1
|
Hua Z, Yu T, Liu D, Xianyu Y. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens Bioelectron 2021; 179:113076. [PMID: 33601132 DOI: 10.1016/j.bios.2021.113076] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Food safety issue remains a challenge worldwide. Common substances in food can pose a great threat to human health including but not limited to food borne-pathogens, heavy metals, mycotoxins, pesticides, herbicides, veterinary drugs, allergens and illegal additives. To develop rapid, low-cost, portable and on-site detection methods of those contaminants and allergens to ensure food safety, gold nanoparticles (AuNPs) of versatile shapes and morphologies such as nanorods, nanoclusters, nanoflowers, nanostars, nanocages, nanobipyramids and nanowires have been employed as probes because they possess extraordinary properties that can be used to design biosensors enabling detecting various contaminants and allergens. By means of surface modification, AuNPs can directly or indirectly sense specific targets based on different mechanisms, such as hydrogen bonds, nucleic acid hybridization, aptamer-target binding, antigen-antibody recognition, enzyme inhibition, and enzyme-mimicking activity. AuNPs can induce a distinct color change from red to blue when they transform from a monodispersed state to an aggregated state in liquid solution, which can be observed by naked eyes. If Raman molecules are functionalized on AuNPs, their aggregation will alter the interparticle distance and induce the surface-enhanced Raman scattering that can be employed for highly sensitive detection. Ultra-small AuNPs such as Au nanoclusters also feature in fluorescence that enable a fluorescent readout. The formats of AuNPs for food safety detection in real world range broadly including but not limited to films, fibers, liquid solutions, tapes, chips and lateral flow strips. In this review, recent applications of AuNPs-based biosensors for food safety detection will be discussed, mainly in the aspect of different contaminants and allergens encountered in food samples.
Collapse
Affiliation(s)
- Zheng Hua
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, Zhejiang, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, Zhejiang, China.
| |
Collapse
|
2
|
Emerging electrochemical biosensing approaches for detection of Listeria monocytogenes in food samples: An overview. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
3
|
Wang Q, Chen L, Fang C, Wang H, Shi Y, Zhao Y. The overexpression of one single cbh gene making Trichoderma asperellum T-1 a better cellulase producer. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01458-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
4
|
Zheng F, Wang P, Du Q, Chen Y, Liu N. Simultaneous and Ultrasensitive Detection of Foodborne Bacteria by Gold Nanoparticles-Amplified Microcantilever Array Biosensor. Front Chem 2019; 7:232. [PMID: 31065549 PMCID: PMC6489696 DOI: 10.3389/fchem.2019.00232] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
Foodborne pathogens, especially bacteria, are explicitly threatening public health worldwide. Biosensors represent advances in rapid diagnosis with high sensitivity and selectivity. However, multiplexed analysis and minimal pretreatment are still challenging. We fabricate a gold nanoparticle (Au NP)-amplified microcantilever array biosensor that is capable of determining ultralow concentrations of foodborne bacteria including Escherichia coli O157:H7, Vibrio parahaemolyticus, Salmonella, Staphylococcus aureus, Listeria monocytogenes, Shigella, etc. The method is much faster than using conventional tools without germiculturing and PCR amplification. The six pairs of ssDNA probes (ssDNA1 + ssDNA2 partially complementary to the target gene) that originated from the sequence analysis of the specific gene of the bacteria were developed and validated. The ssDNA1 probes were modified with -S-(CH2)6 at the 5′-end and ready to immobilize on the self-assembled monolayers (SAMs) of the sensing cantilevers in the array and couple with Au NPs, while 6-mercapto-1-hexanol SAM modification was carried out on the reference cantilevers to eliminate the interferences by detecting the deflection from the environment induced by non-specific interactions. For multianalyte sensing, the target gene sequence was captured by the ssDNA2-Au NPs in the solution, and then the Au NPs-ssDNA2-target complex was hybridized with ssNDA1 fixed on the beam of the cantilever sensor, which results in a secondary cascade amplification effect. Integrated with the enrichment of the Au NP platform and the microcantilever array sensor detection, multiple bacteria could be rapidly and accurately determined as low as 1–9 cells/mL, and the working ranges were three to four orders of magnitude. There was virtually no cross-reaction among the various probes with different species. As described herein, it holds great potential for rapid, multiplexed, and ultrasensitive detection in food, environment, clinical, and communal samples.
