1
|
Efficient Sub-1 Minute Analysis of Selected Biomarker Catecholamines by Core-Shell Hydrophilic Interaction Liquid Chromatography (HILIC) with Nanomolar Detection at a Boron-Doped Diamond (BDD) Electrode. SEPARATIONS 2021. [DOI: 10.3390/separations8080124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A rapid, sensitive method for the separation of catecholamine biomarkers (CAs), of importance in traumatic brain injury (TBI) and in Parkinson’s disease (PD), has been successfully developed using hydrophilic interaction liquid chromatography (HILIC). Dopamine (DA), epinephrine (EPI), and norepinephrine (NE) are known to be three to fivefold elevated above normal in traumatic brain injury (TBI) patients. HILIC facilitates the rapid and efficient separation of these polar biomarkers, which can be poorly retained by reversed-phase liquid chromatography (RPLC), while electrochemical detection (ECD) at the boron-doped diamond (BDD) electrode provides enhanced nanomolar detection. Three HILIC columns were compared, namely the superficially porous (core-shell) Z-HILIC column and the Z-cHILIC and Z-HILIC fully porous columns. The core-shell Z-HILIC showed the highest efficiency with a rapid separation within 60 s. The HILIC method utilizing the core-shell Z-HILIC column was initially optimized for the simultaneous analysis of DA, EPI, and NE using UV detection. The advantages of using the BDD electrode over UV detection were explored, and the improved limits of detection (LODs, S/N = 3) measured were 40, 50, and 50 nM for DA, EPI, and NE, respectively. Method validation is reported in terms of the linearity, repeatability, reproducibility, and LODs. Furthermore, the proposed method was successfully applied to the real sample analysis of urinary CAs following phenylboronic acid (PBA) solid phase extraction (SPE) pretreatment.
Collapse
|
2
|
Komendová M, Urban J. Dual-retention mechanism of dopamine-related compounds on monolithic stationary phase with zwitterion functionality. J Chromatogr A 2020; 1618:460893. [PMID: 31980263 DOI: 10.1016/j.chroma.2020.460893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/28/2022]
Abstract
Seven retention models have been selected to describe a dual-retention behavior of ten dopamine-related compounds on polymer-based monolithic stationary phase with zwitterion sulfobetaine functionality. Regression quality, as well as a statistical significance of individual regression parameters, have been evaluated. Better regression performance showed two four-parameter models when compared to three-parameter models. On the other hand, limited number of experimental points disqualified statistical robustness of four-parameter models. Among three-parameter models, retention description introduced by Horváth and Liang provided comparable quality of regression at significantly improved robustness. Multivariate analysis of the best three-parameter models provided the description of physicochemical properties of dopamine precursors and metabolites. Principal component analysis and logistic regression allowed structural characterization of dopamine-related compounds based solely on regression parameters extracted from an isocratic elution data. Both polarity and type of functional groups has been correctly assigned for 3-methoxytyramine that has not been part of an evaluation study. Among applied dual-retention models, Horváth´s model, initially developed to describe a retention of ionic compounds on nonpolar stationary phases, provided robust regression of experimental data and allowed an extraction of structural characteristics of dopamine-related compounds.
