient preparation and application of functionalized organic-inorganic hybrid monolithic materials have obtained substantial interest in the pretreatment of complex samples by solid-phase extraction (SPE). Compared to the in-tube solid-phase microextraction in fused-silica capillaries, micro SPE in plastic pipette tips have fascinating merits for the easily operated enrichment of trace target analytes from biological samples. However, the poor compatibility of organic-inorganic hybrid monoliths with plastics leads to the rare appearance of commercial hybrid monolithic pipette tips (HMPTs). Therefore, how to synthesize the organic-inorganic hybrid monolithic materials with better extraction performance in plastic pipette tips becomes a challenge. RESULTS We develop a facile and cheap strategy to immobilize organic-inorganic hybrid monoliths in pipette tips. Melamine sponge was employed as the supporting skeleton to in situ assemble amine- and thiol-bifunctionalized hybrid monolithic material via "one pot" in a pipette tip, and gold nanoparticles (GNPs) and thiol-modified aptamer against human α-thrombin were sequentially attached to the hybrid monolith within the HMPTs. The average coverage density of the aptamer with GNPs as an intermediary reached as high as 818.5 pmol μL-1. The enriched thrombin concentration was determined by a sensitive enzymatic chromogenic assay with the limit of detection of 2 nM. The extraction recovery of thrombin at 10 nM in human serum was 86.1 % with a relative standard deviation of 6.1 %. This proposed protocol has been applied to the enrichment and determination of thrombin in real serum sample with strong anti-interference ability, low limit of detection and high recovery. SIGNIFICANCE The amine- and thiol-bifunctionalized HMPTs prepared with sponge as the skeleton frame provided a novel substrate material to decorate aptamers for efficient enrichment of proteins. This enlightens us that we can take advantage of the tunability of sponge assisted HMPTs to produce and tailor a variety of micro SPE pipette tips for broader applications on the analysis of trace targets in complex biological, clinic and environmental samples.
Collapse
Affiliation(s)
- Yue-Lun Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Jie Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Bin-Bin Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Jun-Qin Qiao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Ling-Yu Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China.
| | - Li Mao
- Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
3
|
Uğurlu Ö, Man E, Gök O, Ülker G, Soytürk H, Özyurt C, Evran S. A review of aptamer-conjugated nanomaterials for analytical sample preparation: Classification according to the utilized nanomaterials. Anal Chim Acta 2024; 1287:342001. [PMID: 38182359 DOI: 10.1016/j.aca.2023.342001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Sample extraction before detection is a critical step in analysis. Since targets of interest are often found in complex matrices, the sample can not be directly introduced to the analytical instrument. Nanomaterials with unique physical-chemical properties are excellent supports for use in sorbent-based extraction. However, they lack selectivity and thus need to be functionalized with target-capturing molecules. Antibodies and molecularly imprinted polymers (MIPs) can be used for this purpose, but they have some problems that limit their practical applications. Hence, functionalization of nanomaterials for selectivity remains a problem. RESULTS Nucleic acid aptamers are affinity reagents that can provide superiority to antibodies since they can be selected in vitro and at a lower cost. Moreover, aptamers can be chemically synthesized and easily modified with different functional groups. Hence, aptamers are good candidates to impart selectivity to the nanomaterials. Recent studies focus on the integration of aptamers with magnetic nanoparticles, carbon-based nanomaterials, metal-organic frameworks, gold nanoparticles, gold nanorods, silica nanomaterials, and nanofibers. The unique properties of nanomaterials and aptamers make the aptamer-conjugated nanomaterials attractive for use in sample preparation. Aptamer-functionalized nanomaterials have been successfully used for selective extraction of proteins, small molecules, and cells from different types of complex samples such as serum, urine, and milk. In particular, magnetic nanoparticles have a wider use due to the rapid extraction of the sample under magnetic field. SIGNIFICANCE In this review, we aim to emphasize how beneficial features of nanomaterials and aptamers could be combined for extraction or enrichment of the analytes from complex samples. We aim to highlight that the benefits are twofold in terms of selectivity and efficiency when employing nanomaterials and aptamers together as a single platform.
Collapse
Affiliation(s)
- Özge Uğurlu
- Department of Medical Services and Techniques, Hatay Vocational School of Health Services, Hatay Mustafa Kemal University, Tayfur Sökmen Campus, 31060, Alahan-Antakya, Hatay, Turkey; Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Ezgi Man
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey; EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, 35100, İzmir, Turkey
| | - Oğuz Gök
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Gözde Ülker
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Hakan Soytürk
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey
| | - Canan Özyurt
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Turkey.
| |
Collapse
|
4
|
Bao Y, Oluwafemi A. Recent advances in surface modified gold nanorods and their improved sensing performance. Chem Commun (Camb) 2024; 60:469-481. [PMID: 38105689 DOI: 10.1039/d3cc04056a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Gold nanorods (AuNRs) have received tremendous attention recently in the fields of sensing and detection applications due to their unique characteristic of surface plasmon resonance. Surface modification of the AuNRs is a necessary path to effectively utilize their properties for these applications. In this Article, we have focused both on demonstrating the recent advances in methods for surface functionalization of AuNRs as well as their use for improved sensing performance using various techniques. The main surface modification methods discussed include ligand exchange with the assistance of a thiol-group, the layer by layer assembly method, and depositing inorganic materials with the desired surface and morphology. Covered techniques that can then be applied for using these functionalized AuNRs include colourimetric sensing, refractive index sensing and surface enhance Raman scattering sensing. Finally, the outlook on the future development of surface modified AuNRs for improved sensing performance is considered.
Collapse
Affiliation(s)
- Ying Bao
- Department of Chemistry, Western Washington University, Bellingham, Washington, 98225, USA.
| | - Ayomide Oluwafemi
- Department of Chemistry, Western Washington University, Bellingham, Washington, 98225, USA.
| |
Collapse
|
5
|
Fathi-Karkan S, Mirinejad S, Ulucan-Karnak F, Mukhtar M, Almanghadim HG, Sargazi S, Rahdar A, Díez-Pascual AM. Biomedical applications of aptamer-modified chitosan nanomaterials: An updated review. Int J Biol Macromol 2023; 238:124103. [PMID: 36948344 DOI: 10.1016/j.ijbiomac.2023.124103] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023]
Abstract
Among polysaccharides of environmental and economic interest, chitosan (CS) is receiving much attention, particularly in the food and biotechnology industries to encapsulate active food ingredients and immobilize enzymes. CS nanoparticles (CS NPs) combine the intrinsic beneficial properties of both natural polymers and nanoscale particles such as quantum size effect, biocompatibility, biodegradability, and ease of modification, and have great potential for bioimaging, drug delivery, and biosensing applications. Aptamers are single-stranded oligonucleotides that can fold into predetermined structures and bind to the corresponding biomolecules. They are mainly used as targeting ligands in biosensors, disease diagnostic kits and treatment strategies. They can deliver contrast agents and drugs into cancer cells and tissues, control microorganism growth and precisely target pathogens. Aptamer-conjugated CS NPs can significantly improve the efficacy of conventional therapies, minimize their side effects on normal tissues, and overcome the enhanced permeability retention (EPR) effect. Further, aptamer-conjugated carbohydrate-based nanobiopolymers have shown excellent antibacterial and antiviral properties and can be used to develop novel biosensors for the efficient detection of antibiotics, toxins, and other biomolecules. This updated review aims to provide a comprehensive overview of the bioapplications of aptamer-conjugated CS NPs used as innovative diagnostic and therapeutic platforms, their limitations, and potential future directions.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, İzmir 35100, Turkey
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary.