Collapse
Affiliation(s)
- Fengjiao Zheng
- General Practice Center, Nanhai Hospital, Southern Medical University, Foshan, China.,Department of Clinical Laboratory, The Air Force Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Peixi Wang
- General Practice Center, Nanhai Hospital, Southern Medical University, Foshan, China
| | - Qingfeng Du
- General Practice Center, Nanhai Hospital, Southern Medical University, Foshan, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nan Liu
- General Practice Center, Nanhai Hospital, Southern Medical University, Foshan, China
| |
Collapse
|
5
|
Colorimetric immunoassay for Listeria monocytogenes by using core gold nanoparticles, silver nanoclusters as oxidase mimetics, and aptamer-conjugated magnetic nanoparticles. Mikrochim Acta 2018; 185:360. [PMID: 29978265 DOI: 10.1007/s00604-018-2896-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/27/2018] [Indexed: 01/27/2023]
Abstract
The authors describe a rapid colorimetric assay for Listeria monocytogenes (L. monocytogenes) based on the o-phenylenediamine-mediated deaggregation of gold nanoparticles. Silver nanoclusters are used as an artificial enzyme that can oxidize o-phenylenediamine to form o-benzoquinone diamine. Aptamer and IgY antibodies were chosen to conjugate with magnetic beads and silver nanoclusters, respectively, which can recognize and bind L. monocytogenes at different specific binding sites. This results in the disassembly of colloidal gold nanoparticles which is accompanied by a color change from blue to red, with peaks at 730 and 525 nm, respectively. The method allows L. monocytogenes to be colorimetrically determined in the 10 to 106 cfu·mL-1 concentration range without pre-enrichment, and the limit of detection is as low as 10 cfu·mL-1. Recoveries ranging from 97.4 to 101.3% are found when analyzing spiked food samples. The assay is rapid, sensitive and specific. Graphical abstract Schematic illustration of a colorimetric method for detection of L. monocytogenes based on silver nanoclusters-catalyzed oxidation of OPD and de-aggregation of GNPs. A color change from blue to red can be observed and correlated to the concentration of L. monocytogenes.
Collapse
|
6
|
Hadjilouka A, Paramithiotis S, Drosinos EH. Genetic Analysis of the Listeria Pathogenicity Island 1 of Listeria monocytogenes 1/2a and 4b Isolates. Curr Microbiol 2018; 75:857-865. [PMID: 29468304 DOI: 10.1007/s00284-018-1458-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/19/2018] [Indexed: 12/22/2022]
Abstract
The aim of the present study was to apply descriptive, phylogenetic, recombination, and selection analyses on alignments of the Listeria Pathogenicity Island 1 (LIPI-1) of 1/2a and 4b Listeria monocytogenes isolates of different origin in order to gain insights into the evolution of this virulence gene cluster. For that purpose, a total of 19 L. monocytogenes isolates (9 meat isolates, serotype 1/2a; 5 meat isolates, serotype 4b; 5 strawberry isolates, serotype 4b) that have been previously separated at strain level were subjected to sequencing of their LIPI-1. Descriptive analysis revealed extensive nucleotide diversity mostly in the intragenic regions. The actA gene of 1/2a and 4b meat isolates and the hly gene of the 4b strawberry isolates exhibited the higher diversity; limited diversity was observed in prfA and plcA genes of the 4b isolates and mpl gene of the 1/2a isolates. Phylogenetic analysis of the complete island resulted in two major clusters that were consistent with serotype assignment of the isolates. Moreover, effective discrimination between serotypes was obtained by plcA, plcB, mpl, actA and the intergenic regions plcA-prfA and plcA-hly. In all cases but plcB and plcA-prfA 4b isolates were also differentiated according to their source of isolation as well. Selection analysis revealed that the island consisted of randomly evolving DNA with the exception of prfA gene of 1/2a isolates and actA gene of 4b meat isolates for which purifying selection or population expansion was indicated. Finally, no statistically significant evidence for recombination has been observed.
