1
|
Dubois C, Ducas É, Laforce-Lavoie A, Robidoux J, Delorme A, Live LS, Brouard D, Masson JF. A portable surface plasmon resonance (SPR) sensor for the detection of immunoglobulin A in plasma. Transfusion 2024; 64:881-892. [PMID: 38591151 DOI: 10.1111/trf.17818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND A life-threatening anaphylactic shock can occur if a patient with undiagnosed immunoglobulin A (IgA) deficiency (i.e., IgA levels <500 ng/mL) receives IgA-containing blood, hence the need for a rapid, point-of-care (POC) method for IgA deficiency screening. Enzyme-linked immunosorbent assay (ELISA) is routinely used to detect IgA, but this method requires trained specialists and ≥24 h to obtain a result. We developed a surface plasmon resonance (SPR)-based protocol to identify IgA-deficient patients or donors within 1 h. MATERIALS AND METHODS The SPR sensor relies on the detection of IgAs captured by primary antibodies adsorbed on the SPR chip and quantified with secondary antibodies. The sensor was calibrated from 0 to 2000 ng/mL in buffer, IgA-depleted human serum, and plasma samples from IgA-deficient individuals. A critical concentration of 500 ng/mL was set for IgA deficiency. The optimized sensor was then tested on eight plasma samples with known IgA status (determined by ELISA), including five with IgA deficiency and three with normal IgA levels. RESULTS The limit of detection was estimated at 30 ng/mL in buffer and 400 ng/mL in diluted plasma. The results obtained fully agreed with ELISA among the eight plasma samples tested. The protocol distinguished IgA-deficient from normal samples, even for samples with an IgA concentration closer to critical concentration. DISCUSSION In conclusion, we developed a reliable POC assay for the quantification of IgA in plasma. This test may permit POC testing at blood drives and centralized centers to maintain reserves of IgA-deficient blood and in-hospital testing of blood recipients.
Collapse
Affiliation(s)
- Caroline Dubois
- Département de Chimie, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Institut Courtois, Université de Montréal, Montréal, Canada
| | - Éric Ducas
- Héma-Québec, Affaires Médicales et Innovation, Québec City, Québec, Canada
| | | | - Jonathan Robidoux
- Héma-Québec, Affaires Médicales et Innovation, Québec City, Québec, Canada
| | - Alexandre Delorme
- Département de Chimie, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Institut Courtois, Université de Montréal, Montréal, Canada
| | | | - Danny Brouard
- Héma-Québec, Affaires Médicales et Innovation, Québec City, Québec, Canada
| | - Jean-François Masson
- Département de Chimie, Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, and Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Institut Courtois, Université de Montréal, Montréal, Canada
| |
Collapse
|
2
|
Schirripa Spagnolo C, Moscardini A, Amodeo R, Beltram F, Luin S. Quantitative determination of fluorescence labeling implemented in cell cultures. BMC Biol 2023; 21:190. [PMID: 37697318 PMCID: PMC10496409 DOI: 10.1186/s12915-023-01685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Labeling efficiency is a crucial parameter in fluorescence applications, especially when studying biomolecular interactions. Current approaches for estimating the yield of fluorescent labeling have critical drawbacks that usually lead them to be inaccurate or not quantitative. RESULTS We present a method to quantify fluorescent-labeling efficiency that addresses the critical issues marring existing approaches. The method operates in the same conditions of the target experiments by exploiting a ratiometric evaluation with two fluorophores used in sequential reactions. We show the ability of the protocol to extract reliable quantification for different fluorescent probes, reagents concentrations, and reaction timing and to optimize labeling performance. As paradigm, we consider the labeling of the membrane-receptor TrkA through 4'-phosphopantetheinyl transferase Sfp in living cells, visualizing the results by TIRF microscopy. This investigation allows us to find conditions for demanding single and multi-color single-molecule studies requiring high degrees of labeling. CONCLUSIONS The developed method allows the quantitative determination and the optimization of staining efficiency in any labeling strategy based on stable reactions.
Collapse
Affiliation(s)
| | - Aldo Moscardini
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Rosy Amodeo
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
- Present address: Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Fabio Beltram
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
- NEST Laboratory, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy.
