1
|
Stern JE, Wemple AH, Sheppard CW, Vinnikov A, Leopold MC. Fouling-Resistant Voltammetric Xylazine Sensors for Detection of the Street Drug "Tranq". TOXICS 2024; 12:791. [PMID: 39590971 PMCID: PMC11598047 DOI: 10.3390/toxics12110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
As the opioid crisis continues to wreak havoc on a global scale, it is increasingly critical to develop methodologies to detect the most dangerous drugs such as fentanyl and its derivatives, which have orders of magnitude higher potency than morphine. The scientific challenge for chemical detection of fentanyl and its derivatives is complicated by both the constantly increasing synthetic variations of the drug as well as the expanded use of adulterants. One tragically consequential example is the nocuous street drug known as "Tranq", which combines fentanyl or a fentanyl derivative with the veterinary sedative Rompun®, chemically identified as xylazine (XYL). This pervasive street cocktail is exacerbating the already staggering number of fentanyl-related deaths as its acute toxicity poses a danger to medical first-responders and complicates their initial assessment and treatment options for overdose victims. Given the widespread use of XYL as an adulterant, an electrochemical XYL sensor capable of on-site operation by non-experts as a fast-screening tool is a notable goal. This work presents a voltammetry-based sensor featuring carbon electrodes modified with carboxylic-acid functionalized multi-walled carbon nanotubes layered with cyclodextrin and polyurethane membranes for sensitivity and selectivity enhancements. The sensor has critical and robust fouling resistance while providing sensitivity at 950 μA/mM∙cm2, a low limit of detection (~5 ppm), and the ability to detect XYL in the presence of fentanyl and/or other non-fentanyl stimulants like cocaine. The demonstrated sensor can be applied to promote public health with its ability to detect and indicate XYL in the presence of opioids, serving to protect drug-users, first responders, medical examiners, and on-site forensic investigators from exposure to these dangerous mixtures.
Collapse
Affiliation(s)
- Joyce E Stern
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA
| | - Ann H Wemple
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA
| | - Charles W Sheppard
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA
| | - Arielle Vinnikov
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA
| | - Michael C Leopold
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA
| |
Collapse
|
2
|
Zhou Y, Li L, Tong J, Chen X, Deng W, Chen Z, Xiao X, Yin Y, Zhou Q, Gao Y, Hu X, Wang Y. Advanced nanomaterials for electrochemical sensors: application in wearable tear glucose sensing technology. J Mater Chem B 2024; 12:6774-6804. [PMID: 38920094 DOI: 10.1039/d4tb00790e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In the last few decades, tear-based biosensors for continuous glucose monitoring (CGM) have provided new avenues for the diagnosis of diabetes. The tear CGMs constructed from nanomaterials have been extensively demonstrated by various research activities in this field and are gradually witnessing their most prosperous period. A timely and comprehensive review of the development of tear CGMs in a compartmentalized manner from a nanomaterials perspective would greatly broaden this area of research. However, to our knowledge, there is a lack of specialized reviews and comprehensive cohesive reports in this area. First, this paper describes the principles and development of electrochemical glucose sensors. Then, a comprehensive summary of various advanced nanomaterials recently reported for potential applications and construction strategies in tear CGMs is presented in a compartmentalized manner, focusing on sensing properties. Finally, the challenges, strategies, and perspectives used to design tear CGM materials are emphasized, providing valuable insights and guidance for the construction of tear CGMs from nanomaterials in the future.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jiale Tong
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Xiaoli Chen
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Wei Deng
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Zhiyu Chen
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yong Yin
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Qingsong Zhou
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Yongli Gao
- Department of Emergency Medicine, West China Hospital, Sichuan University, West China School of Nursing, Sichuan University, Disaster Medical Center, Sichuan University & Nursing Key Laboratory of Sichuan Province, No. 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-16 Renmin South Road, Chengdu, Sichuan, 610041, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
3
|
Wemple AH, Kaplan JS, Leopold MC. Mechanistic Elucidation of Nanomaterial-Enhanced First-Generation Biosensors Using Probe Voltammetry of an Enzymatic Reaction. BIOSENSORS 2023; 13:798. [PMID: 37622884 PMCID: PMC10452687 DOI: 10.3390/bios13080798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
The incorporation of nanomaterials (NMs) into biosensing schemes is a well-established strategy for gaining signal enhancement. With electrochemical biosensors, the enhanced performance achieved from using NMs is often attributed to the specific physical properties of the chosen nanocomponents, such as their high electronic conductivity, size-dependent functionality, and/or higher effective surface-to-volume ratios. First generation amperometric biosensing schemes, typically utilizing NMs in conjunction with immobilized enzyme and semi-permeable membranes, can possess complex sensing mechanisms that are difficult to study and challenging to understand beyond the observable signal enhancement. This study shows the use of an enzymatic reaction between xanthine (XAN) and xanthine oxidase (XOx), involving multiple electroactive species, as an electrochemical redox probe tool for ascertaining mechanistic information at and within the modified electrodes used as biosensors. Redox probing using components of this enzymatic reaction are demonstrated on two oft-employed biosensing approaches and commonly used NMs for modified electrodes: gold nanoparticle doped films and carbon nanotube interfaces. In both situations, the XAN metabolism voltammetry allows for a greater understanding of the functionality of the semipermeable membranes, the role of the NMs, and how the interplay between the two components creates signal enhancement.