Collapse
Affiliation(s)
- Agni Hadjilouka
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece.
| | - Eleftherios H Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| |
Collapse
|
7
|
Domínguez CM, Ramos D, Mingorance J, Fierro JLG, Tamayo J, Calleja M. Direct Detection of OXA-48 Carbapenemase Gene in Lysate Samples through Changes in Mechanical Properties of DNA Monolayers upon Hybridization. Anal Chem 2018; 90:968-973. [PMID: 29186953 DOI: 10.1021/acs.analchem.7b04094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbapenem-resistant Enterobacteriaceae have recently become an important cause of morbidity and mortality due to healthcare-associated infections. Most commonly used diagnostic methods are incompatible with fast and accurate directed therapy. We report here the direct identification of the blaOXA48 gene, which codes for the carbapenemase OXA-48, in lysate samples from Klebsiella pneumoniae. The method is PCR-free and label-free. It is based on the measurement of changes in the stiffness of DNA self-assembled monolayers anchored to microcantilevers that occur as a consequence of the hybridization. The stiffness of the DNA layer is measured through changes of the sensor resonance frequency upon hybridization and at varying relative humidity.
Collapse
Affiliation(s)
- Carmen M Domínguez
- IMN-Instituto de Micro y Nanotecnología (CNM-CSIC) , Isaac Newton 8, PTM, Tres Cantos, Madrid E-28760, Spain
| | - Daniel Ramos
- IMN-Instituto de Micro y Nanotecnología (CNM-CSIC) , Isaac Newton 8, PTM, Tres Cantos, Madrid E-28760, Spain
| | - Jesús Mingorance
- Servicio de Microbiología, Hospital Universitario La Paz , IdiPAZ, Paseo de la Castellana, 261, Madrid, E-28046, Spain
| | - José L G Fierro
- ICP-Instituto de Catálisis y Petroleoquímica (CSIC) , Marie Curie, 2 Cantoblanco, Madrid, E-28049, Spain
| | - Javier Tamayo
- IMN-Instituto de Micro y Nanotecnología (CNM-CSIC) , Isaac Newton 8, PTM, Tres Cantos, Madrid E-28760, Spain
| | - Montserrat Calleja
- IMN-Instituto de Micro y Nanotecnología (CNM-CSIC) , Isaac Newton 8, PTM, Tres Cantos, Madrid E-28760, Spain
| |
Collapse
|
8
|
Vanegas DC, Gomes CL, Cavallaro ND, Giraldo‐Escobar D, McLamore ES. Emerging Biorecognition and Transduction Schemes for Rapid Detection of Pathogenic Bacteria in Food. Compr Rev Food Sci Food Saf 2017; 16:1188-1205. [DOI: 10.1111/1541-4337.12294] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Diana C. Vanegas
- Food Engineering Univ. del Valle 338 Ciudad Universitaria Meléndez Cali Colombia
| | - Carmen L. Gomes
- Biological & Agricultural Engineering Texas A&M Univ. 2117 TAMU, Scoates Hall 201 College Station TX 77843 U.S.A
| | - Nicholas D. Cavallaro
- Agricultural & Biological Engineering Univ. of Florida 1741 Museum Rd Gainesville FL 32606 U.S.A
| | | | - Eric S. McLamore
- Agricultural & Biological Engineering Univ. of Florida 1741 Museum Rd Gainesville FL 32606 U.S.A
| |
Collapse
|
9
|
Wachiralurpan S, Sriyapai T, Areekit S, Kaewphinit T, Sriyapai P, Santiwatanakul S, Chansiri K. Development of a Rapid Screening Test for Listeria monocytogenes in Raw Chicken Meat Using Loop-Mediated Isothermal Amplification (LAMP) and Lateral Flow Dipstick (LFD). FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0949-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Wang Y, Duncan TV. Nanoscale sensors for assuring the safety of food products. Curr Opin Biotechnol 2017; 44:74-86. [DOI: 10.1016/j.copbio.2016.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/22/2016] [Indexed: 12/16/2022]
|
11
|
Wang Y, Li H, Wang Y, Li H, Luo L, Xu J, Ye C. Development of multiple cross displacement amplification label-based gold nanoparticles lateral flow biosensor for detection of Listeria monocytogenes. Int J Nanomedicine 2017; 12:473-486. [PMID: 28138243 PMCID: PMC5238772 DOI: 10.2147/ijn.s123625] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Listeria monocytogenes, one of most problematic foodborne pathogens, is responsible for listeriosis in both humans and animals and mainly transmitted through the food chain. In this report, we propose a simple, rapid, and nearly instrument-free molecular technique using multiple cross displacement amplification (MCDA) label-based gold nanoparticles lateral flow biosensor (LFB) for specific, sensitive, and visual detection of L. monocytogenes. The MCDA-LFB method was carried out at a constant temperature (61°C) for only 20 min during the reaction stage, and then the amplification mixtures were directly detected by using LFB, eliminating the use of an electrophoresis instrument, special reagents, or amplicon analysis equipment. The whole procedure, from sample processing to result indicating, was finished within 1 h. The analytical specificity of MCDA-LFB method was successfully determined by distinguishing the target bacterium from other pathogens. The analytical sensitivity of the MCDA-LFB assay was 10 fg of genomic templates per reaction in pure culture, which was in complete accordance with MCDA by gel electrophoresis, real-time turbidity, and colorimetric indicator. The assay was also successfully applied to detecting L. monocytogenes in pork samples. Therefore, the rapidity, simplicity, and nearly equipment-free platform of the MCDA-LFB technique make it possible for food control, clinical diagnosis, and more. The proof-of-concept assay can be reconfigured to detect various target sequences by redesigning the specific MCDA primers.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing
| | - Hui Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing; Department of Microbiology, GuiZhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yan Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing
| | - Hua Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing
| | - Lijuan Luo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing
| | - Changyun Ye
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing
| |
Collapse
|
12
|
Haring AP, Cesewski E, Johnson BN. Piezoelectric Cantilever Biosensors for Label-free, Real-time Detection of DNA and RNA. Methods Mol Biol 2017; 1572:247-262. [PMID: 28299693 DOI: 10.1007/978-1-4939-6911-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter reviews the design, fabrication, characterization, and application of piezoelectric-excited millimeter-sized cantilever (PEMC) sensors. The sensor transduction mechanism, sensing principle, and mode of operation are discussed. Bio-recognition strategies and surface functionalization methods for detection of DNA and RNA are discussed with a focus on self-assembly-based approaches. Methods for the verification of biosensor response via secondary binding assays, reversible binding assays, and the integration of complementary transduction mechanisms are presented. Sensing applications for medical diagnostics, food safety, and environmental monitoring are provided. PEMC sensor technology provides a robust platform for the real-time, label-free detection of DNA and RNA in complex matrices over nanomolar (nM) to attomolar (aM) concentration ranges.
Collapse
Affiliation(s)
- Alexander P Haring
- Department of Industrial and Systems Engineering, School of Neuroscience, Macromolecules Innovation Institute, Virginia Tech, 1145 Perry Street, Blacksburg, VA, 24061, USA
| | - Ellen Cesewski
- Department of Industrial and Systems Engineering, School of Neuroscience, Macromolecules Innovation Institute, Virginia Tech, 1145 Perry Street, Blacksburg, VA, 24061, USA
| | - Blake N Johnson
- Department of Industrial and Systems Engineering, School of Neuroscience, Macromolecules Innovation Institute, Virginia Tech, 1145 Perry Street, Blacksburg, VA, 24061, USA.
| |
Collapse
|
13
|
Pei Q, Wang Y, Liu S, Qin Y, Leng X, Cui X, Huang J. Exonuclease III-aided autonomous cascade signal amplification: a facile and universal DNA biosensing platform for ultrasensitive electrochemical detection of S. typhimurium. NEW J CHEM 2017. [DOI: 10.1039/c7nj01626c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel electrochemical biosensor based on exonuclease III-aided autonomous cascade signal amplification for the ultrasensitive and highly specific detection of S. typhimurium.
Collapse
Affiliation(s)
- Qianqian Pei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yu Wang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Su Liu
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yifei Qin
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xueqi Leng
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xuejun Cui
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jiadong Huang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
14
|
Wang W, Liu L, Song S, Xu L, Zhu J, Kuang H. Gold nanoparticle-based paper sensor for multiple detection of 12 Listeria spp. by P60-mediated monoclonal antibody. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2016.1263986] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Wenbin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Jianping Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| |
Collapse
|
15
|
Huang X, Xu Z, Mao Y, Ji Y, Xu H, Xiong Y, Li Y. Gold nanoparticle-based dynamic light scattering immunoassay for ultrasensitive detection of Listeria monocytogenes in lettuces. Biosens Bioelectron 2015; 66:184-90. [PMID: 25460900 DOI: 10.1016/j.bios.2014.11.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/03/2014] [Accepted: 11/09/2014] [Indexed: 01/24/2023]
Abstract
Gold nanoparticle (GNP)-based dynamic light scattering (DLS) assay has been widely used for sensitive detection of small analytes based on analyte binding-induced GNP aggregation. However, the use of this new method to detect large biological objectives, such as pathogenic bacteria, has not been reported. This study is the first to describe a homogeneous GNP-based DLS immunoassay for ultrasensitive detection of Listeria monocytogenes. Compared with small analytes, L. monocytogenes has a larger surface and a higher number of antigen epitopes, which serve as carriers that bind to GNP probes to form "GNP-coated bacteria" complexes. To achieve better analytical performance, various parameters including GNP diameter and concentration, amount of labeled antibodies, and immunoreaction time were systematically investigated and optimized. Under the developed optimum conditions, limit of detection (LOD) for L. monocytogenes reached as low as 3.5×10(1)CFUmL(-1) in 0.01M phosphate-buffered saline. Coupled with a large-volume immunomagnetic separation method, LOD for spiked lettuce samples reached 2.2×10(1)CFUg(-1), which was one order of magnitude lower than the maximum limit imposed in Canada (100CFUg(-1)). The proposed method also exhibited excellent discrimination against 17 common pathogenic bacteria in lettuces. The developed GNP-based DLS immunoassay is highly promising as an approach for detecting large biological objectives.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Zhaodi Xu
- Centre of Analysis and Test, Nanchang University, Nanchang 330047, PR China
| | - Yan Mao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yanwei Ji
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China.