- NEST Laboratory, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy.
| |
Collapse
|
3
|
Choosing the Probe for Single-Molecule Fluorescence Microscopy. Int J Mol Sci 2022; 23:ijms232314949. [PMID: 36499276 PMCID: PMC9735909 DOI: 10.3390/ijms232314949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Probe choice in single-molecule microscopy requires deeper evaluations than those adopted for less sensitive fluorescence microscopy studies. Indeed, fluorophore characteristics can alter or hide subtle phenomena observable at the single-molecule level, wasting the potential of the sophisticated instrumentation and algorithms developed for advanced single-molecule applications. There are different reasons for this, linked, e.g., to fluorophore aspecific interactions, brightness, photostability, blinking, and emission and excitation spectra. In particular, these spectra and the excitation source are interdependent, and the latter affects the autofluorescence of sample substrate, medium, and/or biological specimen. Here, we review these and other critical points for fluorophore selection in single-molecule microscopy. We also describe the possible kinds of fluorophores and the microscopy techniques based on single-molecule fluorescence. We explain the importance and impact of the various issues in fluorophore choice, and discuss how this can become more effective and decisive for increasingly demanding experiments in single- and multiple-color applications.
Collapse
|
4
|
Au A, Ho M, Wheeler AR, Yip CM. Monitoring non-specific adsorption at solid-liquid interfaces by supercritical angle fluorescence microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:113707. [PMID: 36461515 DOI: 10.1063/5.0111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
Supercritical angle fluorescence (SAF) microscopy is a novel imaging tool based on the use of distance-dependent fluorophore emission patterns to provide accurate locations of fluorophores relative to a surface. This technique has been extensively used to construct accurate cellular images and to detect surface phenomena in a static environment. However, the capability of SAF microscopy in monitoring dynamic surface phenomena and changes in millisecond intervals is underexplored in the literature. Here, we report on a hardware add-on for a conventional inverted microscope coupled with a post-processing Python module that extends the capability of SAF microscopy to monitor dynamic surface adsorption in sub-second intervals, thereby greatly expanding the potential of this tool to study surface interactions, such as surface fouling and competitive surface adhesion. The Python module enables researchers to automatically extract SAF profiles from each image. We first assessed the performance of the system by probing the specific binding of biotin-fluorescein conjugates to a neutravidin-coated cover glass in the presence of non-binding fluorescein. The SAF emission was observed to increase with the quantity of bound fluorophore on the cover glass. However, a high concentration of unbound fluorophore also contributed to overall SAF emission, leading to over-estimation in surface-bound fluorescence. To expand the applications of SAF in monitoring surface phenomena, we monitored the non-specific surface adsorption of BSA and non-ionic surfactants on a Teflon-AF surface. Solution mixtures of bovine serum albumin (BSA) and nine Pluronic/Tetronic surfactants were exposed to a Teflon-AF surface. No significant BSA adsorption was observed in all BSA-surfactant solution mixtures with negligible SAF intensity. Finally, we monitored the adsorption dynamics of BSA onto the Teflon-AF surface and observed rapid BSA adsorption on Teflon-AF surface within 10 s of addition. The adsorption rate constant (ka) and half-life of BSA adsorption on Teflon-AF were determined to be 0.419 ± 0.004 s-1 and 1.65 ± 0.016 s, respectively, using a pseudo-first-order adsorption equation.
Collapse
Affiliation(s)
- Aaron Au
- Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Man Ho
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Aaron R Wheeler
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Christopher M Yip
- Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
5
|
Mahmoudpour M, Jouyban A, Soleymani J, Rahimi M. Rational design of smart nano-platforms based on antifouling-nanomaterials toward multifunctional bioanalysis. Adv Colloid Interface Sci 2022; 302:102637. [PMID: 35290930 DOI: 10.1016/j.cis.2022.102637] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
The ability to design nanoprobe devices with the capability of quantitative/qualitative operation in complex media will probably underpin the main upcoming progress in healthcare research and development. However, the biomolecules abundances in real samples can considerably alter the interface performance, where unwanted adsorption/adhesion can block signal response and significantly decrease the specificity of the assay. Herein, this review firstly offers a brief outline of several significances of fabricating high-sensitivity and low-background interfaces to adjust various targets' behaviors induced via bioactive molecules on the surface. Besides, some important strategies to resist non-specific protein adsorption and cell adhesion, followed by imperative categories of antifouling reagents utilized in the construction of high-performance solid sensory interfaces, are discussed. The next section specifically highlights the various nanocomposite probes based on antifouling-nanomaterials for electrode modification containing carbon nanomaterials, noble metal nanoparticles, magnetic nanoparticles, polymer, and silicon-based materials in terms of nanoparticles, rods, or porous materials through optical or chemical strategies. We specially outline those nanoprobes that are capable of identification in complex media or those using new constructions/methods. Finally, the necessity and requirements for future advances in this emerging field are also presented, followed by opportunities and challenges.