Collapse
Affiliation(s)
| | | | - Michael C. Leopold
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA; (A.H.W.); (J.S.K.)
| |
Collapse
|
4
|
Dang QM, Wemple AH, Leopold MC. Nanomaterial-Doped Xerogels for Biosensing Measurements of Xanthine in Clinical and Industrial Applications. Gels 2023; 9:437. [PMID: 37367108 DOI: 10.3390/gels9060437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
First-generation amperometric xanthine (XAN) biosensors, assembled via layer-by-layer methodology and featuring xerogels doped with gold nanoparticles (Au-NPs), were the focus of this study and involved both fundamental exploration of the materials as well as demonstrated usage of the biosensor in both clinical (disease diagnosis) and industrial (meat freshness) applications. Voltammetry and amperometry were used to characterize and optimize the functional layers of the biosensor design including a xerogel with and without embedded xanthine oxidase enzyme (XOx) and an outer, semi-permeable blended polyurethane (PU) layer. Specifically, the porosity/hydrophobicity of xerogels formed from silane precursors and different compositions of PU were examined for their impact on the XAN biosensing mechanism. Doping the xerogel layer with different alkanethiol protected Au-NPs was demonstrated as an effective means for enhancing biosensor performance including improved sensitivity, linear range, and response time, as well as stabilizing XAN sensitivity and discrimination against common interferent species (selectivity) over time-all attributes matching or exceeding most other reported XAN sensors. Part of the study focuses on deconvoluting the amperometric signal generated by the biosensor and determining the contribution from all of the possible electroactive species involved in natural purine metabolism (e.g., uric acid, hypoxanthine) as an important part of designing XAN sensors (schemes amenable to miniaturization, portability, or low production cost). Effective XAN sensors remain relevant as potential tools for both early diagnosis of diseases as well as for industrial food monitoring.
Collapse
Affiliation(s)
- Quang Minh Dang
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA
| | - Ann H Wemple
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA
| | - Michael C Leopold
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, VA 23173, USA
| |
Collapse
|
5
|
Theyagarajan K, Kim YJ. Recent Developments in the Design and Fabrication of Electrochemical Biosensors Using Functional Materials and Molecules. BIOSENSORS 2023; 13:bios13040424. [PMID: 37185499 PMCID: PMC10135976 DOI: 10.3390/bios13040424] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Electrochemical biosensors are superior technologies that are used to detect or sense biologically and environmentally significant analytes in a laboratory environment, or even in the form of portable handheld or wearable electronics. Recently, imprinted and implantable biosensors are emerging as point-of-care devices, which monitor the target analytes in a continuous environment and alert the intended users to anomalies. The stability and performance of the developed biosensor depend on the nature and properties of the electrode material or the platform on which the biosensor is constructed. Therefore, the biosensor platform plays an integral role in the effectiveness of the developed biosensor. Enormous effort has been dedicated to the rational design of the electrode material and to fabrication strategies for improving the performance of developed biosensors. Every year, in the search for multifarious electrode materials, thousands of new biosensor platforms are reported. Moreover, in order to construct an effectual biosensor, the researcher should familiarize themself with the sensible strategies behind electrode fabrication. Thus, we intend to shed light on various strategies and methodologies utilized in the design and fabrication of electrochemical biosensors that facilitate sensitive and selective detection of significant analytes. Furthermore, this review highlights the advantages of various electrode materials and the correlation between immobilized biomolecules and modified surfaces.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
6
|
Li R, Guo W, Zhu Z, Chen Y, Jiao L, Zhu C, Zhai Y, Lu X. Single-Site SnOCu Pairs with Interfacial Electron Transfer Effect for Enhanced Electrochemical Catalysis and Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300149. [PMID: 36967550 DOI: 10.1002/smll.202300149] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
As advanced electrochemical catalysts, single-atom catalysts have made great progress in the field of catalysis and sensing due to their high atomic utilization efficiency and excellent catalytic performance. Herein, stannum-doped copper oxide (CuOSn1 ) nanosheets with single-site SnOCu pairs as active sites are synthesized as electrocatalysts for biological molecule detection. Compared with CuO-based electrochemical sensors, the CuOSn1 -based electrochemical sensors have improved detection sensitivity with a rapid electrochemical response. Theoretical calculation reveals that the single-site SnOCu pairs induced interfacial electronic transfer effect can strengthen hydroxy adsorption and thus reduce the energy barrier of the biological molecule oxidation process. As a concept application, electrochemical detection of dopamine and uric acid molecules is achieved, exhibiting satisfactory sensitivity and selectivity. This work demonstrates the advantages of single-site SnOCu pairs in electrochemical catalysis and sensing, which provides theoretical guidance for understanding the structure-activity relationship for sensitive electrochemical sensing.