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
6
|
Li M, Wei J, Song Y, Chen F. Gold nanocrystals: optical properties, fine-tuning of the shape, and biomedical applications. RSC Adv 2022; 12:23057-23073. [PMID: 36090439 PMCID: PMC9380198 DOI: 10.1039/d2ra04242h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Noble metal nanomaterials with special physical and chemical properties have attracted considerable attention in the past decades. In particular, Au nanocrystals (NCs), which possess high chemical inertness and unique surface plasmon resonance (SPR), have attracted extensive research interest. In this study, we review the properties and preparation of Au NCs with different morphologies as well as their important applications in biological detection. The preparation of Au NCs with different shapes by many methods such as seed-mediated growth method, seedless synthesis, polyol process, ultrasonic method, and hydrothermal treatment has already been introduced. In the seed-mediated growth method, the influence factors in determining the final shape of Au NCs are discussed. Au NCs, which show significant size-dependent color differences are proposed for preparing biological probes to detect biomacromolecules such as DNA and protein, while probe conjugate molecules serves as unique coupling agents with a target. Particularly, Au nanorods (NRs) have some unique advantages in the application of biological probes and photothermal cancer therapy compared to Au nanoparticles (NPs).
Collapse
Affiliation(s)
- Meng Li
- Resources and Environment Innovation Institute, Shandong Jianzhu University Jinan 250101 P. R. China
| | - Jianlu Wei
- Department of Orthopaedic Surgery, Qilu Hospital Shandong University 107 Wenhua Xi Road Jinan 250012 P. R. China
| | - Yang Song
- Resources and Environment Innovation Institute, Shandong Jianzhu University Jinan 250101 P. R. China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University Jinan 250101 P. R. China
| |
Collapse
|
7
|
Liu F, Zhang C, Duan Y, Ma J, Wang Y, Chen G. In vitro selection and characterization of a DNA aptamer targeted to Prorocentrum minimum-A common harmful algae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154771. [PMID: 35339548 DOI: 10.1016/j.scitotenv.2022.154771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Prorocentrum minimum is a common diarrhetic shellfish toxins-producing marine microalga that may seriously endanger marine resources and cause great economic losses. The development of a novel rapid detection technique is of great importance for the prevention and control of the damage caused by P. minimum. In this study, the aptamer against P. minimum was for the first time generated from an artificially synthesized single-stranded DNA library by systematic evolution of ligand by exponential enrichment (SELEX), using P. minimum and P. minimum-related species, including Prorocentrum donghaiense, Prorocentrum lima and Prorocentrum micans as target and counter-screening species, respectively. The aptamer library was successfully obtained at the end of 18 rounds of SELEX-screening by continuously monitoring the binding ratio of the resultant ssDNA from each round. Three sequences (Apt 1, Apt 2 and Apt 3) with the highest frequency in the aptamer library resulted from high-throughput sequencing were first selected as candidate aptamers. The secondary structure of these sequences was predicted and analyzed. In addition, the specificity and affinity of these candidate aptamers were determined by flow cytometry analysis. The results indicated that these aptamers had high specificity and affinity, with a KD of (224.6 ± 8.8) nM (Apt 1), (286.6 ± 13.9) nM (Apt 2) and (388.5 ± 44.6) nM (Apt 3), respectively. Apt 1 was therefore chosen as the best aptamer against P. minimum. Finally, the fluorescence microscopic examination further confirmed that Apt 1 can well bind to P. minimum. In summary, Apt 1 may be promising for being used as a novel molecular recognition element for P. minimum.
Collapse
Affiliation(s)
- Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Jinju Ma
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| |
Collapse
|
8
|
Ekrikaya S, Yilmaz E, Celik C, Demirbuga S, Ildiz N, Demirbas A, Ocsoy I. Investigation of ellagic acid rich-berry extracts directed silver nanoparticles synthesis and their antimicrobial properties with potential mechanisms towards Enterococcus faecalis and Candida albicans. J Biotechnol 2021; 341:155-162. [PMID: 34601019 DOI: 10.1016/j.jbiotec.2021.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
The essential goals of this present study are to elucidate the formation mechanism of ellagic acid rich-blackberry, BBE, (Rubus fruticosus L.) and raspberry, RBE, (Rubus idaeus L.) extracts directed silver nanoparticles and to investigate thier antimicrobial properties towards model dental pathogens E. faecalis and C. albicans compared to BBE, RBE, NaOCl, CHX and EDTA. Both %5 w/w of BBE and RBE reacted with 5 mM Ag + ions at room temperature (25 °C) under mild-stirring, the formation of BBE and RBE directed b@Ag NP and r@Ag NP was monitored over time by using an Uv-vis spectrophotometer. Both b@Ag and r@Ag NPs were also complementarily characterized with SEM and FT-IR. In terms of the antimicrobial studies, b@Ag NP, r@Ag NP, %5 BBE and RBE, 5 mM AgNO3, %5 NaOCl, %1,5 CHX and %15 EDTA were separately incubated with E. faecalis and C. albicans suspensions. The results were evaluated with student t-test using GraphPad Prism 8.0.1 statistical software (P < 0.05). While formation of b@Ag NP was confirmed with characteristic absorbance at ~435 nm in 20 min (min) of incubation, r@Ag NP did not give absorbance till 80 min owing to concentration of ellagic acid acted as a reducing and stabilizng agent for formation of the Ag NPs. Intrestingly, 50 ppm r@Ag NP inactivated ∼89% and ∼99% of E. faecalis and C. albicans cell, respectively, ∼25% and ∼40% cell inactivations for E. faecalis and C. albicans were observed respectively with 50 ppm b@Ag NP. We showed that 50 ppm r@Ag NP has effective antimicrobial property as much as mostly used %5 NaOCl and %1,5 CHX solutions.
Collapse
Affiliation(s)
- Semiha Ekrikaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey; Department of Restorative Dentistry, Faculty of Dentistry, Erciyes University, 38039 Kayseri, Turkey
| | - Ebubekir Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey; Department of Restorative Dentistry, Faculty of Dentistry, Erciyes University, 38039 Kayseri, Turkey
| | - Cagla Celik
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Sezer Demirbuga
- Department of Restorative Dentistry, Faculty of Dentistry, Erciyes University, 38039 Kayseri, Turkey
| | - Nilay Ildiz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Ayse Demirbas
- Faculty of Fisheries and Aquatic Sciences, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey.
| |
Collapse
|
9
|
A disposable gold foil paper-based aptasensor for detection of enteropathogenic Escherichia coli with SERS analysis and magnetic separation technology. Mikrochim Acta 2021; 188:396. [PMID: 34714421 DOI: 10.1007/s00604-021-05052-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Rapid and sensitive detection of enteropathogenic Escherichia coli (EPEC) in fluids with complex background is an important task for safety quality control in the field of medicine, environment, and food. In this study, a gold foil paper-based aptasensor was developed for the detection of enteropathogenic EPEC O26:K60 with surface-enhanced Raman spectroscopy (SERS) and magnetic separation technology mediated by Fe3O4@Au composite. The gold foil paper was firstly modified with thiolated capture probe and SERS tag. The thiolated aptamer probe for EPEC was immobilized onto a Fe3O4@Au composite. In the presence of EPEC, highly specific recognition between the aptamer probe and EPEC made the Fe3O4@Au composite partially dissociated from the gold foil paper. This led to a decreased Raman intensity response, which showed an obvious negative linear correlation with increasing concentration of EPEC over a wide concentration range from 10 to 107 CFU/mL under an excitation wavelength of 633 nm. The detection limit was about 2.86 CFU/mL in a buffer solution and a licorice extractum and the detection time was only 2.5 h. The results demonstrate that the gold foil paper-based aptasensor can be an excellent biosensing platform that offers a reliable, rapid, and sensitive alternative for EPEC detection.
