1
|
Liu TT, Huang SH, Chao L. Rapid Enrichment of a Native Multipass Transmembrane Protein via Cell Membrane Electrophoresis through Buffer pH and Ionic Strength Adjustment. J Am Chem Soc 2024; 146:11634-11647. [PMID: 38628144 PMCID: PMC11066866 DOI: 10.1021/jacs.3c13579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
Supported membrane electrophoresis is a promising technique for collecting membrane proteins in native bilayer environments. However, the slow mobility of typical transmembrane proteins has impeded the technique's advancement. Here, we successfully applied cell membrane electrophoresis to rapidly enrich a 12-transmembrane helix protein, glucose transporter 1 with antibodies (GLUT1 complex), by tuning the buffer pH and ionic strength. The identified conditions allowed the separation of the GLUT1 complex and a lipid probe, Fast-DiO, within a native-like environment in a few minutes. A force model was developed to account for distinct electric and drag forces acting on the transmembrane and aqueous-exposed portion of a transmembrane protein as well as the electroosmotic force. This model not only elucidates the impact of size and charge properties of transmembrane proteins but also highlights the influence of pH and ionic strength on the driving forces and, consequently, electrophoretic mobility. Model predictions align well with experimentally measured electrophoretic mobilities of the GLUT1 complex and Fast-DiO at various pH and ionic strengths as well as with several lipid probes, lipid-anchored proteins, and reconstituted membrane proteins from previous studies. Force analyses revealed the substantial membrane drag of the GLUT1 complex, significantly slowing down electrophoretic mobility. Besides, the counterbalance of similar magnitudes of electroosmotic and electric forces results in a small net driving force and, consequently, reduced mobility under typical neutral pH conditions. Our results further highlight how the size and charge properties of transmembrane proteins influence the suitable range of operating conditions for effective movement, providing potential applications for concentrating and isolating membrane proteins within this platform.
Collapse
Affiliation(s)
- Tzu-Tzu Liu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Sin-Han Huang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Ling Chao
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| |
Collapse
|
2
|
Meredith SA, Kusunoki Y, Connell SD, Morigaki K, Evans SD, Adams PG. Self-Quenching Behavior of a Fluorescent Probe Incorporated within Lipid Membranes Explored Using Electrophoresis and Fluorescence Lifetime Imaging Microscopy. J Phys Chem B 2023; 127:1715-1727. [PMID: 36802586 PMCID: PMC9986866 DOI: 10.1021/acs.jpcb.2c07652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Fluorescent probes are useful in biophysics research to assess the spatial distribution, mobility, and interactions of biomolecules. However, fluorophores can undergo "self-quenching" of their fluorescence intensity at high concentrations. A greater understanding of concentration-quenching effects is important for avoiding artifacts in fluorescence images and relevant to energy transfer processes in photosynthesis. Here, we show that an electrophoresis technique can be used to control the migration of charged fluorophores associated with supported lipid bilayers (SLBs) and that quenching effects can be quantified with fluorescence lifetime imaging microscopy (FLIM). Confined SLBs containing controlled quantities of lipid-linked Texas Red (TR) fluorophores were generated within 100 × 100 μm corral regions on glass substrates. Application of an electric field in-plane with the lipid bilayer induced the migration of negatively charged TR-lipid molecules toward the positive electrode and created a lateral concentration gradient across each corral. The self-quenching of TR was directly observed in FLIM images as a correlation of high concentrations of fluorophores to reductions in their fluorescence lifetime. By varying the initial concentration of TR fluorophores incorporated into the SLBs from 0.3% to 0.8% (mol/mol), the maximum concentration of fluorophores reached during electrophoresis could be modulated from 2% up to 7% (mol/mol), leading to the reduction of fluorescence lifetime down to 30% and quenching of the fluorescence intensity down to 10% of their original levels. As part of this work, we demonstrated a method for converting fluorescence intensity profiles into molecular concentration profiles by correcting for quenching effects. The calculated concentration profiles have a good fit to an exponential growth function, suggesting that TR-lipids can diffuse freely even at high concentrations. Overall, these findings prove that electrophoresis is effective at producing microscale concentration gradients of a molecule-of-interest and that FLIM is an excellent approach to interrogate dynamic changes to molecular interactions via their photophysical state.