Collapse
Affiliation(s)
- Ruimin Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P.R. China
| | - Weiwei Guo
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P.R. China
| | - Zhijun Zhu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P.R. China
| | - Yanan Chen
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P.R. China
| | - Lei Jiao
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P.R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - Yanling Zhai
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P.R. China
| | - Xiaoquan Lu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P.R. China
| |
Collapse
|
7
|
Mahmoud ZH, Salman HNKA, Hussein HH, Adhab AH, Al-Majdi K, Rasheed T, Abdulhussien HA, Sasirekha N, Abd AN, Kianfar E. Organic chemical Nano sensors: synthesis, properties, and applications. BRAZ J BIOL 2023; 84:e268893. [PMID: 37194801 DOI: 10.1590/1519-6984.268893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/20/2023] [Indexed: 05/18/2023] Open
Abstract
Nanosensors work on the "Nano" scale. "Nano" is a unit of measurement around 10- 9 m. A nanosensor is a device capable of carrying data and information about the behavior and characteristics of particles at the nanoscale level to the macroscopic level. Nanosensors can be used to detect chemical or mechanical information such as the presence of chemical species and nanoparticles or monitor physical parameters such as temperature on the nanoscale. Nanosensors are emerging as promising tools for applications in agriculture. They offer an enormous upgrade in selectivity, speed, and sensitivity compared to traditional chemical and biological methods. Nanosensors can be used for the determination of microbe and contaminants. With the advancement of science in the world and the advent of electronic equipment and the great changes that have taken place in recent decades, the need to build more accurate, smaller and more capable sensors was felt. Today, high-sensitivity sensors are used that are sensitive to small amounts of gas, heat, or radiation. Increasing the sensitivity, efficiency and accuracy of these sensors requires the discovery of new materials and tools. Nano sensors are nanometer-sized sensors that, due to their small size and nanometer size, have such high accuracy and responsiveness that they react even to the presence of several atoms of a gas. Nano sensors are inherently smaller and more sensitive than other sensors.