Collapse
|
10
|
A Ocsoy M, Yusufbeyoglu S, Ildiz N, Ulgen A, Ocsoy I. DNA Aptamer-Conjugated Magnetic Graphene Oxide for Pathogenic Bacteria Aggregation: Selective and Enhanced Photothermal Therapy for Effective and Rapid Killing. ACS OMEGA 2021; 6:20637-20643. [PMID: 34396009 PMCID: PMC8359158 DOI: 10.1021/acsomega.1c02832] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 05/19/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), often called "superbug", is a nosocomial and multidrug resistance bacterium that shows resistance to β-lactam antibiotics. There has been high demand to develop an alternative treatment model to antibiotics for efficiently fighting MRSA. Herein, we developed DNA aptamer-conjugated magnetic graphene oxide (Apt@MGO) as a multifunctional and biocompatible nanoplatform for selective and rapid eradication of MRSA and evaluated heat generation and cell death performance of Apt@MGO for the first time under dispersed and aggregated states. The aptamer sequence was specifically selected for MRSA and acted as a molecular targeting probe for selective MRSA recognition and antibiotic-free therapy. Magnetic graphene oxide (MGO) serves as a nanoplatform for aptamer conjugation and as a photothermal agent by converting near-infrared (NIR) light to heat. Iron oxide nanoparticles (Fe3O4 NPs) are formed on GO to prepare MGO, which shows magnetic properties for collecting MRSA cells in a certain area in the reaction tube by an external magnet. The collected MGO induces remarkably high local heating and eventual MRSA cell death under NIR laser irradiation. We demonstrate that Apt@MGO resulted in ∼78% MRSA and over >97% MRSA cell inactivation in dispersed and aggregated states, respectively, under 200 seconds (sn) exposure of NIR irradiation (808 nm, 1.1 W cm-2). An in vitro study highlights that Apt@MGO is considered a targeted, biocompatible, and light-activated photothermal agent for efficient and rapid killing of MRSA in the aggregated state under NIR light.
Collapse
Affiliation(s)
- Muserref A Ocsoy
- Department
of Physics, Faculty of Science, Erciyes
University, 38039 Kayseri, Turkey
| | - Sadi Yusufbeyoglu
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
- Department
of Pharmacognosy, Faculty of Gülhane Pharmacy, University of Health Sciences, 06010 Ankara, Turkey
| | - Nilay Ildiz
- Department
of Pharmaceutical Microbiology, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Ahmet Ulgen
- Department
of Chemistry, Faculty of Science, Erciyes
University, 38039 Kayseri, Turkey
| | - Ismail Ocsoy
- Department
of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| |
Collapse
|
11
|
Advances in aptamer-based nanomaterials for separation and analysis of non-genetic biomarkers in biofluids. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Mori K, Sakurai K. Clickable gold-nanoparticles as generic probe precursors for facile photoaffinity labeling application. Org Biomol Chem 2021; 19:1268-1273. [DOI: 10.1039/d0ob01688h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clickable photoreactive gold nanoparticles have been developed to facilitate one-step preparation of photoaffinity probes for bioactive small molecules and their application to target protein analysis.
Collapse
Affiliation(s)
- Kanna Mori
- Tokyo University of Agriculture and Technology
- Department of Biotechnology and Life Science
- Tokyo 184-8588
- Japan
| | - Kaori Sakurai
- Tokyo University of Agriculture and Technology
- Department of Biotechnology and Life Science
- Tokyo 184-8588
- Japan
| |
Collapse
|
13
|
Liu JJ, Yan HH, Yuan D, Zhang Q, Li CM, Huang CZ, Wang J. The synergistic effect enhanced chemical etching of gold nanorods for the rapid and sensitive detection of biomarks. Talanta 2020; 219:121203. [DOI: 10.1016/j.talanta.2020.121203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
|
14
|
Theranostic cancer applications utilized by nanoparticles offering multimodal systems and future insights. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03397-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
DNAzyme-functionalized porous carbon nanospheres serve as a fluorescent nanoprobe for imaging detection of microRNA-21 and zinc ion in living cells. Mikrochim Acta 2020; 187:249. [DOI: 10.1007/s00604-020-04226-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
|
16
|
Ji X, Wang Z, Niu S, Ding C. Non-template synthesis of porous carbon nanospheres coated with a DNA-cross-linked hydrogel for the simultaneous imaging of dual biomarkers in living cells. Chem Commun (Camb) 2020; 56:5271-5274. [DOI: 10.1039/d0cc00499e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A fluorescent nanoprobe was designed based on porous-carbon nanospheres and DNA hybrid hydrogel for the simultaneous imaging of triphosadenine and biothiol in living cells.
Collapse
Affiliation(s)
- Xiaoting Ji
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology
| | - Zhenbo Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology
| | - Shuyan Niu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology
| |
Collapse
|
17
|
Yasun E, Trusty T, Abolhosn RW, Clarke NJ, Mezić I. Electrokinetic Mixing for Improving the Kinetics of an HbA1c Immunoassay. Sci Rep 2019; 9:19885. [PMID: 31882622 PMCID: PMC6934526 DOI: 10.1038/s41598-019-56205-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 11/27/2019] [Indexed: 01/29/2023] Open
Abstract
The efficiency of the diagnostic platforms utilizing ELISA technique or immunoassays depends highly on incubation times of the recognition elements or signaling molecules and volume of the patient samples. In conventional immunoassays, long incubation times and excess amounts of the recognition and signaling molecules are used. The technology proposed here uses electrokinetic mixing of the reagents involved in a sandwich immunoassay based diagnostic assay in electrode-enabled microwell plates in such a way that the incubation times and volumes can be reduced substantially. The integration of the electrodes at the bottom of the conventional microwell plates ensures that the motions of the liquid flows in the wells can be controlled through the application of high frequency AC current along these electrodes. The strategy to generate chaotic mixing by modification of standard multiwell plates, enables its use in high throughput screening, in contrast to microfluidic channel-based technologies that are difficult to incorporate into conventional plates. An immunoassay for detection of glycated hemoglobin (HbA1c) that can reveal a patient's average level of blood sugar from the past 2-3 months instead of just measuring the current levels and thereby constitutes a reliable diabetes monitoring platform was chosen as a pilot assay for technology demonstration. The overall incubation time for the assay was reduced by approximately a factor of five when electrokinetic mixing was employed. Furthermore, when the quantity of the reagents was reduced by half, almost no distinguishable signals could be obtained with conventional immunoassay, while electrokinetic mixing still facilitated acquisition of signals while varying concentration of the glycated hemoglobin. There was also a substantial difference in the signal intensities especially for the low concentrations of the HbA1c obtained from electrokinetic mixing assisted and conventional immunoassay when the quantity of the reagents and incubation times were kept constant, which is also an indication of the increase in bioassay efficiency. The electrokinetic mixing technique has the potential to improve the efficiency of immunoassay based diagnostic platforms with reduced assay time and reagent amounts, leading to higher throughput analysis of clinical samples. It may also open new avenues in point of care diagnostic devices, where kinetics and sampling size/volume play a critical role.