Collapse
Affiliation(s)
- Sophie A Meredith
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U. K.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U. K
| | - Yuka Kusunoki
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Simon D Connell
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U. K.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U. K
| | - Kenichi Morigaki
- Graduate School of Agricultural Science and Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U. K.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U. K
| | - Peter G Adams
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U. K.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U. K
| |
Collapse
|
3
|
Huang SH, Huang BC, Chao L. Development of Cell Membrane Electrophoresis to Measure the Diffusivity of a Native Transmembrane Protein. Anal Chem 2022; 94:4531-4537. [PMID: 35230091 DOI: 10.1021/acs.analchem.2c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lateral diffusion of transmembrane proteins in cell membranes is an important process that controls the dynamics and functions of the cell membrane. Several fluorescence-based techniques have been developed to study the diffusivities of transmembrane proteins. However, it is challenging to measure the diffusivity of a transmembrane protein with slow diffusion because of the photobleaching effect caused by long exposure times or multiple exposures to light. In this study, we developed a cell membrane electrophoresis platform to measure diffusivity. We deposited cell membrane vesicles derived from HeLa cells to form supported cell membrane patches. We demonstrated that the electrophoresis platform can be used to drive the movement of not only a lipid probe but also a native transmembrane protein, GLUT1. The movements were halted by the boundaries of the membrane patches and the concentration profiles reached steady states when the diffusion mass flux was balanced with the electrical mass flux. We used the Nernst-Planck equation as the mass balance equation to describe the steady concentration profiles and fitted these equations to our data to obtain the diffusivities. The obtained diffusivities were comparable to those obtained by fluorescence recovery after photobleaching, suggesting the validity of this new method of diffusivity measurement. Only a single snapshot is required for the diffusivity measurement, addressing the problems associated with photobleaching and allowing researchers to measure the diffusivity of transmembrane proteins with slow diffusion.
Collapse
Affiliation(s)
- Sin-Han Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Bo-Chuan Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ling Chao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Oszwałdowski S. Capillary electrophoresis study on evolution of phase of mixed micelles. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Kataoka-Hamai C, Kawakami K. Domain Sorting in Giant Unilamellar Vesicles Adsorbed on Glass. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1082-1088. [PMID: 33440115 DOI: 10.1021/acs.langmuir.0c02843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Giant unilamellar vesicles (GUVs) adsorb to a solid surface and rupture to form a planar bilayer patch. These bilayer patches are used to investigate the properties and functions of biological membranes. Therefore, it is crucial to understand the mechanisms of GUV adsorption. In this study, we investigate the adsorption of phase-separated GUVs on glass using fluorescence microscopy. GUVs containing liquid-ordered (Lo) and liquid-disordered (Ld) phases underwent domain sorting after adsorption. The Ld domain in the unbound region migrated to the highly curved region near the edge of the adsorbed region. Additionally, the Lo phase grew linearly along the edge of the adsorbed region, creating a thin ring-like domain. After the domain sorting event, the GUV ruptured to form a planar bilayer patch with circular-patterned domains in the initially adsorbed area. We found that domain sorting was promoted by increasing the extent of GUV deformation. These results suggest that both the Ld and Lo domains are reorganized for stabilizing the curved bilayer region in adsorbed GUVs.
Collapse
Affiliation(s)
- Chiho Kataoka-Hamai
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
6
|
Keratinocyte electrotaxis induced by physiological pulsed direct current electric fields. Bioelectrochemistry 2019; 127:113-124. [DOI: 10.1016/j.bioelechem.2019.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 02/02/2023]
|
7
|
Troiano JM, McGeachy AC, Olenick LL, Fang D, Liang D, Hong J, Kuech TR, Caudill ER, Pedersen JA, Cui Q, Geiger FM. Quantifying the Electrostatics of Polycation–Lipid Bilayer Interactions. J Am Chem Soc 2017; 139:5808-5816. [DOI: 10.1021/jacs.6b12887] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Julianne M. Troiano
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States,
| | - Alicia C. McGeachy
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States,
| | - Laura L. Olenick
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States,
| | - Dong Fang
- Department
of Chemistry, University of Wisconsin, 680 North Park Street, Madison, Wisconsin 53706, United States, and
| | - Dongyue Liang
- Department
of Chemistry, University of Wisconsin, 680 North Park Street, Madison, Wisconsin 53706, United States, and
| | - Jiewei Hong
- Department
of Chemistry, University of Wisconsin, 680 North Park Street, Madison, Wisconsin 53706, United States, and
| | - Thomas R. Kuech
- Environmental
Chemistry and Technology Program, University of Wisconsin, 1415 Engineering
Drive, Madison, Wisconsin 53706, United States
| | - Emily R. Caudill
- Environmental
Chemistry and Technology Program, University of Wisconsin, 1415 Engineering
Drive, Madison, Wisconsin 53706, United States
| | - Joel A. Pedersen
- Department
of Chemistry, University of Wisconsin, 680 North Park Street, Madison, Wisconsin 53706, United States, and
- Environmental
Chemistry and Technology Program, University of Wisconsin, 1415 Engineering
Drive, Madison, Wisconsin 53706, United States
| | - Qiang Cui
- Department
of Chemistry, University of Wisconsin, 680 North Park Street, Madison, Wisconsin 53706, United States, and
| | - Franz M. Geiger
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States,
| |
Collapse
|
8
|
Bao P, Cartron ML, Sheikh KH, Johnson BRG, Hunter CN, Evans SD. Controlling transmembrane protein concentration and orientation in supported lipid bilayers. Chem Commun (Camb) 2017; 53:4250-4253. [PMID: 28361139 DOI: 10.1039/c7cc01023k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The trans-membrane protein - proteorhodopsin (pR) has been incorporated into supported lipid bilayers (SLB). In-plane electric fields have been used to manipulate the orientation and concentration of these proteins, within the SLB, through electrophoresis leading to a 25-fold increase concentration of pR.