Collapse
Affiliation(s)
- Z H Mahmoud
- Science College University of Diyala, Chemistry Department, Diyala, Iraq
| | - H N K Al Salman
- University of Basrah, College of Pharmacy, Department of pharmaceutical Chemistry, Basrah, Iraq
| | - H H Hussein
- University of Basrah, College of Pharmacy, Department of pharmaceutical Chemistry, Basrah, Iraq
| | - A H Adhab
- Al-Zahrawi University College, Department of Medical Laboratory Technics, Karbala, Iraq
| | - K Al-Majdi
- Ashur University College, Department of Biomedialc Engineering, Baghdad, Iraq
| | - T Rasheed
- Prince Sattam Bin Abdulaziz University, College of Science and Humanities, Department of English, Al-Kharj, Alkharj, Saudi Arabia
| | | | - N Sasirekha
- Sona College of Technology, Salem, Tamil Nadu, India
| | - A N Abd
- University of Diyala, Science College, Chemistry Department, Diyala, Iraq
| | - E Kianfar
- Islamic Azad University, Department of Chemical Engineering, Arak Branch, Arak, Iran
- Islamic Azad University, Young Researchers and Elite Club, Gachsaran Branch, Gachsaran, Iran
| |
Collapse
|
8
|
Atomically dispersed Ru3 site catalysts for electrochemical sensing of small molecules. Biosens Bioelectron 2022; 216:114609. [DOI: 10.1016/j.bios.2022.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/12/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022]
|
9
|
Abdul Khalil HPS, Yahya EB, Tajarudin HA, Balakrishnan V, Nasution H. Insights into the Role of Biopolymer-Based Xerogels in Biomedical Applications. Gels 2022; 8:334. [PMID: 35735678 PMCID: PMC9222565 DOI: 10.3390/gels8060334] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 12/18/2022] Open
Abstract
Xerogels are advanced, functional, porous materials consisting of ambient, dried, cross-linked polymeric networks. They possess characteristics such as high porosity, great surface area, and an affordable preparation route; they can be prepared from several organic and inorganic precursors for numerous applications. Owing to their desired properties, these materials were found to be suitable for several medical and biomedical applications; the high drug-loading capacity of xerogels and their ability to maintain sustained drug release make them highly desirable for drug delivery applications. As biopolymers and chemical-free materials, they have been also utilized in tissue engineering and regenerative medicine due to their high biocompatibility, non-immunogenicity, and non-cytotoxicity. Biopolymers have the ability to interact, cross-link, and/or trap several active agents, such as antibiotic or natural antimicrobial substances, which is useful in wound dressing and healing applications, and they can also be used to trap antibodies, enzymes, and cells for biosensing and monitoring applications. This review presents, for the first time, an introduction to biopolymeric xerogels, their fabrication approach, and their properties. We present the biological properties that make these materials suitable for many biomedical applications and discuss the most recent works regarding their applications, including drug delivery, wound healing and dressing, tissue scaffolding, and biosensing.
Collapse
Affiliation(s)
- H. P. S. Abdul Khalil
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (H.A.T.)
- Cluster of Green Biopolymer, Coatings and Packaging, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (H.A.T.)
- Cluster of Green Biopolymer, Coatings and Packaging, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Husnul Azan Tajarudin
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (H.A.T.)
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Halimatuddahliana Nasution
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia;
| |
Collapse
|
10
|
Yildirimkaraman O, Özenler S, Gunay US, Durmaz H, Yıldız ÜH. Electroactive Nanogel Formation by Reactive Layer-by-Layer Assembly of Polyester and Branched Polyethylenimine via Aza-Michael Addition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10902-10913. [PMID: 34477388 DOI: 10.1021/acs.langmuir.1c01070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We here demonstrate the utilization of reactive layer-by-layer (rLBL) assembly to form a nanogel coating made of branched polyethylenimine (BPEI) and alkyne containing polyester (PE) on a gold surface. The rLBL is generated by the rapid aza-Michael addition reaction of the alkyne group of PE and the -NH2 groups of BPEI by yielding a homogeneous gel coating on the gold substrate. The thickness profile of the nanogel revealed that a 400 nm thick coating is formed by six multilayers of rLBL, and it exhibits 50 nm roughness over 8 μm distance. The LBL characteristics were determined via depth profiling analysis by X-ray photoelectron spectroscopy, and it has been shown that a 70-100 nm periodic increase in gel thickness is a consequence of consecutive cycles of rLBL. A detailed XPS analysis was performed to determine the yield of the rLBL reaction: the average yield was deduced as 86.4% by the ratio of the binding energies at 286.26 eV, (C═CN-C bond) and 283.33 eV, (C≡C triple bond). The electrochemical characterization of the nanogels ascertains that up to the six-multilayered rLBL of BPEI-PE is electroactive, and the nanogel permeability had led to drive mass and charge transfer effectively. These results promise that nanogel formation by rLBL films may be a straightforward modification of electrodes approach, and it exhibits potential for the application of soft biointerfaces.
