1
|
Brooke AK, Murrow DP, Caldwell KCN, Witt CE, Ross AE. Measuring neuron-regulated immune cell physiology via the alpha-2 adrenergic receptor in an ex vivo murine spleen model. Cell Mol Life Sci 2023; 80:354. [PMID: 37945921 PMCID: PMC11071927 DOI: 10.1007/s00018-023-05012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/27/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The communication between the nervous and immune systems plays a crucial role in regulating immune cell function and inflammatory responses. Sympathetic neurons, which innervate the spleen, have been implicated in modulating immune cell activity. The neurotransmitter norepinephrine (NE), released by sympathetic neurons, influences immune cell responses by binding to adrenergic receptors on their surface. The alpha-2 adrenergic receptor (α2AR), expressed predominantly on sympathetic neurons, has received attention due to its autoreceptor function and ability to modulate NE release. In this study, we used fast-scan cyclic voltammetry (FSCV) to provide the first subsecond measurements of NE released in the white pulp region of the spleen and validated it with yohimbine, a known antagonist of α2AR. For further application of FSCV in neuroimmunology, we investigated the extent to which subsecond NE from sympathetic neurons is important for immune cell physiology and cytokine production, focusing on tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), and interleukin-6 (IL-6). Our findings provide insights into the regulatory mechanisms underlying sympathetic-immune interactions and show the significance of using FSCV, a traditional neurochemistry technique, to study these neuroimmune mechanisms.
Collapse
Affiliation(s)
- Alexandra K Brooke
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Daniel P Murrow
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Kaejaren C N Caldwell
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Colby E Witt
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA
| | - Ashley E Ross
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, OH, 45221-0172, USA.
| |
Collapse
|
2
|
Alternative Brain Slice-on-a-Chip for Organotypic Culture and Effective Fluorescence Injection Testing. Int J Mol Sci 2022; 23:ijms23052549. [PMID: 35269696 PMCID: PMC8910551 DOI: 10.3390/ijms23052549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/22/2022] Open
Abstract
Mouse brain slices are one of the most common models to study brain development and functioning, increasing the number of study models that integrate microfluidic systems for hippocampal slice cultures. This report presents an alternative brain slice-on-a-chip, integrating an injection system inside the chip to dispense a fluorescent dye for long-term monitoring. Hippocampal slices have been cultured inside these chips, observing fluorescence signals from living cells, maintaining the cytoarchitecture of the slices. Having fluorescence images of biological samples inside the chip demonstrates the effectiveness of the staining process using the injection method avoiding leaks or biological contamination. The technology developed in this study presents a significant improvement in the local administration of reagents within a brain slice-on-a-chip system, which could be a suitable option for organotypic cultures in a microfluidic chip acting as a highly effective bioreactor.
Collapse
|
3
|
Kelani KM, Badran OM, Rezk MR, Elghobashy MR, Eid SM. Widening the applications of the Just-Dip-It approach: a solid contact screen-printed ion-selective electrode for the real-time assessment of pharmaceutical dissolution testing in comparison to off-line HPLC analysis. RSC Adv 2021; 11:13366-13375. [PMID: 35423846 PMCID: PMC8697630 DOI: 10.1039/d1ra00040c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 12/03/2022] Open
Abstract
Over past years, the field of pharmaceutical dissolution testing has significantly expanded to cover not only the quality control of dosage forms, but also to play an important role in the bioavailability testing paradigm and screening of most formulations. These tests usually need a very long time sampling and monitoring, so that the automation of sampling is laborsaving. Problems often occur with these automatic devices due to sampling lines that may disconnect, crimp, carry over, become mixed up, or are inadequately cleaned. Potentiometric sensors, such as liquid contact (LC-ISE) or solid contact ion-selective electrodes (SC-SP-ISE), can provide timely data to be used for the real-time tracking of the amount of active pharmaceutical ingredients (APIs) released in the dissolution medium without these problems. In this work, we adopted the Just-Dip-It approach as a process analytical technology solution with the ultimate goal of advancing the ion selective sensors to their most effective use in pharmaceutical analysis. Two sensors were fabricated, the traditional LC-ISE and SC-SP-ISE. The sensing poly-vinyl chloride membranes of two electrodes were prepared using 2-nitrophenyl octyl ether as a plasticizer to soften the membrane, and the reduction in resistance to pioglitazone ions (PIO) permeability was achieved through the incorporation of sodium tetraphenylborate and calix[8]arene as a cationic exchanger salt and inclusion complexing ligand, respectively. Finally, prepared membranes were turned into the flexible perm-selective slices of hydrophobic plastic, which work as a barrier to other compounds, except for the PIO cation in the concentration range of 1 × 10-6 to 1 × 10-2 M and 1 × 10-5 to 1 × 10-2 M for SC-SP-ISE and LC-ISE, respectively. The challenges and opportunities of both sensors in comparison to a developed HPLC method were discussed for the dissolution testing of the combination dosage forms of pioglitazone. Potentiometric methods were validated according to IUPAC guidelines, while HPLC was validated according to ICH guidelines to ensure accuracy and precision.
