1
|
Chen L, Yan Y, Hong C, Wei X, Xiong J, Huang C, Shen X. Successive electromembrane extraction: A new insight in simultaneous extraction of polar and non-polar metabolic molecules from biological samples. Anal Chim Acta 2025; 1344:343727. [PMID: 39984214 DOI: 10.1016/j.aca.2025.343727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Simultaneous determination of different natures of analytes is of great significance for saving sample volumes and simplifying analytical procedures. However, sample preparation for the simultaneous extraction of polar and non-polar analytes represents a challenge in sample preparation. Inspired by the successive liquid-phase microextraction (sLPME) method for acidic and basic analytes that we previously developed, we first proposed an efficient successive electromembrane extraction (sEME) system by adjusting the acidity of the donor solution and using binary organic solvents for extraction of polar and non-polar targets from biological samples in this work. RESULTS We performed a detailed optimization of the sEME system. Here, carnitine (C0) and acylcarnitines were selected as model analytes since the demand increased especially in metabolomics studies. The combination of 2-nonanone and 2-nitrophenylpentyl ether (NPPE) was selected as supported liquid membranes (SLMs), and trichloroacetic acid (TCA) 100 % (v/v) was added to donor solution to adjust the acidity of the donor solution after the first sEME process (sEME-1). The recoveries of the targets in blood and urine were 47%-119% and 54%-118%, respectively. Moreover, the sEME systems were evaluated by liquid chromatography tandem mass spectrometry (LC-MS/MS) from biological samples. The limit of detection (LOD) and limit of quantitation (LOQ) of analytes were 0.03-1.33 ng mL-1 and 0.09-4.42 ng mL-1, respectively. SIGNIFICANCE sEME enabled the extraction of polar and non-polar analytes from the same sample under optimal extraction conditions for all target analytes, which provided ideas for efficient sEME of exogenous and endogenous analytes from biological samples for forensic, clinical, and epidemiological studies.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China
| | - Yibo Yan
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China
| | - Changbao Hong
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China
| | - Xiangting Wei
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China
| | - Jianhua Xiong
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan 430030, Hubei, China.
| | - Xiantao Shen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
2
|
Martins RO, de Araújo GL, Simas RC, Chaves AR. ELECTROMEMBRANE EXTRACTION (EME): FUNDAMENTALS AND APPLICATIONS. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
3
|
He Y, Miggiels P, Drouin N, Lindenburg PW, Wouters B, Hankemeier T. An automated online three-phase electro-extraction setup with machine-vision process monitoring hyphenated to LC-MS analysis. Anal Chim Acta 2022; 1235:340521. [DOI: 10.1016/j.aca.2022.340521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022]
|
4
|
On-line coupling of two-phase microelectroextraction to capillary electrophoresis – Mass spectrometry for metabolomics analyses. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Yuan J, Cao H, Du X, Chen T, Ma A, Pan J. Nonaqueous Miscible Liquid-Liquid Electroextraction for Fast Exhaustive Enrichment of Ultratrace Analytes by an Exponential Transfer and Deceleration Mechanism. Anal Chem 2021; 93:1458-1465. [PMID: 33375784 DOI: 10.1021/acs.analchem.0c03478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conventional electrical-field-assisted sample preparation (EFASP) methods rely on analyte transfer between immiscible phases and require at least one aqueous phase in contact with the electrode. In this paper, we report a novel nonaqueous miscible liquid-liquid electroextraction (NMLEE) technique that enables fast exhaustive enrichment of ultratrace analytes from a milliliter-level donor in a vial to a microliter-level acceptor in a tube. Miscible nonaqueous solvents are used for the donor and acceptor to overcome common EFASP problems such as high charge or mass transfer resistance, loss of analytes in the membrane phase, water electrolysis, back-extraction, bubble generation, and difficulties in the application of high voltage for fast migration. According to theoretical derivation and experimental verification results, the concentrations of analytes in the donor and their migration velocity in the acceptor both decrease exponentially with time, and the extraction recovery correlates linearly with the current variation. These mechanisms result in efficient enrichment by forming an analyte-enriched zone and allow the extraction progress and recovery to be monitored and estimated based on the current variation. NMLEE was coupled with liquid chromatography-mass spectrometry to analyze 10 amphetamine-type drugs, atropine, nortriptyline, and methadone in blood and urine samples. This method provided low limits of detection (0.003-0.1 ng·mL-1), satisfactory extraction recoveries (89.6-104.1%), and RSDs (<12.3% for intraday and <8.8% for interday), which met the requirements of the ICH guidelines. This study may contribute to the further development of EFASP methods for effective ultratrace analyses in forensic science.