Collapse
Affiliation(s)
| | - Sezer Özenler
- Department of Chemistry, Izmir Institute of Technology, Izmir, 35430, Turkey
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen, D-91058, Germany
| | - Ufuk Saim Gunay
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Hakan Durmaz
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Ümit Hakan Yıldız
- Department of Chemistry, Izmir Institute of Technology, Izmir, 35430, Turkey
- Department of Polymer Science and Engineering, Izmir Institute of Technology, Izmir, 35430, Turkey
| |
Collapse
|
11
|
Kim SJ, Shin W. Glucose Diffusion Limiting Membrane Based on Polyethyleneimine (PEI) Hydrogel for the Stabilization of Glucose Sensor. J ELECTROCHEM SCI TE 2021. [DOI: 10.33961/jecst.2020.01487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Teymourian H, Barfidokht A, Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020). Chem Soc Rev 2020; 49:7671-7709. [PMID: 33020790 DOI: 10.1039/d0cs00304b] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While over half a century has passed since the introduction of enzyme glucose biosensors by Clark and Lyons, this important field has continued to be the focus of immense research activity. Extensive efforts during the past decade have led to major scientific and technological innovations towards tight monitoring of diabetes. Such continued progress toward advanced continuous glucose monitoring platforms, either minimal- or non-invasive, holds considerable promise for addressing the limitations of finger-prick blood testing toward tracking glucose trends over time, optimal therapeutic interventions, and improving the life of diabetes patients. However, despite these major developments, the field of glucose biosensors is still facing major challenges. The scope of this review is to present the key scientific and technological advances in electrochemical glucose biosensing over the past decade (2010-present), along with current obstacles and prospects towards the ultimate goal of highly stable and reliable real-time minimally-invasive or non-invasive glucose monitoring. After an introduction to electrochemical glucose biosensors, we highlight recent progress based on using advanced nanomaterials at the electrode-enzyme interface of three generations of glucose sensors. Subsequently, we cover recent activity and challenges towards next-generation wearable non-invasive glucose monitoring devices based on innovative sensing principles, alternative body fluids, advanced flexible materials, and novel platforms. This is followed by highlighting the latest progress in the field of minimally-invasive continuous glucose monitoring (CGM) which offers real-time information about interstitial glucose levels, by focusing on the challenges toward developing biocompatible membrane coatings to protect electrochemical glucose sensors against surface biofouling. Subsequent sections cover new analytical concepts of self-powered glucose sensors, paper-based glucose sensing and multiplexed detection of diabetes-related biomarkers. Finally, we will cover the latest advances in commercially available devices along with the upcoming future technologies.
Collapse
Affiliation(s)
- Hazhir Teymourian
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
13
|
Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications. Talanta 2020; 206:120210. [DOI: 10.1016/j.talanta.2019.120210] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
|
14
|
Electrochemical Measurement of Bismuth Clusters in Dendrimer Through Transformation from Atomicity Controlled Complexes. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01390-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Adaptable Xerogel-Layered Amperometric Biosensor Platforms on Wire Electrodes for Clinically Relevant Measurements. SENSORS 2019; 19:s19112584. [PMID: 31174353 PMCID: PMC6603663 DOI: 10.3390/s19112584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/11/2023]
Abstract
Biosensing strategies that employ readily adaptable materials for different analytes, can be miniaturized into needle electrode form, and function in bodily fluids represent a significant step toward the development of clinically relevant in vitro and in vivo sensors. In this work, a general scheme for 1st generation amperometric biosensors involving layer-by-layer electrode modification with enzyme-doped xerogels, electrochemically-deposited polymer, and polyurethane semi-permeable membranes is shown to achieve these goals. With minor modifications to these materials, sensors representing potential point-of-care medical tools are demonstrated to be sensitive and selective for a number of conditions. The potential for bedside measurements or continuous monitoring of analytes may offer faster and more accurate clinical diagnoses for diseases such as diabetes (glucose), preeclampsia (uric acid), galactosemia (galactose), xanthinuria (xanthine), and sepsis (lactate). For the specific diagnostic application, the sensing schemes have been miniaturized to wire electrodes and/or demonstrated as functional in synthetic urine or blood serum. Signal enhancement through the incorporation of platinum nanoparticle film in the scheme offers additional design control within the sensing scheme. The presented sensing strategy has the potential to be applied to any disease that has a related biomolecule and corresponding oxidase enzyme and represents rare, adaptable, sensing capabilities.