Collapse
Affiliation(s)
- Khadiga M Kelani
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street ET-11562 Cairo Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information Cairo Egypt
| | - Osama M Badran
- Analytical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information Cairo Egypt
| | - Mamdouh R Rezk
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street ET-11562 Cairo Egypt
| | - Mohamed R Elghobashy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street ET-11562 Cairo Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University 6 October City, Giza Egypt
| | - Sherif M Eid
- Analytical Chemistry Department, Faculty of Pharmacy, October 6 University 6 October City, Giza Egypt
| |
Collapse
|
4
|
Poolakkandy RR, Menamparambath MM. Transition metal oxide based non‐enzymatic electrochemical sensors: An arising approach for the meticulous detection of neurotransmitter biomarkers. ELECTROCHEMICAL SCIENCE ADVANCES 2020. [DOI: 10.1002/elsa.202000024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
5
|
Wonnenberg PM, Zestos AG. Polymer-Modified Carbon Fiber Microelectrodes for Neurochemical Detection of Dopamine and Metabolites. ECS TRANSACTIONS 2020; 97:901-927. [PMID: 33953827 PMCID: PMC8096166 DOI: 10.1149/09707.0901ecst] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Carbon-fiber microelectrodes (CFMEs) are considered to be the standard electrodes for neurotransmitter detection. Fast-scan cyclic voltammetry (FSCV), an electro analytical method, has the ability to follow neurochemical dynamics in real time using CFMEs. Improvements in neurochemical detection with CFMEs were previously made through the coating of polymers onto the surface of the carbon-fiber. Polymers such as PEI, PEDOT, and Nafion were electrodeposited onto the surface of the electrodes to enhance neurochemical detection. This work demonstrates applications for enhancements in co-detection of similarly structured neurochemicals such as dopamine, DOPAL, 3-methoxytyramine, DOPAC, and other neurotransmitters. Manipulating the charge and surface structure of the carbon electrode allows for the improvement of sensitivity and selectivity of neurotransmitter detection. The analytes are detected and differentiated by the shape and the peak positions of their respective cyclic voltammograms.
Collapse
Affiliation(s)
- P M Wonnenberg
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, District of Columbia 20016, USA
| | - A G Zestos
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, District of Columbia 20016, USA
| |
Collapse
|
6
|
Peak potential shift of fast cyclic voltammograms owing to capacitance of redox reactions. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113609] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Affiliation(s)
- James G. Roberts
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695, United States
| | - Leslie A. Sombers
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695, United States
| |
Collapse
|
8
|
Ferapontova EE. Electrochemical Analysis of Dopamine: Perspectives of Specific In Vivo Detection. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.183] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
|
10
|
Álvarez-Martos I, Ferapontova EE. Electrochemical Label-Free Aptasensor for Specific Analysis of Dopamine in Serum in the Presence of Structurally Related Neurotransmitters. Anal Chem 2016; 88:3608-16. [PMID: 26916821 DOI: 10.1021/acs.analchem.5b04207] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cellular and brain metabolism of dopamine can be correlated with a number of neurodegenerative disorders, and as such, in vivo analysis of dopamine in the presence of structurally related neurotransmitters (NT) represents a holy grail of neuroscience. Interference from those NTs generally does not allow selective electroanalysis of dopamine, which redox transformation overlaps with those of other catecholamines. In our previous work, we reported an electrochemical RNA-aptamer-based biosensor for specific analysis of dopamine (Analytical Chemistry, 2013; Vol. 85, p 121). However, the overall design of the biosensor restricted its stability and impeded its operation in serum. Here, we show that specific biorecognition and electroanalysis of dopamine in serum can be performed by the RNA aptamer tethered to cysteamine-modified gold electrodes via the alkanethiol linker. The stabilized dopamine aptasensor allowed continuous 20 h amperometric analysis of dopamine in 10% serum within the physiologically important 0.1-1 μM range and in the presence of catechol and such dopamine precursors and metabolites as norepinephrine and l-DOPA. In a flow-injection mode, the aptasensor response to dopamine was ∼1 s, the sensitivity of analysis, optimized by adjusting the aptamer surface coverage, was 67 ± 1 nA μM(-1) cm(-2), and the dopamine LOD was 62 nM. The proposed design of the aptasensor, exploiting both the aptamer alkanethiol tethering to the electrode and screening of the catecholamine-aptamer electrostatic interactions, allows direct monitoring of dopamine levels in biological fluids in the presence of competitive NT and thus may be further applicable in biomedical research.