Collapse
Affiliation(s)
- Martina Komendová
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiří Urban
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
3
|
Meng F, Guo Z, Hu Y, Mai W, Zhang Z, Zhang B, Ge Q, Lou H, Guo F, Chen J, Duan S, Gao Z. CD73-derived adenosine controls inflammation and neurodegeneration by modulating dopamine signalling. Brain 2020; 142:700-718. [PMID: 30689733 DOI: 10.1093/brain/awy351] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/09/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022] Open
Abstract
Ectonucleotidase-mediated ATP catabolism provides a powerful mechanism to control the levels of extracellular adenosine. While increased adenosine A2A receptor (A2AR) signaling has been well-documented in both Parkinson's disease models and patients, the source of this enhanced adenosine signalling remains unclear. Here, we show that the ecto-5'-nucleotidase (CD73)-mediated adenosine formation provides an important input to activate A2AR, and upregulated CD73 and A2AR in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease models coordinatively contribute to the elevated adenosine signalling. Importantly, we demonstrate that CD73-derived adenosine-A2AR signalling modulates microglial immunoresponses and morphological dynamics. CD73 inactivation significantly attenuated lipopolysaccharide-induced pro-inflammatory responses in microglia, but enhanced microglia process extension, movement and morphological transformation in the laser injury and acute MPTP-induced Parkinson's disease models. Limiting CD73-derived adenosine substantially suppressed microglia-mediated neuroinflammation and improved the viability of dopaminergic neurons and motor behaviours in Parkinson's disease models. Moreover, CD73 inactivation suppressed A2AR induction and A2AR-mediated pro-inflammatory responses, whereas replenishment of adenosine analogues restored these effects, suggesting that CD73 produces a self-regulating feed-forward adenosine formation to activate A2AR and promote neuroinflammation. We further provide the first evidence that A2A enhanced inflammation by antagonizing dopamine-mediated anti-inflammation, suggesting that the homeostatic balance between adenosine and dopamine signalling is key to microglia immunoresponses. Our study thus reveals a novel role for CD73-mediated nucleotide metabolism in regulating neuroinflammation and provides the proof-of-principle that targeting nucleotide metabolic pathways to limit adenosine production and neuroinflammation in Parkinson's disease might be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Fan Meng
- Department of Neurobiology and Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhige Guo
- Department of Neurobiology and Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaling Hu
- Department of Neurobiology and Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Weihao Mai
- Department of Neurobiology and Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Zhang
- Department of Neurobiology and Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Zhang
- Department of Neurobiology and Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianqian Ge
- Department of Neurobiology and Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Huifang Lou
- Department of Neurobiology and Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Guo
- Department of Neurobiology and Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangfan Chen
- Molecular Neuropharmacology Laboratory and State Key Laboratory of Optometry, Ophthalmology and Vision Science, School of Optometry and Ophthalmology, Wenzhou, Zhejiang, China
| | - Shumin Duan
- Department of Neurobiology and Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Gao
- Department of Neurobiology and Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Li J, Shen H, Yu S, Zhang G, Ren C, Hu X, Yang Z. Synthesis of a manganese dioxide nanorod-anchored graphene oxide composite for highly sensitive electrochemical sensing of dopamine. Analyst 2020; 145:3283-3288. [DOI: 10.1039/d0an00348d] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel manganese dioxide nanorod-anchored graphene oxide (MnO2 NRs/GO) composite was synthesized by a simple hydrothermal method for the development of a highly sensitive electrochemical sensor for dopamine.
Collapse
Affiliation(s)
- Juan Li
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P.R. China
| | - Huifang Shen
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P.R. China
| | - Suhua Yu
- Guangling College
- Yangzhou University
- Yangzhou 225002
- P.R. China
| | - Geshan Zhang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Chuanli Ren
- Clinical Medical College
- Yangzhou University
- Yangzhou
- P.R. China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P.R. China
| | - Zhanjun Yang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P.R. China
| |
Collapse
|
5
|
Shahzad F, Iqbal A, Zaidi SA, Hwang SW, Koo CM. Nafion-stabilized two-dimensional transition metal carbide (Ti3C2Tx MXene) as a high-performance electrochemical sensor for neurotransmitter. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.03.061] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Baluchová S, Daňhel A, Dejmková H, Ostatná V, Fojta M, Schwarzová-Pecková K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules – A review. Anal Chim Acta 2019; 1077:30-66. [DOI: 10.1016/j.aca.2019.05.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/01/2019] [Accepted: 05/18/2019] [Indexed: 02/08/2023]
|
7
|
Li P, Ge M, Cao C, Lin D, Yang L. High-affinity Fe 3O 4/Au probe with synergetic effect of surface plasmon resonance and charge transfer enabling improved SERS sensing of dopamine in biofluids. Analyst 2019; 144:4526-4533. [PMID: 31243397 DOI: 10.1039/c9an00665f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Development of analytical methods allowing sensitive detection of neurotransmitters in various biofluids is vital. However, limitations of these methods include interference of impurities and stringent requirements concerning sample purity. In the current work, we developed a strategy for the rapid and sensitive analysis of dopamine (DA) in various biofluids with a smart surface-enhanced Raman spectroscopy (SERS) probe composed of magnetite Fe3O4 and Au nanoparticles (Fe3O4/Au NPs). Besides the simple and quick separation of DA from the specimen, Fe3O4 not only enabled a specific chemical interaction with DA molecules, but also acted as a SERS substrate capable of electromagnetically enhancing the Raman signal of DA. Therefore, the Fe3O4/Au NP composite with its coexisting electric-field effect and charger transfer (CT) enhancement was found to be beneficial for capturing the target molecules in biological environments and then enhancing the DA sensitivity. To understand the strong binding interaction between Fe3O4/Au and DA, X-ray photoelectron spectroscopy (XPS) was carried out, specifically to illuminate the chemical adsorption or possible CT complex. Moreover, a rapid purification strategy for further separating DA from serum was developed, and thus a high nanometer-level sensitivity was achieved. In addition, the feasibility of using Fe3O4/Au combined with the developed purification method was also verified using various tissue homogenates spiked with DA molecules. Such a nanocomposite can offer the possibility of efficiently separating DA from the complex specimen and then providing the sensitive detection of DA for various tissues. Accordingly, the smart SERS Fe3O4/Au nanocomposite probe, with its advantages of simple pre-treatment and synergetic enhanced mechanisms, shows great promise for the rapid and sensitive detection of DA in complicated specimens.