Collapse
Affiliation(s)
- P Bao
- School of Physics & Astronomy, University of Leeds, LS2 9JT, UK.
| | - M L Cartron
- Department of Molecular Biology & Biotechnology, University of Sheffield, S10 2TH, UK
| | - K H Sheikh
- School of Biomedical Science, University of Leeds, LS2 9JT, UK
| | - B R G Johnson
- School of Physics & Astronomy, University of Leeds, LS2 9JT, UK.
| | - C N Hunter
- Department of Molecular Biology & Biotechnology, University of Sheffield, S10 2TH, UK
| | - S D Evans
- School of Physics & Astronomy, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
9
|
Lozano MM, Hovis JS, Moss FR, Boxer SG. Dynamic Reorganization and Correlation among Lipid Raft Components. J Am Chem Soc 2016; 138:9996-10001. [PMID: 27447959 DOI: 10.1021/jacs.6b05540] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipid rafts are widely believed to be an essential organizational motif in cell membranes. However, direct evidence for interactions among lipid and/or protein components believed to be associated with rafts is quite limited owing, in part, to the small size and intrinsically dynamic interactions that lead to raft formation. Here, we exploit the single negative charge on the monosialoganglioside GM1, commonly associated with rafts, to create a gradient of GM1 in response to an electric field applied parallel to a patterned supported lipid bilayer. The composition of this gradient is visualized by imaging mass spectrometry using a NanoSIMS. Using this analytical method, added cholesterol and sphingomyelin, both neutral and not themselves displaced by the electric field, are observed to reorganize with GM1. This dynamic reorganization provides direct evidence for an attractive interaction among these raft components into some sort of cluster. At steady state we obtain an estimate for the composition of this cluster.
Collapse
Affiliation(s)
- Mónica M Lozano
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | - Jennifer S Hovis
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | - Frank R Moss
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University , Stanford, California 94305-5012, United States
| |
Collapse
|
10
|
Liu C, Huang D, Yang T, Cremer PS. Monitoring phosphatidic acid formation in intact phosphatidylcholine bilayers upon phospholipase D catalysis. Anal Chem 2014; 86:1753-9. [PMID: 24456402 PMCID: PMC3983022 DOI: 10.1021/ac403580r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/15/2014] [Indexed: 12/25/2022]
Abstract
We have monitored the production of the negatively charged lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidic acid acid (POPA), in supported lipid bilayers via the enzymatic hydrolysis of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC), a zwitterionic lipid. Experiments were performed with phospholipase D (PLD) in a Ca(2+) dependent fashion. The strategy for doing this involved using membrane-bound streptavidin as a biomarker for the charge on the membrane. The focusing position of streptavidin in electrophoretic-electroosmotic focusing (EEF) experiments was monitored via a fluorescent tag on this protein. The negative charge increased during these experiments due to the formation of POPA lipids. This caused the focusing position of streptavidin to migrate toward the negatively charged electrode. With the use of a calibration curve, the amount of POPA generated during this assay could be read out from the intact membrane, an objective that has been otherwise difficult to achieve because of the lack of unique chromophores on PA lipids. On the basis of these results, other enzymatic reactions involving the change in membrane charge could also be monitored in a similar way. This would include phosphorylation, dephosphorylation, lipid biosynthesis, and additional phospholipase reactions.
Collapse
Affiliation(s)
- Chunming Liu
- Department
of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, United States
| | - Da Huang
- Department
of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, United States
| | - Tinglu Yang
- Department
of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, United States
| | - Paul S. Cremer
- Department
of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, United States
| |
Collapse
|