Collapse
Affiliation(s)
- Emir Yasun
- Department of Mechanical Engineering and Biological Nanostructures Laboratory, California NanoSystems Institute (CNSI), University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- iFluidics, Integrated Fluidics, 75 Robin Hill Rd, Goleta, CA, 93117, USA
| | - Travis Trusty
- Department of Mechanical Engineering and Biological Nanostructures Laboratory, California NanoSystems Institute (CNSI), University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- iFluidics, Integrated Fluidics, 75 Robin Hill Rd, Goleta, CA, 93117, USA
| | - Rania W Abolhosn
- Quest Diagnostics Nichols Institute, Advanced Technology R&D, 33608 Ortega Hwy, San Juan Capistrano, CA, 92675, USA
| | - Nigel J Clarke
- Quest Diagnostics Nichols Institute, Advanced Technology R&D, 33608 Ortega Hwy, San Juan Capistrano, CA, 92675, USA
| | - Igor Mezić
- Department of Mechanical Engineering and Biological Nanostructures Laboratory, California NanoSystems Institute (CNSI), University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
18
|
Narita S, Kobayashi N, Mori K, Sakurai K. Clickable gold nanoparticles for streamlining capture, enrichment and release of alkyne-labelled proteins. Bioorg Med Chem Lett 2019; 29:126768. [PMID: 31690474 DOI: 10.1016/j.bmcl.2019.126768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 01/08/2023]
Abstract
Alkyne-labelled proteins are generated as key intermediates in the chemical probe-based approaches to proteomics analysis. Their efficient and selective detection and isolation is an important problem. We designed and synthesized azide-functionalized gold nanoparticles as new clickable capture reagents to streamline click chemistry-mediated capture, enrichment and release of the alkyne-labelled proteins in one-pot to expedite the post-labelling analysis. Because hydrophobic surface functionalities are known to render gold nanoparticles poorly water-dispersible, hydrophilic PEG linkers with two different lengths were explored to confer colloidal stability to the clickable capture reagents. We demonstrated the ability of the capture reagents to conjugate the alkyne containing proteins at a nanomolar concentration via click chemistry, which can be immediately followed by their enrichment and elution. Furthermore, a bifunctional clickable capture reagent bearing sulforhodamine and azide groups was shown to conveniently attach a fluorophore to the alkyne-labelled protein upon click capture, which facilitated their rapid detection in the gel analysis.
Collapse
Affiliation(s)
- Sho Narita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Life Science, 2-24-16, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Naohiro Kobayashi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Life Science, 2-24-16, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Kanna Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Life Science, 2-24-16, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | - Kaori Sakurai
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Life Science, 2-24-16, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
19
|
Demirbas A, Büyükbezirci K, Celik C, Kislakci E, Karaagac Z, Gokturk E, Kati A, Cimen B, Yilmaz V, Ocsoy I. Synthesis of Long-Term Stable Gold Nanoparticles Benefiting from Red Raspberry ( Rubus idaeus), Strawberry ( Fragaria ananassa), and Blackberry ( Rubus fruticosus) Extracts-Gold Ion Complexation and Investigation of Reaction Conditions. ACS OMEGA 2019; 4:18637-18644. [PMID: 31737823 PMCID: PMC6854581 DOI: 10.1021/acsomega.9b02469] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/14/2019] [Indexed: 05/25/2023]
Abstract
We report synthesis of monodispersed, stable, and colloidal gold nanoparticles (Au NPs) using anthocyanin-riched red raspberry (Rubus idaeus), strawberry (Fragaria ananassa), and blackberry (Rubus fruticosus) extracts as functions of concentration of HAuCl4·3H2O and berries extract, reaction time, and reaction pH values (pHs) and demonstrate their unique stability in highly concentrated salt (sodium chloride, NaCl) solutions. The catecholamine group of anthocyanin molecules give preferential coordination reaction with gold ions (Au3+) for creating anthocyanin-Au3+ complexes, which may lead to initiation of nucleation for seed formation, and then, oxidation of catecholamine results in a flow of electrons from anthocyanins to Au seeds for anisotropic growth. Finally, the surface of the Au NPs is saturated with anthocyanins, and formation of monodispersed and stable Au NPs with narrow size distribution is completed. We also report the effects of some experimental parameters including concentrations of Au3+ ions and barrier extracts, reaction time, and pHs on formation of the Au NPs with rational explanations. The long-term colloidal stability of the Au NPs in the 400 mM NaCl solution was comparatively studied with commercial Au NPs (citrate capped). As results show that anthocyanin-riched berry extracts directed Au NPs we proposed here can be considered as promising and safe tools for biomedical applications owing to their highly much colloidal dispersibility and salt tolerance properties.
Collapse
Affiliation(s)
- Ayse Demirbas
- Recep
Tayyip Erdogan University, Faculty of Fisheries
and Aquatic Sciences, 53100 Rize, Turkey
| | - Kasım Büyükbezirci
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Cagla Celik
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Emine Kislakci
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Zehra Karaagac
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Ersen Gokturk
- Department
of Chemistry, Hatay Mustafa Kemal University, Tayfur Sokmen Campus, Alahan, Antakya City, 31001 Hatay, Turkey
| | - Ahmet Kati
- Biotechnology
Department, Institution of Health Science, University of Health Science, 34001 Istanbul, Turkey
| | - Behzat Cimen
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Vedat Yilmaz
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| | - Ismail Ocsoy
- Department
of Analytical Chemistry, Faculty of Pharmacy, and Department of
Biochemistry, Faculty of Pharmacy, Erciyes
University, 38039 Kayseri, Turkey
| |
Collapse
|
20
|
Li L, Shi H, Sheng A, Yang Y, Shi L, Li C, Li G. A novel method to engineer proteases for selective enzyme inhibition. Chem Commun (Camb) 2019; 55:14039-14042. [PMID: 31690924 DOI: 10.1039/c9cc08085f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we have proposed a new strategy to expand the function of a protein. By taking a protease as an example, it can be engineered to make up the shortcoming of natural proteases, and thus it can efficiently and selectively hydrolyze a desired protein even in a complex biological fluid.
Collapse
Affiliation(s)
- Lingling Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Hai Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Anzhi Sheng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Yi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Liu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Chao Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China. and School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Genxi Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China. and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
21
|
Guo QY, Ren SY, Wang JY, Li Y, Yao ZY, Huang H, Gao ZX, Yang SP. Low field nuclear magnetic sensing technology based on hydrogel-coated superparamagnetic particles. Anal Chim Acta 2019; 1094:151-159. [PMID: 31761042 DOI: 10.1016/j.aca.2019.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
Abstract
Based on superparamagnetic nanoparticles, a responsive polyacrylamide hydrogel self-assembled by nucleic acid hairpin hybridization chain reaction was designed, and a universal low field nuclear magnetic resonance sensing platform was successfully constructed. As the target was gradually added, the hydrogel coating on the surface of the magnetic nanoparticle was opened layer by layer through binding with the aptamer, which specifically bonded thereto, causing different degrees of exposure of the magnetic nanoparticle, resulting in changes of low field nuclear magnetic resonance signals. This method was originally applied to the rapid detection of adenosine triphosphate (ATP), and the versatility of the method was verified using polychlorinated biphenyl 77 (PCB77). This method had the advantage of being fast, convenient, and low cost, and it can be easily operated with high repeatability. This universal method can detect a variety of targets by replacing aptamers and may be useful in controlling food quality and for rapidly detecting cancer cells in vitro.
Collapse
Affiliation(s)
- Qi-Yue Guo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin, 300050, China; Shanghai Normal University, School of Chemistry and Materials Science, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai, 200234, China
| | - Shu-Yue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin, 300050, China
| | - Jing-Yi Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin, 300050, China
| | - Ye Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin, 300050, China; Shanghai Normal University, School of Chemistry and Materials Science, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai, 200234, China
| | - Zi-Yi Yao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin, 300050, China; Shanghai Normal University, School of Chemistry and Materials Science, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai, 200234, China
| | - Hui Huang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin, 300050, China; Shanghai Normal University, School of Chemistry and Materials Science, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai, 200234, China
| | - Zhi-Xian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin, 300050, China.
| | - Shi-Ping Yang
- Shanghai Normal University, School of Chemistry and Materials Science, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai, 200234, China.