Collapse
Affiliation(s)
- Isabel Álvarez-Martos
- Interdisciplinary Nanoscience Center (iNANO) and ‡Danish National Research Foundation: Center for DNA Nanotechnology (CDNA), Aarhus University , Gustav Wieds Vej 1590-14, DK-8000 Aarhus C, Denmark
| | - Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO) and ‡Danish National Research Foundation: Center for DNA Nanotechnology (CDNA), Aarhus University , Gustav Wieds Vej 1590-14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Araújo DAG, Faria ACA, Takeuchi RM, Santos AL. Could Voltammetry be an Effective Alternative Technique to Study Adsorption Kinetics of Electroactive Metal Ions? ELECTROANAL 2016. [DOI: 10.1002/elan.201500529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering. SENSORS 2015; 15:31142-70. [PMID: 26690442 PMCID: PMC4721768 DOI: 10.3390/s151229848] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/16/2015] [Accepted: 12/04/2015] [Indexed: 12/24/2022]
Abstract
Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called “organ-on-a-chip” technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field.
Collapse
|
13
|
Rodrigues Filho G, Almeida F, Ribeiro SD, Tormin TF, Muñoz RAA, Assunção RMN, Barud H. Controlled release of drugs from cellulose acetate matrices produced from sugarcane bagasse: monitoring by square-wave voltammetry. Drug Dev Ind Pharm 2015; 42:1066-72. [PMID: 26596497 DOI: 10.3109/03639045.2015.1107093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this paper, cellulose triacetate (CTA) was produced from sugarcane bagasse and used as matrices for controlled release of paracetamol. Symmetric and asymmetric membranes were obtained by formulations of CTA/dichloromethane/drug and CTA/dichloromethane/water/drug, respectively, and they were characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Different morphologies of membranes were observed by SEM, and the incorporation of paracetamol was confirmed by lowering of the glass transition temperature (Tg) in the DSC curves. This indicates the existence of interactions between the matrix and the drug. The evaluation of drug release was based on the electrochemical monitoring of paracetamol through its oxidation at a glassy carbon electrode surface using square-wave voltammetry (SWV), which provides fast, precise and accurate in situ measurements. The studies showed a content release of 27% and 45% by the symmetric and asymmetric membranes, respectively, during 8 h.
Collapse
Affiliation(s)
- Guimes Rodrigues Filho
- a Instituto De Química, Universidade Federal De Uberlândia , Uberlândia , Minas Gerais , Brazil
| | - Flávia Almeida
- a Instituto De Química, Universidade Federal De Uberlândia , Uberlândia , Minas Gerais , Brazil
| | - Sabrina D Ribeiro
- a Instituto De Química, Universidade Federal De Uberlândia , Uberlândia , Minas Gerais , Brazil
| | - Thiago F Tormin
- a Instituto De Química, Universidade Federal De Uberlândia , Uberlândia , Minas Gerais , Brazil
| | - Rodrigo A A Muñoz
- a Instituto De Química, Universidade Federal De Uberlândia , Uberlândia , Minas Gerais , Brazil
| | - Rosana M N Assunção
- b Faculdade De Ciências Integradas Do Pontal, Universidade Federal De Uberlândia , Ituiutaba , Minas Gerais , Brazil
| | - Hernane Barud
- c Instituto De Química, Universidade Estadual Paulista "Júlio De Mesquita Filho" , Rua Francisco Degni, 55, Quitandinha , Araraquara - SP , Brazil
| |
Collapse
|
14
|
Fonseca WT, Santos RF, Alves JN, Ribeiro SD, Takeuchi RM, Santos AL, Assunção RMN, Filho GR, Muñoz RAA. Square-Wave Voltammetry as Analytical Tool for Real-Time Study of Controlled Naproxen Releasing from Cellulose Derivative Materials. ELECTROANAL 2015. [DOI: 10.1002/elan.201500011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|