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, United States
| |
Collapse
|
16
|
Domínguez CM, Kosaka PM, Sotillo A, Mingorance J, Tamayo J, Calleja M. Label-Free DNA-Based Detection of Mycobacterium tuberculosis and Rifampicin Resistance through Hydration Induced Stress in Microcantilevers. Anal Chem 2015; 87:1494-8. [DOI: 10.1021/ac504523f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Carmen M. Domínguez
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres
Cantos, Madrid, Spain
| | - Priscila M. Kosaka
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres
Cantos, Madrid, Spain
| | - Alma Sotillo
- Servicio
de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana,
261, 28046 Madrid, Spain
| | - Jesús Mingorance
- Servicio
de Microbiología, Hospital Universitario La Paz, IdiPAZ, Paseo de la Castellana,
261, 28046 Madrid, Spain
| | - Javier Tamayo
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres
Cantos, Madrid, Spain
| | - Montserrat Calleja
- IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres
Cantos, Madrid, Spain
| |
Collapse
|
17
|
Lee SH, Ahn JY, Lee KA, Um HJ, Sekhon SS, Sun Park T, Min J, Kim YH. Analytical bioconjugates, aptamers, enable specific quantitative detection of Listeria monocytogenes. Biosens Bioelectron 2015; 68:272-280. [PMID: 25590973 DOI: 10.1016/j.bios.2015.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023]
Abstract
As a major human pathogen in the Listeria genus, Listeria monocytogenes causes the bacterial disease listeriosis, which is a serious infection caused by eating food contaminated with the bacteria. We have developed an aptamer-based sandwich assay (ABSA) platform that demonstrates a promising potential for use in pathogen detection using aptamers as analytical bioconjugates. The whole-bacteria SELEX (WB-SELEX) strategy was adopted to generate aptamers with high affinity and specificity against live L. monocytogenes. Of the 35 aptamer candidates tested, LMCA2 and LMCA26 reacted to L. monocytogenes with high binding, and were consequently chosen as sensing probes. The ABSA platform can significantly enhance the sensitivity by employing a very specific aptamer pair for the sandwich complex. The ABSA platform exhibited a linear response over a wide concentration range of L. monocytogenes from 20 to 2×10(6) CFU per mL and was closely correlated with the following relationship: y=9533.3x+1542.3 (R(2)=0.99). Our proposed ABSA platform also provided excellent specificity for the tests to distinguish L. monocytogenes from other Listeria species and other bacterial genera (3 Listeria spp., 4 Salmonella spp., 2 Vibrio spp., 3 Escherichia coli and 3 Shigella spp.). Improvements in the sensitivity and specificity have not only facilitated the reliable detection of L. monocytogenes at extremely low concentrations, but also allowed for the development of a 96-well plate-based routine assay platform for multivalent diagnostics.
Collapse
Affiliation(s)
- Sang-Hee Lee
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 362-763, South Korea
| | - Ji-Young Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 362-763, South Korea
| | - Kyeong-Ah Lee
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 362-763, South Korea
| | - Hyun-Ju Um
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 362-763, South Korea
| | - Simranjeet Singh Sekhon
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 362-763, South Korea
| | - Tae Sun Park
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Chonbuk National University Medical School, 634-18 Geumam-Dong, Duckjin-Gu, Jeonju 561-712, South Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University, 664-14 Deokjin-dong, 1Ga Deokjin-Gu, Jeonju 561-756, South Korea.