| |
Collapse
|
22
|
A sensitive gold-nanorods-based nanobiosensor for specific detection of Campylobacter jejuni and Campylobacter coli. J Nanobiotechnology 2019; 17:43. [PMID: 30914053 PMCID: PMC6434641 DOI: 10.1186/s12951-019-0476-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Campylobacteriosis is a zoonotic infectious disease that can be mostly undiagnosed or unreported due to fastidious Campylobacter species. The aim of this study was to develop a simple, sensitive, and quick assay for the detection of Campylobacter spp. and taking advantage of the great sensitivity of gold nanorods (GNRs) to trace changes in the local environment and interparticle distance. METHODS Characterized GNRs were modified by specific ssDNA probes of cadF gene. First, the biosensor was evaluated using recombinant plasmid (pTG19-T/cadF) and synthetic single-stranded 95 bp gene, followed by a collection of the extracted DNAs of the stool samples. The sensing strategy was compared by culture, PCR, and real-time PCR. RESULTS AND DISCUSSION Analysis of 283 specimens showed successful detection of Campylobacter spp. in 44 cases (16%), which was comparable to culture (7%), PCR (15%), and real-time PCR (18%). In comparison with real-time PCR, the sensitivity of the biosensor was reported 88%, while the specificity test for all assays was the same (100%). However, it was not able to detect Campylobacter in 6 positive clinical samples, as compared to real-time PCR. The limit of detection was calculated to be the same for the biosensor and real-time PCR (102 copy number/mL). CONCLUSIONS Taking high speed and simplicity of this assay into consideration, the plasmonic nanobiosensor could pave the way in designing a new generation of diagnostic kits for detection of C. jejuni and C. coli species in clinical laboratories.
Collapse
|
23
|
Hassani S, Akmal MR, Salek-Maghsoudi A, Rahmani S, Ganjali MR, Norouzi P, Abdollahi M. Novel label-free electrochemical aptasensor for determination of Diazinon using gold nanoparticles-modified screen-printed gold electrode. Biosens Bioelectron 2018; 120:122-128. [PMID: 30172234 DOI: 10.1016/j.bios.2018.08.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/27/2018] [Accepted: 08/17/2018] [Indexed: 11/25/2022]
Abstract
The present study aimed to develop a highly sensitive label-free electrochemical aptasensor for the detection of Diazinon (DZN), as one of the most widespread organophosphorus compounds. The aptasensor was assembled using screen-printed gold electrode modified by thiolated aptamers which were immobilized on gold nanoparticles (Au NPs). Optimum deposition time, in which the highest electrochemical response occurred, was found in 150 s. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize electrochemical properties of the novel aptasensor. Electrochemical detection was carried out through differential pulse voltammetry in [Fe(CN)6]3-/4- solution. Fluctuation of the current was examined in the DZN concentration range of 0.1-1000 nM. According to the results, the designed aptasensor provided an extremely lower limit of detection (0.0169 nM) compared with HPLC and other colorimetric techniques for DZN detection. The present highly specific designed aptasensor doesn't interact with other analytes in the real sample. Consequently, the present aptasensor is easy to use and relatively inexpensive with a good sensitivity, stability, and reproducibility for this application. We are now evaluating all approaches to make a portable device for fast and sensitive quantification of DZN and related OPs.
Collapse
Affiliation(s)
- Shokoufeh Hassani
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Milad Rezaei Akmal
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| | - Armin Salek-Maghsoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Soheila Rahmani
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
24
|
Wang R, Huang M, Li L, Kaneko T, Voss C, Zhang L, Xia J, Li SSC. Affinity Purification of Methyllysine Proteome by Site-Specific Covalent Conjugation. Anal Chem 2018; 90:13876-13881. [DOI: 10.1021/acs.analchem.8b02796] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rui Wang
- Department of Biochemistry and Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Mei Huang
- Department of Biochemistry and Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Linting Li
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Tomonori Kaneko
- Department of Biochemistry and Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Courtney Voss
- Department of Biochemistry and Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Shawn S. C. Li
- Department of Biochemistry and Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
25
|
Ocsoy I, Tasdemir D, Mazicioglu S, Tan W. Nanotechnology in Plants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 164:263-275. [DOI: 10.1007/10_2017_53] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Xie S, Qiu L, Cui L, Liu H, Sun Y, Liang H, Ding D, He L, Liu H, Zhang J, Chen Z, Zhang X, Tan W. Reversible and Quantitative Photoregulation of Target Proteins. Chem 2017. [DOI: 10.1016/j.chempr.2017.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Ocsoy I, Yusufbeyoglu S, Yılmaz V, McLamore ES, Ildız N, Ülgen A. DNA aptamer functionalized gold nanostructures for molecular recognition and photothermal inactivation of methicillin-Resistant Staphylococcus aureus. Colloids Surf B Biointerfaces 2017; 159:16-22. [PMID: 28778062 DOI: 10.1016/j.colsurfb.2017.07.056] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 12/27/2022]
Abstract
In this work, we report the development of DNA aptamer-functionalized gold nanoparticles (Apt@Au NPs) and gold nanorods (Apt@Au NRs) for inactivation of Methicillin-resistant Staphylococcus aureus (MRSA) with targeted photothermal therapy (PTT). Although both Apt@Au NPs and Apt@Au NRs specifically bind to MRSA cells, Apt@Au NPs and Apt@Au NRs inactivated ∼5% and over 95% of the cells,respectively through PTT. This difference in inactivation was based on the relatively high longitudinal absorption of near-infrared (NIR) radiation and strong photothermal conversion capability for the Apt@Au NRs compared to the Apt@Au NPs. The Au NRs served as a nanoplatform for the loading of thiolated aptamer and also provided multivalent effects for increasing binding strength and affinity to MRSA. Our results indicate that the type of aptamer and the degree of multivalent effect(s) are important factors for MRSA inactivation efficiency in PTT. We show that the Apt@Au NRs are a very effective and promising nanosystem for specific cell recognition and in vitro PTT.
Collapse
Affiliation(s)
- Ismail Ocsoy
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey.
| | - Sadi Yusufbeyoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Vedat Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Eric S McLamore
- Department of Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, 1741 Museum Road, Gainesville, FL, USA
| | - Nilay Ildız
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Ahmet Ülgen
- Department of Chemistry, Faculty of Science, Erciyes University, 38039 Kayseri, Turkey
| |
Collapse
|
28
|
Xu Y, Tan S, Liang Q, Ding M. One-Step Facile Synthesis of Aptamer-Modified Graphene Oxide for Highly Specific Enrichment of Human A-Thrombin in Plasma. SENSORS 2017; 17:s17091986. [PMID: 28902155 PMCID: PMC5621013 DOI: 10.3390/s17091986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/25/2023]
Abstract
The enrichment of low-abundance proteins in complex biological samples plays an important role in clinical diagnostics and biomedical research. This work reports a novel one-step method for the synthesis of aptamer-modified graphene oxide (GO/Apt) nanocomposites, without introducing the use of gold, for the rapid and specific separation and enrichment of human α-thrombin from buffer solutions with highly concentrated interferences. The obtained GO/Apt nanocomposites had remarkable aptamer immobilization, up to 44.8 nmol/mg. Furthermore, GO/Apt nanocomposites exhibited significant specific enrichment efficiency for human α-thrombin (>90%), even under the presence of 3000-fold interference proteins, which was better than the performance of other nanomaterials. Finally, the GO/Apt nanocomposites were applied in the specific capturing of human α-thrombin in highly concentrated human plasma solutions with negligible nonspecific binding of other proteins, which demonstrated their prospects in rare protein analysis and biosensing applications.
Collapse
Affiliation(s)
- Yuan Xu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Siyuan Tan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Mingyu Ding
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
29
|
Mo L, Li J, Liu Q, Qiu L, Tan W. Nucleic acid-functionalized transition metal nanosheets for biosensing applications. Biosens Bioelectron 2017; 89:201-211. [PMID: 27020066 PMCID: PMC5554413 DOI: 10.1016/j.bios.2016.03.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/20/2016] [Accepted: 03/17/2016] [Indexed: 12/13/2022]
Abstract
In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field.