Collapse
Affiliation(s)
- Jiahao Yuan
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), #1023 South Sha-Tai Rd, Guangzhou, 510515 Guangdong, China
| | - Hongjie Cao
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), #1023 South Sha-Tai Rd, Guangzhou, 510515 Guangdong, China
| | - Xiaotong Du
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), #1023 South Sha-Tai Rd, Guangzhou, 510515 Guangdong, China
| | - Tengteng Chen
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), #1023 South Sha-Tai Rd, Guangzhou, 510515 Guangdong, China
| | - Ande Ma
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), #1023 South Sha-Tai Rd, Guangzhou, 510515 Guangdong, China
| | - Jialiang Pan
- Department of Hygiene Detection Center, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), #1023 South Sha-Tai Rd, Guangzhou, 510515 Guangdong, China
| |
Collapse
|
6
|
Electromembrane Extraction of Highly Polar Compounds: Analysis of Cardiovascular Biomarkers in Plasma. Metabolites 2019; 10:metabo10010004. [PMID: 31861366 PMCID: PMC7022788 DOI: 10.3390/metabo10010004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) represent a major concern in today’s society, with more than 17.5 million deaths reported annually worldwide. Recently, five metabolites related to the gut metabolism of phospholipids were identified as promising predictive biomarker candidates for CVD. Validation of those biomarker candidates is crucial for applications to the clinic, showing the need for high-throughput analysis of large numbers of samples. These five compounds, trimethylamine N-oxide (TMAO), choline, betaine, l-carnitine, and deoxy-l-carnitine (4-trimethylammoniobutanoic acid), are highly polar compounds and show poor retention on conventional reversed phase chromatography, which can lead to strong matrix effects when using mass spectrometry detection, especially when high-throughput analysis approaches are used with limited separation of analytes from interferences. In order to reduce the potential matrix effects, we propose a novel fast parallel electromembrane extraction (Pa-EME) method for the analysis of these metabolites in plasma samples. The evaluation of Pa-EME parameters was performed using multi segment injection–capillary electrophoresis–mass spectrometry (MSI-CE-MS). Recoveries up to 100% were achieved, with variability as low as 2%. Overall, this study highlights the necessity of protein precipitation prior to EME for the extraction of highly polar compounds. The developed Pa-EME method was evaluated in terms of concentration range and response function, as well as matrix effects using fast-LC-MS/MS. Finally, the developed workflow was compared to conventional sample pre-treatment, i.e., protein precipitation using methanol, and fast-LC-MS/MS. Data show very strong correlations between both workflows, highlighting the great potential of Pa-EME for high-throughput biological applications.
Collapse
|
7
|
Miggiels P, Wouters B, van Westen GJ, Dubbelman AC, Hankemeier T. Novel technologies for metabolomics: More for less. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Drouin N, Kubáň P, Rudaz S, Pedersen-Bjergaard S, Schappler J. Electromembrane extraction: Overview of the last decade. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Li S, Gao D, Jiang Y. Function, Detection and Alteration of Acylcarnitine Metabolism in Hepatocellular Carcinoma. Metabolites 2019; 9:E36. [PMID: 30795537 PMCID: PMC6410233 DOI: 10.3390/metabo9020036] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
Acylcarnitines play an essential role in regulating the balance of intracellular sugar and lipid metabolism. They serve as carriers to transport activated long-chain fatty acids into mitochondria for β-oxidation as a major source of energy for cell activities. The liver is the most important organ for endogenous carnitine synthesis and metabolism. Hepatocellular carcinoma (HCC), a primary malignancy of the live with poor prognosis, may strongly influence the level of acylcarnitines. In this paper, the function, detection and alteration of acylcarnitine metabolism in HCC were briefly reviewed. An overview was provided to introduce the metabolic roles of acylcarnitines involved in fatty acid β-oxidation. Then different analytical platforms and methodologies were also briefly summarised. The relationship between HCC and acylcarnitine metabolism was described. Many of the studies reported that short, medium and long-chain acylcarnitines were altered in HCC patients. These findings presented current evidence in support of acylcarnitines as new candidate biomarkers for studies on the pathogenesis and development of HCC. Finally we discussed the challenges and perspectives of exploiting acylcarnitine metabolism and its related metabolic pathways as a target for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Shangfu Li
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- National & Local United Engineering Lab for Personalized Anti-tumour Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- National & Local United Engineering Lab for Personalized Anti-tumour Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- Key Laboratory of Metabolomics at Shenzhen, Shenzhen 518055, China.