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 362-763, South Korea.
| |
Collapse
|
18
|
Guo Y, Wang Y, Liu S, Yu J, Wang H, Cui M, Huang J. Electrochemical immunosensor assay (EIA) for sensitive detection of E. coli O157:H7 with signal amplification on a SG–PEDOT–AuNPs electrode interface. Analyst 2015; 140:551-9. [DOI: 10.1039/c4an01463d] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The SG–PEDOT–AuNPs composites not only enhance interface electron transfer efficiency, but also offer a multivalent recognition interface for conjugating E. coli.
Collapse
Affiliation(s)
- Yuna Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P.R. China
| | - Yu Wang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
| | - Su Liu
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- P.R. China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P.R. China
| | - Hongzhi Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P.R. China
| | - Min Cui
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P.R. China
| | - Jiadong Huang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P.R. China
| |
Collapse
|
19
|
Liu H, Zhan F, Liu F, Zhu M, Zhou X, Xing D. Visual and sensitive detection of viable pathogenic bacteria by sensing of RNA markers in gold nanoparticles based paper platform. Biosens Bioelectron 2014; 62:38-46. [PMID: 24973541 DOI: 10.1016/j.bios.2014.06.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 01/04/2023]
Abstract
Food-borne pathogens have been recognized as a major cause of human infections worldwide. Their identification needs to be simpler, cheaper and more reliable than the traditional methods. Here, we constructed a low-cost paper platform for viable pathogenic bacteria detection with the naked eye. In this study, an effective isothermal amplification method was used to amplify the hlyA mRNA gene, a specific RNA marker in Listeria monocytogenes. The amplification products were applied to the paper-based platform to perform a visual test using sandwich hybridization assays. When the RNA products migrated along the platform by capillary action, the gold nanoparticles accumulated at the designated area. Under optimized experimental conditions, as little as 0.5 pg/μL genomic RNA from L. monocytogenes could be detected. It could also be used to specifically detect 20 CFU/mL L. monocytogenes from actual samples. The whole assay process, including RNA extraction, amplification, and visualization, can be completed within several hours. This method is suitable for point-of-care applications to detect food-borne pathogens, as it can overcome the false-positive results caused by amplifying nonviable L. monocytogenes. Furthermore, the results can be imaged and transformed into a two-dimensional bar code through an Android-based smart phone for further analysis or in-field food safety tracking.
Collapse
Affiliation(s)
- Hongxing Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Fangfang Zhan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Fang Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Minjun Zhu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
20
|
N-methylimidazolium functionalized magnetic particles as adsorbents for rapid and efficient capture of bacteria. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1250-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Mehrabani S, Maker AJ, Armani AM. Hybrid integrated label-free chemical and biological sensors. SENSORS (BASEL, SWITZERLAND) 2014; 14:5890-928. [PMID: 24675757 PMCID: PMC4029679 DOI: 10.3390/s140405890] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 12/13/2022]
Abstract
Label-free sensors based on electrical, mechanical and optical transduction methods have potential applications in numerous areas of society, ranging from healthcare to environmental monitoring. Initial research in the field focused on the development and optimization of various sensor platforms fabricated from a single material system, such as fiber-based optical sensors and silicon nanowire-based electrical sensors. However, more recent research efforts have explored designing sensors fabricated from multiple materials. For example, synthetic materials and/or biomaterials can also be added to the sensor to improve its response toward analytes of interest. By leveraging the properties of the different material systems, these hybrid sensing devices can have significantly improved performance over their single-material counterparts (better sensitivity, specificity, signal to noise, and/or detection limits). This review will briefly discuss some of the methods for creating these multi-material sensor platforms and the advances enabled by this design approach.
Collapse
Affiliation(s)
- Simin Mehrabani
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| | - Ashley J Maker
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| | - Andrea M Armani
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
22
|
Highly selective piezoelectric sensor for lead(II) based on the lead-catalyzed release of gold nanoparticles from a self-assembled nanosurface. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Jin Y, Huang Y, Liu G, Zhao R. Gold nanoparticle-sensitized quartz crystal microbalance sensor for rapid and highly selective determination of Cu(ii) ions. Analyst 2013; 138:5479-85. [DOI: 10.1039/c3an00948c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Johnson BN, Mutharasan R. Electrochemical piezoelectric-excited millimeter-sized cantilever (ePEMC) for simultaneous dual transduction biosensing. Analyst 2013; 138:6365-71. [DOI: 10.1039/c3an01353g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|