Collapse
Affiliation(s)
- Liuting Mo
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China
| | - Juan Li
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China; The Key Lab of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Qiaoling Liu
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China.
| | - Liping Qiu
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Collaborative Innovation Center for Molecular Engineering and Theranostics, Hunan University, Changsha 410082, China; Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, UF Health Cancer Center, University of Florida, Gainesville, FL 32611-7200, USA.
| |
Collapse
|
30
|
Citartan M, Ch'ng ES, Rozhdestvensky TS, Tang TH. Aptamers as the ‘capturing’ agents in aptamer-based capture assays. Microchem J 2016. [DOI: 10.1016/j.microc.2016.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Fluorescence based Aptasensors for the determination of hepatitis B virus e antigen. Sci Rep 2016; 6:31103. [PMID: 27499342 PMCID: PMC4976349 DOI: 10.1038/srep31103] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022] Open
Abstract
This research is aimed at selecting specific aptamer of hepatitis B e antigen by SELEX and its applications. Hepatitis B e antigen (HBeAg) seroconversion is used as an indicator of virological response when treating patients suffering from chronic hepatitis B. HBeAg also indicates a high viremia and high infectivity in untreated patients. With HBeAg modified magnetic beads as targets, three groups of aptamers are successfully selected. These are the first reported DNA aptamers that can specifically bind to HBeAg. Based on the property that the conformation changes upon binding to its target, aptamer has emerged as ideal candidate in a variety of sensing applications. In this study, we present a simple strategy for aptamer-based fluorescence biosensors for the quantitative detection of HBeAg, in which a fluorescence labeled HBeAg aptamer serves as the molecular recognition element and a short DNA molecule that is complementary to the aptamer serves as the competitor. The LOD for HBeAg is 609 ng/mL. Later, the fluorescence system is deployed in HBeAg positive and negative blood serum (p < 0.05). The total detection assay could be completed in 2 min. These newly isolated aptamers could assist the diagnosis of chronic hepatitis B.
Collapse
|
32
|
Chen Y, Deng N, Wu C, Liang Y, Jiang B, Yang K, Liang Z, Zhang L, Zhang Y. Aptamer functionalized hydrophilic polymer monolith with gold nanoparticles modification for the sensitive detection of human α-thrombin. Talanta 2016; 154:555-9. [DOI: 10.1016/j.talanta.2016.02.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 12/15/2022]
|
33
|
Localized surface plasmon resonance of gold nanorods and assemblies in the view of biomedical analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Increased electrocatalyzed performance through hairpin oligonucleotide aptamer-functionalized gold nanorods labels and graphene-streptavidin nanomatrix: Highly selective and sensitive electrochemical biosensor of carcinoembryonic antigen. Biosens Bioelectron 2016; 83:142-8. [PMID: 27111123 DOI: 10.1016/j.bios.2016.04.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/08/2016] [Accepted: 04/14/2016] [Indexed: 11/22/2022]
Abstract
We report a triplex signal amplification strategy for sensitive biosensing of cancer biomarker by taking advantage of hairpin-shaped oligonucleotide-functionalized gold nanorods (HO-GNRs), graphene and the avidin-biotin reation. The strategy expands electrochemical detection of carcinoembryonic antigen (CEA) by using an aptamer as biosensor's recognition element and HO-GNRs as signal enhancer. To construct this biosensor, the GNR was used as a carrier of horseradish peroxidase (HRP) and HO aptamer with a biotin at the 3'-end and a thiol at the 5'-end, which amplified the electrochemical response because of a large molar ratio of HRP to HO. In the presence of target CEA, the binding reactions of CEA with the loop portions of the HOs caused HOs' loop-stem structure opened and exposed the biotins, and then HRP-GNRs-HO conjugates were captured on graphene and streptavidin modified electrodes via the reaction between the exposed biotins and preimmobilized streptavidins. The accumulation of HRP effectively catalyzed the hydrogen peroxide-mediated oxidation of o-phenylenediamine to generate an electrochemical reduction current for CEA detection. Under optimal conditions, the electrochemical biosensor exhibited a wide dynamic range of 5pgmL(-1) and 50ngmL(-1) toward CEA standards with a low detection limit of 1.5pgmL(-1) (signal-to-noise ratio of 3). The proposed biosensor accurately detected CEA concentration in 8 human serum samples from patients with lung diseases, showing excellent correlations with standard chemiluminescence immunoassay. Furthermore, these results of target DNA detection made it abundantly clear that the proposed strategy can also be extended for detection of other relative biomarkers using different functional DNA structures, which shows great prospects in single-nucleotide polymorphisms analysis, biomedical sensing and application for accurate clinical diseases diagnostic.
Collapse
|
35
|
Couto C, Vitorino R, Daniel-da-Silva AL. Gold nanoparticles and bioconjugation: a pathway for proteomic applications. Crit Rev Biotechnol 2016; 37:238-250. [DOI: 10.3109/07388551.2016.1141392] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cláudia Couto
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal,
| | - Rui Vitorino
- Mass Spectrometry Center, Organic Chemistry, Natural and Agro-Food Products Research Unit (QOPNA), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal,
- Department of Medical Sciences, iBiMED - Institute for Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal and
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana L. Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal,
| |
Collapse
|
36
|
Zhao JC, Zhu QY, Zhao LY, Lian HZ, Chen HY. Preparation of an aptamer based organic–inorganic hybrid monolithic column with gold nanoparticles as an intermediary for the enrichment of proteins. Analyst 2016; 141:4961-7. [DOI: 10.1039/c6an00957c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gold nanoparticles are used as an intermediary in a sandwich structure for the preparation of an aptamer-based organic–inorganic hybrid affinity monolithic column.
Collapse
Affiliation(s)
- Jin-cheng Zhao
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Qing-yun Zhu
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Ling-yu Zhao
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Hong-zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Hong-yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| |
Collapse
|
37
|
Deng N, Jiang B, Chen Y, Liang Z, Zhang L, Liang Y, Yang K, Zhang Y. Aptamer-conjugated gold functionalized graphene oxide nanocomposites for human α-thrombin specific recognition. J Chromatogr A 2015; 1427:16-21. [PMID: 26689824 DOI: 10.1016/j.chroma.2015.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022]
Abstract
The specific recognition toward target proteins from complex biological samples has great potential in clinical diagnostics and therapeutics, receiving more and more attention. Herein, we achieved the specific detection of human α-thrombin from human serum by aptamer-conjugated gold functionalized graphene oxide nanocomposites (denoted as Apt/Au/PEI/GO nanocomposites). Gold functionalized graphene oxide nanocomposites were synthesized by in situ growth of Au nanoparticles on graphene oxide surface using polyethylenimine as reducing and stabilizing reagents, and then it was used as support for aptamer immobilization through forming an Au-S bonding. The obtained Apt/Au/PEI/GO nanocomposites inherited not only the large surface area which made the immobilizing amount of aptamer up to 36.1 nmol/mg, but also the excellent hydrophilicity which showed remarkable selectivity for human α-thrombin specific recognition, even with the interference of 3000 fold human serum proteins. Furthermore, with its superior properties, Apt/Au/PEI/GO nanocomposites showed advantages of high capture efficiency (>86%) and excellent recognition repeatability. Finally, the Apt/Au/PEI/GO nanocomposites were successfully applied for human α-thrombin specific recognition in human serum, verifying its great potential in clinical applications.