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Aszyk J, Byliński H, Namieśnik J, Kot-Wasik A. Main strategies, analytical trends and challenges in LC-MS and ambient mass spectrometry–based metabolomics. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Affiliation(s)
- Cong Xu
- Institute of Nuclear and
New Energy Technology, Collaborative Innovation Center of Advanced
Nuclear Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Tingliang Xie
- Institute of Nuclear and
New Energy Technology, Collaborative Innovation Center of Advanced
Nuclear Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
12
|
Płotka-Wasylka J, Owczarek K, Namieśnik J. Modern solutions in the field of microextraction using liquid as a medium of extraction. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.08.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Qin YL, He W, Su M, Fang Z, Ouyang PK, Guo K. An efficient etherification of Ginkgol biloba extracts with fewer side effects in a micro-flow system. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.03.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
de Oliveira LH, Trindade MAG. Baseline-Corrected Second-Order Derivative Electroanalysis Combined With Ultrasound-Assisted Liquid–Liquid Microextraction: Simultaneous Quantification of Fluoroquinolones at Low Levels. Anal Chem 2016; 88:6554-62. [DOI: 10.1021/acs.analchem.6b01379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Luiz Henrique de Oliveira
- Faculdade de Ciências
Exatas e Tecnologia, Universidade Federal da Grande Dourados, Rodovia
Dourados-Itahum, km 12, Dourados-MS, 79804-970, Brazil
| | - Magno Aparecido Gonçalves Trindade
- Faculdade de Ciências
Exatas e Tecnologia, Universidade Federal da Grande Dourados, Rodovia
Dourados-Itahum, km 12, Dourados-MS, 79804-970, Brazil
| |
Collapse
|
15
|
Oedit A, Ramautar R, Hankemeier T, Lindenburg PW. Electroextraction and electromembrane extraction: Advances in hyphenation to analytical techniques. Electrophoresis 2016; 37:1170-86. [PMID: 26864699 PMCID: PMC5071742 DOI: 10.1002/elps.201500530] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/06/2016] [Accepted: 01/31/2016] [Indexed: 12/16/2022]
Abstract
Electroextraction (EE) and electromembrane extraction (EME) are sample preparation techniques that both require an electric field that is applied over a liquid-liquid system, which enables the migration of charged analytes. Furthermore, both techniques are often used to pre-concentrate analytes prior to analysis. In this review an overview is provided of the body of literature spanning April 2012-November 2015 concerning EE and EME, focused on hyphenation to analytical techniques. First, the theoretical aspects of concentration enhancement in EE and EME are discussed to explain extraction recovery and enrichment factor. Next, overviews are provided of the techniques based on their hyphenation to LC, GC, CE, and direct detection. These overviews cover the compounds and matrices, experimental aspects (i.e. donor volume, acceptor volume, extraction time, extraction voltage, and separation time) and the analytical aspects (i.e. limit of detection, enrichment factor, and extraction recovery). Techniques that were either hyphenated online to analytical techniques or show high potential with respect to online hyphenation are highlighted. Finally, the potential future directions of EE and EME are discussed.
Collapse
Affiliation(s)
- Amar Oedit
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Rawi Ramautar
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Petrus W Lindenburg
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| |
Collapse
|
16
|
Kokosa JM. Recent trends in using single-drop microextraction and related techniques in green analytical methods. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Yildirim E, Trietsch SJ, Joore J, van den Berg A, Hankemeier T, Vulto P. Phaseguides as tunable passive microvalves for liquid routing in complex microfluidic networks. LAB ON A CHIP 2014; 14:3334-3340. [PMID: 24989781 DOI: 10.1039/c4lc00261j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A microfluidic passive valving platform is introduced that has full control over the stability of each valve. The concept is based on phaseguides, which are small ridges at the bottom of a channel acting as pinning barriers. It is shown that the angle between the phaseguide and the channel sidewall is a measure of the stability of the phaseguide. The relationship between the phaseguide-wall angle and the stability is characterized numerically, analytically and experimentally. Liquid routing is enabled by using multiple phaseguide with different stability values. This is demonstrated by filling complex chamber matrices. As an ultimate demonstration of control, a 400-chamber network is used as a pixel array. It is the first time that differential stability is demonstrated in the realm of passive valving. It ultimately enables microfluidic devices for massive data generation in a low-cost disposable format.
Collapse
Affiliation(s)
- Ender Yildirim
- Division for Analytical Biosciences, Leiden Academic Centre for Drug Research, University of Leiden, 2300 RA, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|