1
|
Li H, Zhang F, Wang D, Luo S, Ding Z, Bao H, Zhang S, Fan C, Ji W, Wang S. Specific Cell Adhesion at Nano-Biointerfaces: Synergistic Effect of Topographical Matching and Molecular Recognition. NANO LETTERS 2025; 25:7097-7106. [PMID: 40240287 DOI: 10.1021/acs.nanolett.5c01197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Specific cell adhesion is essential for functional biointerfaces, especially in cancer diagnosis. However, the role of surface nanotopography in this process remains unclear. Herein, we reveal the critical role of surface nanotopography by measuring adhesion forces utilizing fluidic force microscopy (FluidFM). The antibody-coated nanospiky surface exhibits cell adhesion force 1 to 2 orders of magnitude higher than those of the flat, nanospiky, and antibody-coated flat surfaces. This amplified effect is related to a time-dependent reversal, with adhesion force on nanospiky surfaces initially weaker than that on flat surfaces but eventually surpassing it. Mathematical simulations further demonstrate that micro-nanostructured surfaces maximize contact points, enabling multiscale, multipoint cell-substrate interactions, consistent with experimental results. From thermodynamic and kinetic perspectives, we propose a multiscale, multipoint recognition model based on the synergistic effect of topographical matching and molecular recognition. Our findings provide valuable clues for biointerface design in cancer diagnosis, drug screening, and tissue engineering.
Collapse
Affiliation(s)
- Haonan Li
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Feilong Zhang
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Duanda Wang
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Shihang Luo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Zhuoli Ding
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Han Bao
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Sen Zhang
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Chunyan Fan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Wei Ji
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Shutao Wang
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| |
Collapse
|
2
|
Sarkar J, Kumar A. Recent Advances in Biomaterial-Based High-Throughput Platforms. Biotechnol J 2020; 16:e2000288. [PMID: 32914497 DOI: 10.1002/biot.202000288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/30/2020] [Indexed: 12/15/2022]
Abstract
High-throughput systems allow screening and analysis of large number of samples simultaneously under same conditions. Over recent years, high-throughput systems have found applications in fields other than drug discovery like bioprocess industries, pollutant detection, material microarrays, etc. With the introduction of materials in such HT platforms, the screening system has been enabled for solid phases apart from conventional solution phase. The use of biomaterials has further facilitated cell-based assays in such platforms. Here, the authors have focused on the recent developments in biomaterial-based platforms including the fabricationusing contact and non-contact methods and utilization of such platforms for discovery of novel biomaterials exploiting interaction of biological entities with surface and bulk properties. Finally, the authors have elaborated on the application of the biomaterial-based high-throughput platforms in tissue engineering and regenerative medicine, cancer and stem cell studies. The studies show encouraging applications of biomaterial microarrays. However, success in clinical applicability still seems to be a far off task majorly due to absence of robust characterization and analysis techniques. Extensive focus is required for developing personalized medicine, analytical tools and storage/shelf-life of cell laden microarrays.
Collapse
Affiliation(s)
- Joyita Sarkar
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna, BT-6/7, Biotechnology Park, Additional MIDC Area, Aurangabad Road, Jalna, Maharashtra, 43120, India.,Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.,Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
3
|
Brittain WJ, Brandsetter T, Prucker O, Rühe J. The Surface Science of Microarray Generation-A Critical Inventory. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39397-39409. [PMID: 31322854 DOI: 10.1021/acsami.9b06838] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microarrays are powerful tools in biomedical research and have become indispensable for high-throughput multiplex analysis, especially for DNA and protein analysis. The basis for all microarray processing and fabrication is surface modification of a chip substrate and many different strategies to couple probe molecules to such substrates have been developed. We present here a critical assessment of typical biochip generation processes from a surface science point of view. While great progress has been made from a molecular biology point of view on the development of qualitative assays and impressive results have been obtained on the detection of rather low concentrations of DNA or proteins, quantitative chip-based assays are still comparably rare. We argue that lack of stable and reliable deposition chemistries has led in many cases to suboptimal quantitative reproducibility, impeded further progress in microarray development and prevented a more significant penetration of microarray technology into the diagnostic market. We suggest that surface-attached hydrogel networks might be a promising strategy to achieve highly sensitive and quantitatively reproducible microarrays.
Collapse
Affiliation(s)
- William J Brittain
- Department of Chemistry & Biochemistry , Texas State University , 601 University Drive , San Marcos , Texas 78666 , United States
- Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , Freiburg 79110 , Germany
| | - Thomas Brandsetter
- Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , Freiburg 79110 , Germany
| | - Oswald Prucker
- Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , Freiburg 79110 , Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , Freiburg 79110 , Germany
| |
Collapse
|
4
|
Lee S, Lee JH, Kwon HG, Laurell T, Jeong OC, Kim S. A Sol-gel Integrated Dual-readout Microarray Platform for Quantification and Identification of Prostate-specific Antigen. ANAL SCI 2018. [PMID: 29526899 DOI: 10.2116/analsci.34.317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, we report a sol-gel integrated affinity microarray for on-chip matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) that enables capture and identification of prostate?specific antigen (PSA) in samples. An anti-PSA antibody (H117) was mixed with a sol?gel, and the mixture was spotted onto a porous silicon (pSi) surface without additional surface modifications. The antibody easily penetrates the sol-gel macropore fluidic network structure, making possible high affinities. To assess the capture affinity of the platform, we performed a direct assay using fluorescein isothiocyanate-labeled PSA. Pure PSA was subjected to on-chip MALDI-TOF-MS analysis, yielding three clear mass peptide peaks (m/z = 1272, 1407, and 1872). The sol-gel microarray platform enables dual readout of PSA both fluorometric and MALDI-TOF MS analysis in biological samples. Here we report a useful method for a means for discovery of biomarkers in complex body fluids.