Collapse
Affiliation(s)
- Pan Li
- Center of medical physics and technology, Hefei institutes of physical science, CAS, Hefei 230021, China. and Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Meihong Ge
- Center of medical physics and technology, Hefei institutes of physical science, CAS, Hefei 230021, China. and University of Science and Technology of China, Anhui, Hefei 230027, China
| | - Chentai Cao
- Center of medical physics and technology, Hefei institutes of physical science, CAS, Hefei 230021, China. and University of Science and Technology of China, Anhui, Hefei 230027, China
| | - Dongyue Lin
- Center of medical physics and technology, Hefei institutes of physical science, CAS, Hefei 230021, China.
| | - Liangbao Yang
- Center of medical physics and technology, Hefei institutes of physical science, CAS, Hefei 230021, China. and Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| |
Collapse
|
8
|
Komendová M, Ribeiro LF, Urban J. Controlling selectivity of polymer-based monolithic stationary phases. J Sep Sci 2019; 42:952-961. [PMID: 30576067 DOI: 10.1002/jssc.201801046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/27/2022]
Abstract
In this work, we aimed to prepare a monolithic capillary column that allowed an isocratic separation of ten dopamine precursors and metabolites in a single run. Segments of five zwitterion sulfobetaine polymer monoliths have been modified by zwitterion phoshorylcholine by using an ultraviolet-initiated two-step photografting. Columns with 0, 33, 50, 66, and 100% of modified length were prepared. Effect of length of the modified segment and mobile phase composition has been tested. All columns provided dual-retention mechanism with reversed-phase retention in highly aqueous mobile phase and hydrophilic interaction mechanism in highly organic mobile phase. The retention mechanism was controlled by the composition of the mobile phase and has been described by a three-parameter model. We have used regression parameters to characterize the retention of analyzed compounds and to study individual pathways of dopamine metabolism. Comprehensive optimization of mobile phase composition allowed to find an optimal composition of the mobile phase and stationary phase surface chemistry arrangement to achieve desired separation. Optimized columns provided an isocratic separation of all tested compounds in less than nine min.