Collapse
|
16
|
First Generation Amperometric Biosensing of Galactose with Xerogel-Carbon Nanotube Layer-By-Layer Assemblies. NANOMATERIALS 2018; 9:nano9010042. [PMID: 30597967 PMCID: PMC6359589 DOI: 10.3390/nano9010042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 01/03/2023]
Abstract
A first-generation amperometric galactose biosensor has been systematically developed utilizing layer-by-layer (LbL) construction of xerogels, polymers, and carbon nanotubes toward a greater fundamental understanding of sensor design with these materials and the potential development of a more efficient galactosemia diagnostic tool for clinical application. The effect of several parameters (xerogel silane precursor, buffer pH, enzyme concentration, drying time and the inclusion of a polyurethane (PU) outer layer) on galactose sensitivity were investigated with the critical nature of xerogel selection being demonstrated. Xerogels formed from silanes with medium, aliphatic side chains were shown to exhibit significant enhancements in sensitivity with the addition of PU due to decreased enzyme leaching. Semi-permeable membranes of diaminobenzene and resorcinol copolymer and Nafion were used for selective discrimination against interferent species and the accompanying loss of sensitivity with adding layers was countered using functionalized, single-walled carbon nanotubes (CNTs). Optimized sensor performance included effective galactose sensitivity (0.037 μA/mM) across a useful diagnostic concentration range (0.5 mM to 7 mM), fast response time (~30 s), and low limits of detection (~80 μM) comparable to literature reports on galactose sensors. Additional modification with anionic polymer layers and/or nanoparticles allowed for galactose detection in blood serum samples and additional selectivity effectiveness.
Collapse
|
17
|
Wayu MB, Pannell MJ, Labban N, Case WS, Pollock JA, Leopold MC. Functionalized carbon nanotube adsorption interfaces for electron transfer studies of galactose oxidase. Bioelectrochemistry 2018; 125:116-126. [PMID: 30449323 DOI: 10.1016/j.bioelechem.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
Abstract
Modified electrodes featuring specific adsorption platforms able to access the electrochemistry of the copper containing enzyme galactose oxidase (GaOx) were explored, including interfaces featuring nanomaterials such as nanoparticles and carbon nanotubes (CNTs). Electrodes modified with various self-assembled monolayers (SAMs) including those with attached nanoparticles or amide-coupled functionalized CNTs were examined for their ability to effectively immobilize GaOx and study the redox activity related to its copper core. While stable GaOx electrochemistry has been notoriously difficult to achieve at modified electrodes, strategically designed functionalized CNT-based interfaces, cysteamine SAM-modified electrode subsequently amide-coupled to carboxylic acid functionalized single wall CNTs, were significantly more effective with high GaOx surface adsorption along with well-defined, more reversible, stable (≥ 8 days) voltammetry and an average ET rate constant of 0.74 s-1 in spite of increased ET distance - a result attributed to effective electronic coupling at the GaOx active site. Both amperometric and fluorescence assay results suggest embedded GaOx remains active. Fundamental ET properties of GaOx may be relevant to biosensor development targeting galactosemia while the use functionalized CNT platforms for adsorption/electrochemistry of electroactive enzymes/proteins may present an approach for fundamental protein electrochemistry and their future use in both direct and indirect biosensor schemes.
Collapse
Affiliation(s)
- Mulugeta B Wayu
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States
| | - Michael J Pannell
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States
| | - Najwa Labban
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States
| | - William S Case
- Department of Biology, Chemistry, and Physics, Converse College, Spartanburg, SC 29302, United States
| | - Julie A Pollock
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States
| | - Michael C Leopold
- Department of Chemistry, Gottwald Science Center, University of Richmond, Richmond, VA 23173, United States.