Collapse
Affiliation(s)
- Nan Deng
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China; Graduate School of Chinese Academy of Sciences, Beijing 100039, China; Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Bo Jiang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Yuanbo Chen
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China; Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhen Liang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China.
| | - Yu Liang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Kaiguang Yang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Yukui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| |
Collapse
|
38
|
A label-free electrochemical aptasensor for 8-hydroxy-2′-deoxyguanosine detection. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.10.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Microfluidic chip-based silver nanoparticles aptasensor for colorimetric detection of thrombin. Talanta 2015; 150:81-7. [PMID: 26838384 DOI: 10.1016/j.talanta.2015.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 12/21/2022]
Abstract
In this paper, a colorimetric silver nanoparticles aptasensor (aptamer-AgNPs) was developed for simple and straightforward detection of protein in microfluidic chip. Surface-functionalized microfluidic channels were employed as the capture platform. Then the mixture of target protein and aptamer-AgNPs were injected into the microfluidic channels for colorimetric detection. To demonstrate the performance of this detection platform, thrombin was chosen as a model target protein. Introduction of thrombin could form a sandwich-type complex involving immobilized AgNPs. The amount of aptamer-AgNPs on the complex augmented along with the increase of the thrombin concentration causing different color change that can be analyzed both by naked eyes and a flatbed scanner. This method is featured with low sample consumption, simple processes of microfluidic platform and straightforward colorimetric detection with aptamer-AgNPs. Thrombin at concentrations as low as 20pM can be detected using this aptasensor without signal amplification. This work demonstrated that it had good selectivity over other proteins and it could be a useful strategy to detect other targets with two affinity binding sites for ligands as well.
Collapse
|
40
|
Yu J, Yang L, Liang X, Dong T, Liu H. Reversible regulation of thrombin adsorption and desorption based on photoresponsive-aptamer modified gold nanoparticles. Talanta 2015; 144:312-7. [PMID: 26452827 DOI: 10.1016/j.talanta.2015.06.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/11/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
Abstract
In the protein separation, adsorption and desorption of target protein have been using different buffer condition. Different buffer will change the structure and activity of target protein in some cases. This work describes the use of different wavelength light for remote regulation of adsorption and desorption of target protein in the same buffer solutions. A dynamic system that captured and released protein in response to light is reported. Matrix gold nanoparticles and light-responsive affinity ligand comprising thrombin aptamer (APT15), polyethylene glycol linker, and azobenzene-modified complementary sequence were used. UV light induced a trans-cis isomerization of the azobenzene that destabilized the duplex of aptamer and azobenzene-modified complementary sequence, resulting in thrombin binding to aptamer sequence. Visible light irradiation resulted in DNA duplex rehybridization and thrombin released. Our work demonstrates that different light wavelengths effectively regulated the adsorption and desorption of thrombin in the same buffer, and this system also can capture and release prothrombin from plasma with different wavelength light. Furthermore, this method can be widely applied to a variety of different protein separation process.
Collapse
Affiliation(s)
- Jiemiao Yu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liangrong Yang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xiangfeng Liang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingting Dong
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhou Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
41
|
Yasun E, Li C, Barut I, Janvier D, Qiu L, Cui C, Tan W. BSA modification to reduce CTAB induced nonspecificity and cytotoxicity of aptamer-conjugated gold nanorods. NANOSCALE 2015; 7:10240-8. [PMID: 25990591 PMCID: PMC4902113 DOI: 10.1039/c5nr01704a] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aptamer-conjugated gold nanorods (AuNRs) are excellent candidates for targeted hyperthermia therapy of cancer cells. However, in high concentrations of AuNRs, aptamer conjugation alone fails to result in highly cell-specific AuNRs due to the presence of positively charged cetyltrimethylammonium bromide (CTAB) as a templating surfactant. Besides causing nonspecific electrostatic interactions with the cell surfaces, CTAB can also be cytotoxic, leading to uncontrolled cell death. To avoid the nonspecific interactions and cytotoxicity triggered by CTAB, we report the further biologically inspired modification of aptamer-conjugated AuNRs with bovine serum albumin (BSA) protein. Following this modification, interaction between CTAB and the cell surface was efficiently blocked, thereby dramatically reducing the side effects of CTAB. This approach may provide a general and simple method to avoid one of the most serious issues in biomedical applications of nanomaterials: nonspecific binding of the nanomaterials with biological cells.
Collapse
Affiliation(s)
- Emir Yasun
- Department of Chemistry and Department of Physiology and Functional Genomics Shands Cancer Center and Center for Research at the Interface of Bio/nano UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Aptamer-based organic-silica hybrid affinity monolith prepared via “thiol-ene” click reaction for extraction of thrombin. Talanta 2015; 138:52-58. [DOI: 10.1016/j.talanta.2015.02.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/31/2015] [Accepted: 02/04/2015] [Indexed: 12/27/2022]
|
43
|
Bagheri Hashkavayi A, Bakhsh Raoof J, Ojani R, Hamidi Asl E. Label-Free Electrochemical Aptasensor for Determination of Chloramphenicol Based on Gold Nanocubes-Modified Screen-Printed Gold Electrode. ELECTROANAL 2015. [DOI: 10.1002/elan.201400718] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Du F, Guo L, Qin Q, Zheng X, Ruan G, Li J, Li G. Recent advances in aptamer-functionalized materials in sample preparation. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Qiu L, Chen T, Öçsoy I, Yasun E, Wu C, Zhu G, You M, Han D, Jiang J, Yu R, Tan W. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. NANO LETTERS 2015; 15:457-463. [PMID: 25479133 PMCID: PMC4296921 DOI: 10.1021/nl503777s] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/25/2014] [Indexed: 04/14/2023]
Abstract
The development of multidrug resistance (MDR) has become an increasingly serious problem in cancer therapy. The cell-membrane overexpression of P-glycoprotein (P-gp), which can actively efflux various anticancer drugs from the cell, is a major mechanism of MDR. Nuclear-uptake nanodrug delivery systems, which enable intranuclear release of anticancer drugs, are expected to address this challenge by bypassing P-gp. However, before entering the nucleus, the nanocarrier must pass through the cell membrane, necessitating coordination between intracellular and intranuclear delivery. To accommodate this requirement, we have used DNA self-assembly to develop a nuclear-uptake nanodrug system carried by a cell-targeted near-infrared (NIR)-responsive nanotruck for drug-resistant cancer therapy. Via DNA hybridization, small drug-loaded gold nanoparticles (termed nanodrugs) can self-assemble onto the side face of a silver-gold nanorod (NR, termed nanotruck) whose end faces were modified with a cell type-specific internalizing aptamer. By using this size-photocontrollable nanodrug delivery system, anticancer drugs can be efficiently accumulated in the nuclei to effectively kill the cancer cells.