Collapse
Affiliation(s)
- Martina Komendová
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jiří Urban
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Application of Different Carbon Materials for Carbon Paste Electrodes to Simultaneous Electrochemical Detection of four DNA Bases with High Simpleness. ELECTROANAL 2018. [DOI: 10.1002/elan.201700805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Nagler J, Schriever SC, De Angelis M, Pfluger PT, Schramm KW. Comprehensive analysis of nine monoamines and metabolites in small amounts of peripheral murine (C57Bl/6 J) tissues. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/20/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Joachim Nagler
- Helmholtz Center Munich-German Research Center for Environmental Health, Molecular EXposomics; Neuherberg Germany
| | - Sonja C. Schriever
- Helmholtz Center Munich-German Research Center for Environmental Health, NeuroBioloy of Diabetes, Business Campus Garching; Garching Germany
| | - Meri De Angelis
- Helmholtz Center Munich-German Research Center for Environmental Health, Molecular EXposomics; Neuherberg Germany
| | - Paul T. Pfluger
- Helmholtz Center Munich-German Research Center for Environmental Health, NeuroBioloy of Diabetes, Business Campus Garching; Garching Germany
| | - Karl-Werner Schramm
- Helmholtz Center Munich-German Research Center for Environmental Health, Molecular EXposomics; Neuherberg Germany
- Department für Biowissenschaftliche Grundlagen; TUM, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt; Freising Germany
| |
Collapse
|
11
|
Jiang L, Nelson GW, Abda J, Foord JS. Novel Modifications to Carbon-Based Electrodes to Improve the Electrochemical Detection of Dopamine. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28338-28348. [PMID: 27420730 DOI: 10.1021/acsami.6b03879] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, we describe three simple modifications to carbon electrodes that were found to improve the detection of an exemplar neurotransmitter (dopamine) in the presence of physiological interferents (ascorbic acid and/or uric acid). First, the electro-oxidation of ascorbic acid, as a pretreatment, at boron-doped diamond electrode (BDE) interfaces is studied. This treatment did suppress the detection of ascorbic acid oxidation signal, but only in a manner suitable for single-use detection of high concentrations of dopamine (i.e., > 1 μM). Second, the hydrogenation of BDE by electrochemical cathodic treatment and plasma hydrogenation was investigated. Large cathodic, applied potentials (i.e., > - 5 V) and hydrogen plasma pretreatment of BDE lead to the partial and complete oxidization of ascorbic acid before dopamine, respectively. The consequence at hydrogen-plasma treated BDE is the complete electrochemical separation of these two species without any typical catalytic reactions between the analytes. Third, the modification of glassy carbon electrodes with carbon black nanoparticles is explored. This modification enables the simultaneous detection of ascorbic acid, dopamine and uric acid, significantly enhancing the sensitivity of dopamine. Dopamine was best detected using the unconventional route of detecting 5,6-dihydroxyindole, which is made possible by use of carbon-black nanoparticles. The potential of all three studied modifications to be of electroanalytical use is highlighted throughout this work.
Collapse
Affiliation(s)
- Luyun Jiang
- Chemical Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, United Kingdom OX13TA
| | - Geoffrey W Nelson
- Chemical Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, United Kingdom OX13TA
| | - Julia Abda
- Chemical Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, United Kingdom OX13TA
| | - John S Foord
- Chemical Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, United Kingdom OX13TA
| |
Collapse
|
12
|
Wang WF, Ju FR, Ran YL, Zhang HG, Chen XG. Detection of biogenic amines in C57BL/6 mice brain by capillary electrophoresis electrokinetic supercharging. Analyst 2016; 141:956-62. [DOI: 10.1039/c5an01642h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile, sensitive EKS/MEKD-PDAD method was developed for the detection of neurotransmitters in C57BL/6 mice brain.
Collapse
Affiliation(s)
- Wei-feng Wang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- Department of Chemistry
| | - Fu-rong Ju
- School of Life Science
- Lanzhou University
- Lanzhou 730000
- China
| | - Yan-li Ran
- School of Life Science
- Lanzhou University
- Lanzhou 730000
- China
| | - Hui-ge Zhang
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- Department of Chemistry
| | - Xing-guo Chen
- State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- China
- Department of Chemistry
| |
Collapse
|
13
|
Zhang L, Yang JQ, Luo Y, Shang JC, Jiang XH. Simultaneous determination of eleven compounds related to metabolism of bioamines in rat cortex and hippocampus by HPLC-ECD with boron-doped diamond working electrode. J Pharm Biomed Anal 2016; 118:41-51. [DOI: 10.1016/j.jpba.2015.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/11/2015] [Accepted: 10/13/2015] [Indexed: 11/29/2022]
|
14
|
Jiang L, Chen Y, Chen Y, Ma M, Tan Y, Tang H, Chen B. Determination of monoamine neurotransmitters in human urine by carrier-mediated liquid-phase microextraction based on solidification of stripping phase. Talanta 2015; 144:356-62. [DOI: 10.1016/j.talanta.2015.06.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/20/2015] [Accepted: 06/24/2015] [Indexed: 11/25/2022]