| |
Collapse
|
18
|
Pannell MJ, Doll EE, Labban N, Wayu MB, Pollock JA, Leopold MC. Versatile sarcosine and creatinine biosensing schemes utilizing layer-by-layer construction of carbon nanotube-chitosan composite films. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Wayu MB, DiPasquale LT, Schwarzmann MA, Gillespie SD, Leopold MC. Electropolymerization of β-cyclodextrin onto multi-walled carbon nanotube composite films for enhanced selective detection of uric acid. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Conway GE, Lambertson RH, Schwarzmann MA, Pannell MJ, Kerins HW, Rubenstein KJ, Dattelbaum JD, Leopold MC. Layer-by-layer design and optimization of xerogel-based amperometric first generation biosensors for uric acid. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.05.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Wayu MB, Pannell MJ, Leopold MC. Layered Xerogel Films Incorporating Monolayer‐Protected Cluster Networks on Platinum‐Black‐Modified Electrodes for Enhanced Sensitivity in First‐Generation Uric Acid Biosensing. ChemElectroChem 2016. [DOI: 10.1002/celc.201600164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mulugeta B. Wayu
- Department of Chemistry, Gottwald Center for the Sciences University of Richmond Richmond VA 23173 USA), Fax: (804) 28-71-89-7
| | - Michael J. Pannell
- Department of Chemistry, Gottwald Center for the Sciences University of Richmond Richmond VA 23173 USA), Fax: (804) 28-71-89-7
| | - Michael C. Leopold
- Department of Chemistry, Gottwald Center for the Sciences University of Richmond Richmond VA 23173 USA), Fax: (804) 28-71-89-7
| |
Collapse
|
22
|
Gal F, Challier L, Cousin F, Perez H, Noel V, Carrot G. Electrocatalytic (Bio)Nanostructures Based on Polymer-Grafted Platinum Nanoparticles for Analytical Purpose. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14747-14755. [PMID: 27192083 DOI: 10.1021/acsami.6b02956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Functionalized platinum nanoparticles (PtNPs) possess electrocatalytic properties toward H2O2 oxidation, which are of great interest for the construction of electrochemical oxidoreductase-based sensors. In this context, we have shown that polymer-grafted PtNPs could efficiently be used as building bricks for electroactive structures. In the present work, we prepared different 2D-nanostructures based on these elementary bricks, followed by the subsequent grafting of enzymes. The aim was to provide well-defined architectures to establish a correlation between their electrocatalytic properties and the arrangement of building bricks. Two different nanostructures have been elaborated via the smart combination of surface initiated-atom transfer radical polymerization (SI-ATRP), functionalized PtNPs (Br-PtNPs) and Langmuir-Blodgett (LB) technique. The first nanostructure (A) has been elaborated from LB films of poly(methacrylic acid)-grafted PtNPs (PMAA-PtNPs). The second nanostructure (B) consisted in the elaboration of polymer brushes (PMAA brushes) from Br-PtNPs LB films. In both systems, grafting of the glucose oxidase (GOx) has been performed directly to nanostructures, via peptide bonding. Structural features of nanostructures have been carefully characterized (compression isotherms, neutron reflectivity, and profilometry) and correlated to their electrocatalytic properties toward H2O2 oxidation or glucose sensing.
Collapse
Affiliation(s)
- François Gal
- NIMBE, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
- LLB, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Lylian Challier
- ITODYS, CNRS, Université Paris Diderot , 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Fabrice Cousin
- LLB, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Henri Perez
- NIMBE, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Vincent Noel
- ITODYS, CNRS, Université Paris Diderot , 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Geraldine Carrot
- NIMBE, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
23
|
Impedimetric immunosensor for detection of cardiovascular disorder risk biomarker. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:52-58. [PMID: 27523995 DOI: 10.1016/j.msec.2016.05.107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022]
Abstract
We report the construction and characterization of a novel, level free impedimetric immunosensor for rapid, sensitive and selective detection of myoglobin (Mb). Monoclonal anti-myoglobin (anti-Mb-IgG) antibody was immobilized on screen-printed multiwalled carbon nanotubes electrode for signal amplification without the need of natural enzymes. The fabrication of resulting immunosensor was extensively characterized by using scanning electron microscopy (SEM), fourier transform infrared (FT-IR) spectroscopy, cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Electrochemical impedance spectroscopy (EIS) technique offered a linear detection range (0.1-90ngmL(-1)) of myoglobin with sensitivity of 0.74kΩngmL(-1) (correlation coefficient, R(2)=0.97) and detection limit of 0.08ngmL(-1) (S/N=3). The mean percentage recovery of Mb in serum samples using this working biosensor is 97.33%. Furthermore, the proposed strategy can be a promising alternative for detection of Mb related cardiovascular disorders.