Collapse
Affiliation(s)
- Liping Qiu
- Molecular Science and Biomedicine Laboratory,
State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, and Collaborative
Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Tao Chen
- Molecular Science and Biomedicine Laboratory,
State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, and Collaborative
Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
- Center for Research at Bio/Nano Interface, Department of Chemistry
and Department of Physiology and Functional Genomics, Health Cancer
Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Ismail Öçsoy
- Center for Research at Bio/Nano Interface, Department of Chemistry
and Department of Physiology and Functional Genomics, Health Cancer
Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Emir Yasun
- Center for Research at Bio/Nano Interface, Department of Chemistry
and Department of Physiology and Functional Genomics, Health Cancer
Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Cuichen Wu
- Center for Research at Bio/Nano Interface, Department of Chemistry
and Department of Physiology and Functional Genomics, Health Cancer
Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Guizhi Zhu
- Molecular Science and Biomedicine Laboratory,
State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, and Collaborative
Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
- Center for Research at Bio/Nano Interface, Department of Chemistry
and Department of Physiology and Functional Genomics, Health Cancer
Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Mingxu You
- Molecular Science and Biomedicine Laboratory,
State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, and Collaborative
Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
- Center for Research at Bio/Nano Interface, Department of Chemistry
and Department of Physiology and Functional Genomics, Health Cancer
Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Da Han
- Center for Research at Bio/Nano Interface, Department of Chemistry
and Department of Physiology and Functional Genomics, Health Cancer
Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Jianhui Jiang
- Molecular Science and Biomedicine Laboratory,
State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, and Collaborative
Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Ruqin Yu
- Molecular Science and Biomedicine Laboratory,
State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, and Collaborative
Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory,
State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College
of Chemistry and Chemical Engineering, College of Biology, and Collaborative
Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
- Center for Research at Bio/Nano Interface, Department of Chemistry
and Department of Physiology and Functional Genomics, Health Cancer
Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
46
|
Development of aptamer-conjugated magnetic graphene/gold nanoparticle hybrid nanocomposites for specific enrichment and rapid analysis of thrombin by MALDI-TOF MS. Talanta 2014; 129:282-9. [DOI: 10.1016/j.talanta.2014.05.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/18/2014] [Accepted: 05/21/2014] [Indexed: 11/20/2022]
|
47
|
Aptamer-based-sorbents for sample treatment--a review. Anal Bioanal Chem 2014; 407:681-98. [PMID: 25286873 DOI: 10.1007/s00216-014-8129-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
Abstract
To improve selectivity during sample pretreatment, various selective tools inducing a molecular recognition mechanism during the extraction procedure have been developed, such as sorbents constituted of immobilized antibodies, i.e., immunosorbents, or molecularly imprinted polymers. More recently, as an alternative to both previous approaches, aptamers immobilized onto a solid support, i.e., oligosorbents, were proposed. Thanks to the high affinity and high selectivity of the interaction that some aptamers offer toward some target analytes, they also provide powerful techniques that make selective extraction and the concentration of a target analyte from liquid matrices in one step or sample purification of extracts from solid matrices possible. This review describes the development and the properties of these oligosorbents developed for different types of targets-pharmaceuticals, mycotoxins, proteins, cells, etc. After describing the immobilization procedures, we discuss different parameters characterizing the potential of aptamer-based supports as extraction sorbents. Close relations exist between extraction recoveries and the affinity and amounts of aptamers immobilized on the extraction device. In addition, analyte-aptamer interactions may be affected by matrix components and by additives in the samples. This may also lower extraction recoveries and affect the stability and the possible reusability of the aptamer-based sorbent. All these points are discussed and illustrated. Numerous examples of applications of these sorbents to the treatment of complex samples such as food samples, environmental samples, and biological fluids are also reported. Their association with analytical devices, from conventional to miniaturized analytical systems, is also discussed.
Collapse
|
48
|
Enrichment and sensitive detection of polyphenolic compounds via β-cyclodextrin functionalized fluorescent gold nanorods. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1312-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Liang H, Zhang XB, Lv Y, Gong L, Wang R, Zhu X, Yang R, Tan W. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy. Acc Chem Res 2014; 47:1891-901. [PMID: 24780000 PMCID: PMC4066909 DOI: 10.1021/ar500078f] [Citation(s) in RCA: 255] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
DNA performs
a vital function as a carrier of genetic code, but in the field of
nanotechnology, DNA molecules can catalyze chemical reactions in the
cell, that is, DNAzymes, or bind with target-specific ligands, that
is, aptamers. These functional DNAs with different modifications have
been developed for sensing, imaging, and therapeutic systems. Thus,
functional DNAs hold great promise for future applications in nanotechnology
and bioanalysis. However, these functional DNAs face challenges, especially
in the field of biomedicine. For example, functional DNAs typically
require the use of cationic transfection reagents to realize cellular
uptake. Such reagents enter the cells, increasing the difficulty of
performing bioassays in vivo and potentially damaging the cell’s
nucleus. To address this obstacle, nanomaterials, such as metallic,
carbon, silica, or magnetic materials, have been utilized as DNA carriers
or assistants. In this Account, we describe selected examples of functional
DNA-containing nanomaterials and their applications from our recent
research and those of others. As models, we have chosen to highlight
DNA/nanomaterial complexes consisting of gold nanoparticles, graphene oxides, and aptamer–micelles, and we illustrate the potential
of such complexes in biosensing, imaging, and medical diagnostics. Under proper conditions, multiple ligand–receptor interactions,
decreased steric hindrance, and increased surface roughness can be
achieved from a high density of DNA that is bound to the surface of
nanomaterials, resulting in a higher affinity for complementary DNA
and other targets. In addition, this high density of DNA causes a
high local salt concentration and negative charge density, which can
prevent DNA degradation. For example, DNAzymes assembled on gold nanoparticles
can effectively catalyze chemical reactions even in living cells.
And it has been confirmed that DNA–nanomaterial complexes can
enter cells more easily than free single-stranded DNA. Nanomaterials
can be designed and synthesized in needed sizes and shapes, and they
possess unique chemical and physical properties, which make them useful
as DNA carriers or assistants, excellent signal reporters, transducers,
and amplifiers. When nanomaterials are combined with functional DNAs
to create novel assay platforms, highly sensitive biosensing and high-resolution
imaging result. For example, gold nanoparticles and graphene oxides
can quench fluorescence efficiently to achieve low background and
effectively increase the signal-to-background ratio. Meanwhile, gold
nanoparticles themselves can be colorimetric reporters because of
their different optical absorptions between monodispersion and aggregation. DNA self-assembled nanomaterials contain several properties of
both DNA and nanomaterials. Compared with DNA–nanomaterial
complexes, DNA self-assembled nanomaterials more closely resemble
living beings, and therefore they have lower cytotoxicity at high
concentrations. Functional DNA self-assemblies also have high density
of DNA for multivalent reaction and three-dimensional nanostructures
for cell uptake. Now and in the future, we envision the use of DNA
bases in making designer molecules for many challenging applications
confronting chemists. With the further development of artificial DNA
bases using smart organic synthesis, DNA macromolecules based on elegant
molecular assembly approaches are expected to achieve great diversity,
additional versatility, and advanced functions.
Collapse
Affiliation(s)
- Hao Liang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory
of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Collaborative Innovation Center of Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory
of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Collaborative Innovation Center of Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Yifan Lv
- Molecular Science and Biomedicine Laboratory, State Key Laboratory
of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Collaborative Innovation Center of Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Liang Gong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory
of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Collaborative Innovation Center of Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Ruowen Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory
of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Collaborative Innovation Center of Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Xiaoyan Zhu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory
of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Collaborative Innovation Center of Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Ronghua Yang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory
of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Collaborative Innovation Center of Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory
of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Collaborative Innovation Center of Molecular Engineering for Theranostics, Hunan University, Changsha, Hunan 410082, China
- Center for Research at Bio/nano Interface,
Department of Chemistry and Department of Physiology and Functional
Genomics, Shands Cancer Center, UF Genetics Institute, and McKnight
Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
50
|
Tao Y, Ju E, Liu Z, Dong K, Ren J, Qu X. Engineered, self-assembled near-infrared photothermal agents for combined tumor immunotherapy and chemo-photothermal therapy. Biomaterials 2014; 35:6646-56. [PMID: 24818880 DOI: 10.1016/j.biomaterials.2014.04.073] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/17/2014] [Indexed: 12/16/2022]
Abstract
New combination therapy strategy, which takes the advantages of co-delivery two or more therapeutic agents in one nanocarrier platform, has been widely used in the clinic and achieved immense popularity in cancer treatment. Here, we have rationally developed a multifunctional platform using a self-assembly strategy to incorporate materials with specific functions of chemotherapeutics, hyperthermia, and especially immunotherapy, which can collectively contribute to the effective cancer treatment. We design the immunomodulatory CpG ODNs based platform that is conjugated with NIR-responsive gold nanorods and doxorubicin for cancer therapy. The gold nanorods can be applied as the nanocarrier to simultaneously address the three kinds of treatments, which lead to a significant benefit relative to the use of each method alone. Both in vitro and in vivo assays reveal that this engineered vehicle exhibits significant antitumor efficacy. Our studies provide strong evidence that the AuNRs-CpG-Dox conjugates can be utilized as efficient antitumor agents.
Collapse
Affiliation(s)
- Yu Tao
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Enguo Ju
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Zhen Liu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Kai Dong
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Graduate School of The Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| |
Collapse
|