|
15
|
Simultaneous analysis of multiple neurotransmitters by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 2015; 1395:79-87. [DOI: 10.1016/j.chroma.2015.03.056] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 11/23/2022]
|
16
|
Mutafova-Yambolieva VN, Durnin L. The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 2014; 144:162-91. [PMID: 24887688 PMCID: PMC4185222 DOI: 10.1016/j.pharmthera.2014.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
The past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial. Identifying it is difficult because purines are present in all cell types, have a large variety of cell sources, and are released via numerous pathways. Moreover, studies on purinergic neurotransmission have relied heavily on indirect measurements of integrated postjunctional responses that do not provide direct information for neurotransmitter identity. This paper discusses experimental support for adenosine 5'-triphosphate (ATP) as a neurotransmitter and recent evidence for possible contribution of other purines, in addition to or instead of ATP, in chemical neurotransmission in the peripheral, enteric and central nervous systems. Sites of release and action of purines in model systems such as vas deferens, blood vessels, urinary bladder and chromaffin cells are discussed. This is preceded by a brief discussion of studies demonstrating storage of purines in synaptic vesicles. We examine recent evidence for cell type targets (e.g., smooth muscle cells, interstitial cells, neurons and glia) for purine neurotransmitters in different systems. This is followed by brief discussion of mechanisms of terminating the action of purine neurotransmitters, including extracellular nucleotide hydrolysis and possible salvage and reuptake in the cell. The significance of direct neurotransmitter release measurements is highlighted. Possibilities for involvement of multiple purines (e.g., ATP, ADP, NAD(+), ADP-ribose, adenosine, and diadenosine polyphosphates) in neurotransmission are considered throughout.
Collapse
Affiliation(s)
| | - Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, United States
| |
Collapse
|
17
|
Smoluch M, Mielczarek P, Reszke E, Hieftje GM, Silberring J. Determination of psychostimulants and their metabolites by electrochemistry linked on-line to flowing atmospheric pressure afterglow mass spectrometry. Analyst 2014; 139:4350-5. [DOI: 10.1039/c3an02067c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Ye N, Li J. Determination of dopamine, epinephrine, and norepinephrine by open-tubular capillary electrochromatography using graphene oxide molecularly imprinted polymers as the stationary phase. J Sep Sci 2014; 37:2239-47. [DOI: 10.1002/jssc.201400287] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 05/19/2014] [Accepted: 05/22/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Nengsheng Ye
- Department of Chemistry; Capital Normal University; Beijing P. R. China
| | - Jian Li
- Department of Chemistry; Capital Normal University; Beijing P. R. China
| |
Collapse
|
19
|
Online micro-solid-phase extraction based on boronate affinity monolithic column coupled with high-performance liquid chromatography for the determination of monoamine neurotransmitters in human urine. J Chromatogr A 2014; 1342:37-43. [DOI: 10.1016/j.chroma.2014.03.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 12/22/2022]
|
20
|
Pani AK, Jiao Y, Sample KJ, Smeyne RJ. Neurochemical measurement of adenosine in discrete brain regions of five strains of inbred mice. PLoS One 2014; 9:e92422. [PMID: 24642754 PMCID: PMC3958516 DOI: 10.1371/journal.pone.0092422] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/21/2014] [Indexed: 12/28/2022] Open
Abstract
Adenosine (ADO), a non-classical neurotransmitter and neuromodulator, and its metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), have been shown to play an important role in a number of biochemical processes. Although their signaling is well described, it has been difficult to directly, accurately and simultaneously quantitate these purines in tissue or fluids. Here, we describe a novel method for measuring adenosine (ADO) and its metabolites using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Using this chromatographic technique, we examined baseline levels of ADO and ATP, ADP and AMP in 6 different brain regions of the C57BL/6J mouse: stratum, cortex, hippocampus, olfactory bulb, substantia nigra and cerebellum and compared ADO levels in 5 different strains of mice (C57BL/6J, Swiss-Webster, FVB/NJ, 129P/J, and BALB/c). These studies demonstrate that baseline levels of purines vary significantly among the brain regions as well as between different mouse strains. These dissimilarities in purine concentrations may explain the variable phenotypes among background strains described in neurological disease models.
Collapse
Affiliation(s)
- Amar K. Pani
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yun Jiao
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kenneth J. Sample
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Richard J. Smeyne
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|