Collapse
Affiliation(s)
- SangWook Lee
- Department of Chemistry, University of Tokyo.,Department of Biomedical Engineering, Dongguk University
| | - Jong Hyun Lee
- Institute of Digital Anti-Aging Healthcare, Inje University
| | - Hyuck Gi Kwon
- Institute of Digital Anti-Aging Healthcare, Inje University
| | | | - Ok Chan Jeong
- Institute of Digital Anti-Aging Healthcare, Inje University.,Department of Biomedical Engineering, Inje University
| | - Soyoun Kim
- Department of Biomedical Engineering, Dongguk University
| |
Collapse
|
5
|
Vena MP, Jobbágy M, Bilmes SA. Microorganism mediated biosynthesis of metal chalcogenides; a powerful tool to transform toxic effluents into functional nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:804-810. [PMID: 27157896 DOI: 10.1016/j.scitotenv.2016.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 05/15/2023]
Abstract
Cadmium contained in soil and water can be taken up by certain crops and aquatic organisms and accumulate in the food-chain, thus removal of Cd from mining or industrial effluents - i.e. Ni-Cd batteries, electroplating, pigments, fertilizers - becomes mandatory for human health. In parallel, there is an increased interest in the production of luminescent Q-dots for applications in bioimaging, sensors and electronic devices, even the present synthesis methods are economic and environmentally costly. An alternative green pathway for producing Metal chalcogenides (MC: CdS, CdSe, CdTe) nanocrystals is based on the metabolic activity of living organisms. Intracellular and extracellular biosynthesis of can be achieved within a biomimetic approach feeding living organisms with Cd precursors providing new routes for combining bioremediation with green routes for producing MC nanoparticles. In this mini-review we present the state-of-the-art of biosynthesis of MC nanoparticles with a critical discussion of parameters involved and protocols. Few existing examples of scaling-up are also discussed. A modular reactor based on microorganisms entrapped in biocompatible mineral matrices - already proven for bioremediation of dissolved dyes - is proposed for combining both Cd-depletion and MC nanoparticle's production.
Collapse
Affiliation(s)
- M Paula Vena
- INQUIMAE (CONICET), DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Matías Jobbágy
- INQUIMAE (CONICET), DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Sara A Bilmes
- INQUIMAE (CONICET), DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Chang L, Hu J, Chen F, Chen Z, Shi J, Yang Z, Li Y, Lee LJ. Nanoscale bio-platforms for living cell interrogation: current status and future perspectives. NANOSCALE 2016; 8:3181-3206. [PMID: 26745513 DOI: 10.1039/c5nr06694h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The living cell is a complex entity that dynamically responds to both intracellular and extracellular environments. Extensive efforts have been devoted to the understanding intracellular functions orchestrated with mRNAs and proteins in investigation of the fate of a single-cell, including proliferation, apoptosis, motility, differentiation and mutations. The rapid development of modern cellular analysis techniques (e.g. PCR, western blotting, immunochemistry, etc.) offers new opportunities in quantitative analysis of RNA/protein expression up to a single cell level. The recent entries of nanoscale platforms that include kinds of methodologies with high spatial and temporal resolution have been widely employed to probe the living cells. In this tutorial review paper, we give insight into background introduction and technical innovation of currently reported nanoscale platforms for living cell interrogation. These highlighted technologies are documented in details within four categories, including nano-biosensors for label-free detection of living cells, nanodevices for living cell probing by intracellular marker delivery, high-throughput platforms towards clinical current, and the progress of microscopic imaging platforms for cell/tissue tracking in vitro and in vivo. Perspectives for system improvement were also discussed to solve the limitations remains in current techniques, for the purpose of clinical use in future.
Collapse
Affiliation(s)
- Lingqian Chang
- NSF Nanoscale Science and Engineering Center (NSEC), The Ohio State University, Columbus, OH 43212, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Drachuk I, Suntivich R, Calabrese R, Harbaugh S, Kelley-Loughnane N, Kaplan DL, Stone M, Tsukruk VV. Printed Dual Cell Arrays for Multiplexed Sensing. ACS Biomater Sci Eng 2015; 1:287-294. [DOI: 10.1021/ab500085k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Irina Drachuk
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rattanon Suntivich
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rossella Calabrese
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Svetlana Harbaugh
- Air
Force Research Laboratory, Directorate of Human Effectiveness, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Nancy Kelley-Loughnane
- Air
Force Research Laboratory, Directorate of Human Effectiveness, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - David L. Kaplan
- Department
of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Morley Stone
- Air
Force Research Laboratory, Directorate of Human Effectiveness, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Vladimir V. Tsukruk
- School
of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Pannier A, Soltmann U, Soltmann B, Altenburger R, Schmitt-Jansen M. Alginate/silica hybrid materials for immobilization of green microalgae Chlorella vulgaris for cell-based sensor arrays. J Mater Chem B 2014; 2:7896-7909. [DOI: 10.1039/c4tb00944d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|