Collapse
|
24
|
Electropolymerized layers as selective membranes in first generation uric acid biosensors. J APPL ELECTROCHEM 2016. [DOI: 10.1007/s10800-016-0947-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
DiPasquale LT, Poulos NG, Hall JR, Minocha A, Bui TA, Leopold MC. Structure–function relationships affecting the sensing mechanism of monolayer-protected cluster doped xerogel amperometric glucose biosensors. J Colloid Interface Sci 2015; 450:202-212. [DOI: 10.1016/j.jcis.2015.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 12/20/2022]
|
26
|
Poulos NG, Hall JR, Leopold MC. Functional layer-by-layer design of xerogel-based first-generation amperometric glucose biosensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1547-1555. [PMID: 25562760 DOI: 10.1021/la504358t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Xerogel-based first-generation amperometric glucose biosensors, constructed through specific layer-by-layer assembly of films featuring glucose oxidase doped xerogel, a diffusion-limiting xerogel layer, and capped with both electropolymerized polyphenol and blended polyurethane semipermeable membranes, are presented. The specific combination of xerogels formed from specific silane precursors, including propyl-trimethoxysilane, isobutyl-trimethoxysilane, octyl-trimethoxysilane, and hydroxymethyl-triethoxysilane, exhibit impressive dynamic and linear ranges of detection (e.g., ≥24-28 mM glucose) and low response times, as well as significant discrimination against common interferent species such as acetaminophen, ascorbic acid, sodium nitrite, oxalic acid, and uric acid as determined by selectivity coefficients. Additionally, systematic electrochemical and contact angle studies of different xerogel silane precursors, varying in structure, chain length, and/or functional group, reveal that sensor performance is more dependent on the tunable porosity/permeability of the layered interfaces rather than the hydrophobic character or functional groups within the films. While the sensing performance largely exceeds that of existing electrochemical glucose sensing schemes in the literature, the presented layered approach establishes the specific functionality of each layer working in concert with each other and suggests that the strategy may be readily adaptable to other clinically relevant targets and is amenable to miniaturization for eventual in situ or in vivo sensing.
Collapse
Affiliation(s)
- Nicholas G Poulos
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond , Richmond, Virginia 23173, United States
| | | | | |
Collapse
|
27
|
Zhu C, Yang G, Li H, Du D, Lin Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 2015; 87:230-49. [PMID: 25354297 PMCID: PMC4287168 DOI: 10.1021/ac5039863] [Citation(s) in RCA: 831] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chengzhou Zhu
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Guohai Yang
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - He Li
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Dan Du
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yuehe Lin
- School
of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
28
|
Li R, Guo D, Ye J, Zhang M. Stabilization of Prussian blue with polyaniline and carbon nanotubes in neutral media for in vivo determination of glucose in rat brains. Analyst 2015; 140:3746-52. [DOI: 10.1039/c4an02352h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study demonstrates a new electrochemical microbiosensor for selectivein vivomonitoring of glucose in rat brains.
Collapse
Affiliation(s)
- Ruixin Li
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Deyin Guo
- College of Chemistry and Chemical Engineering
- South China University of Technology
- Wushan
- China
| | - Jianshan Ye
- College of Chemistry and Chemical Engineering
- South China University of Technology
- Wushan
- China
| | - Meining Zhang
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| |
Collapse
|
29
|
An effective amperometric biosensor based on graphene modified gold nanowire arrays for glucose detection. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0230-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Zhou J, Liao C, Zhang L, Wang Q, Tian Y. Molecular Hydrogel-Stabilized Enzyme with Facilitated Electron Transfer for Determination of H2O2 Released from Live Cells. Anal Chem 2014; 86:4395-401. [DOI: 10.1021/ac500231e] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jie Zhou
- Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Chuanan Liao
- Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Limin Zhang
- Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Qigang Wang
- Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Yang Tian
- Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| |
Collapse
|
31
|
Qu F, Zhang Y, Rasooly A, Yang M. Electrochemical Biosensing Platform Using Hydrogel Prepared from Ferrocene Modified Amino Acid as Highly Efficient Immobilization Matrix. Anal Chem 2014; 86:973-6. [DOI: 10.1021/ac403478z] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Fengli Qu
- Key
Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of
Education, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- College
of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Yi Zhang
- Key
Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of
Education, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Avraham Rasooly
- Division
of Biology, Office of Science and Engineering, FDA, Silver Spring, Maryland 20993, United States
| | - Minghui Yang
- Key
Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of
Education, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
32
|
Dong S, Li N, Suo G, Huang T. Inorganic/Organic Doped Carbon Aerogels As Biosensing Materials for the Detection of Hydrogen Peroxide. Anal Chem 2013; 85:11739-46. [DOI: 10.1021/ac4015098] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sheying Dong
- College
of Sciences, Xi′an University of Architecture and Technology, Xi′an 710055, People’s Republic of China
| | - Nan Li
- College
of Sciences, Xi′an University of Architecture and Technology, Xi′an 710055, People’s Republic of China
| | - Gaochao Suo
- College
of Sciences, Xi′an University of Architecture and Technology, Xi′an 710055, People’s Republic of China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi′an University of Architecture and Technology, Xi′an 710055, People’s Republic of China
| |
Collapse
|