Collapse
|
6
|
Cui M, Ma Y, Wang L, Wang Y, Wang S, Luo X. Antifouling sensors based on peptides for biomarker detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115903] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Nanoparticle-based surface assisted laser desorption ionization mass spectrometry: a review. Mikrochim Acta 2019; 186:682. [DOI: 10.1007/s00604-019-3770-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
|
8
|
Qian H, Huang Y, Duan X, Wei X, Fan Y, Gan D, Yue S, Cheng W, Chen T. Fiber optic surface plasmon resonance biosensor for detection of PDGF-BB in serum based on self-assembled aptamer and antifouling peptide monolayer. Biosens Bioelectron 2019; 140:111350. [PMID: 31154255 DOI: 10.1016/j.bios.2019.111350] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022]
Abstract
Herein, a home-build fiber optic surface plasmon resonance (FO-SPR) biosensing platform has been developed for highly sensitive detection of platelet-derived growth factor (PDGF-BB) based aptamer-functionalized AuNPs for signal enhancement. In this biosensor, the PDGF-BB aptamer was used to specifically capture PDGF-BB, and the antifouling peptide demonstrated great ability for resisting non-specific adsorption. After a sandwich reaction, the aptamer, PDGF-BB and aptamer-functionalized AuNPs complexes were formed on the fiber optic (FO) probe surface to significantly amplify FO-SPR signal. This method exhibited a broad detection range from 1 to 1000 pM of PDGF-BB and a low detection limit of 0.35 pM. Moreover, this biosensor was successfully applied to the detection of PDGF-BB in 10% human serum samples without suffering from serious interference owing to the excellent antifouling property of the peptide. Thus, this developed FO-SPR biosensor could be a potential alternative device for proteins determination, even as a point-of-care diagnostic tool (POCT) in clinical application.
Collapse
Affiliation(s)
- Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yu Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Xiaolei Duan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaotong Wei
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yunpeng Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Delu Gan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shujun Yue
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
9
|
He X, Han H, Liu L, Shi W, Lu X, Dong J, Yang W, Lu X. Self-Assembled Microgels for Sensitive and Low-Fouling Detection of Streptomycin in Complex Media. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13676-13684. [PMID: 30888150 DOI: 10.1021/acsami.9b00277] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In terms of detection of antibiotics within complex media, the nonspecific adsorption is an enormous challenge and antifouling sensing interfaces capable of reducing the nonspecific adsorption from complex biological samples are highly desirable. In this work, a novel antifouling electrochemical immunosensor was explored based on the self-assembly of two kinds of poly( N-isopropylacrylamide) microgels on the surface of graphene oxide for sensitive detection of streptomycin (STR). The microgels modified with glycidyl methacrylate (GMA) and zwitterionic liquid 1-propyl-3-vinylimidazole sulfonate (PVIS) were prepared. The microgels with GMA were used by combining specific recognition of anti-STR. The rapid specific binding of antigen and anti-STR resulted in a decrease of current density to generate electrochemical responsive signals. Zwitterionic liquid-modified microgels were used for antifouling, which can form stronger hydration and show excellent antifouling ability. As a result, we achieved efficient and sensitive detection of STR in the complex sample with evidently resisted nonspecific adsorption effect, the wide linear range toward STR was from 0.05 to 100 ng mL-1, with a detection limit down to 1.7 pg mL-1. The immunosensor based on the surface functionalization of microgels showed promising applications for the detection of antibiotics in complex media.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Huimin Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Liqin Liu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Wenyu Shi
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Xiong Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Jiandi Dong
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Wu Yang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| |
Collapse
|
10
|
Li Y, Liu W, Jin G, Niu Y, Chen Y, Xie M. Label-Free Sandwich Imaging Ellipsometry Immunosensor for Serological Detection of Procalcitonin. Anal Chem 2018; 90:8002-8010. [DOI: 10.1021/acs.analchem.8b00888] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yike Li
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Wei Liu
- Institute of Microelectronics, Tsinghua University, Beijing 100084, China
- NML, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Gang Jin
- NML, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Science, Beijing 100049, China
| | - Yu Niu
- NML, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yiping Chen
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Mengxia Xie
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Xie T, Chattoraj J, Mulcahey PJ, Kelleher NP, Del Gado E, Hahm JI. Revealing the principal attributes of protein adsorption on block copolymer surfaces with direct experimental evidence at the single protein level. NANOSCALE 2018; 10:9063-9076. [PMID: 29718032 DOI: 10.1039/c8nr01371c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding protein adsorption onto polymer surfaces is of great importance in designing biomaterials, improving bioanalytical devices, and controlling biofouling, to name a few examples. Although steady research efforts have been advancing this field, our knowledge of this ubiquitous and complex phenomenon is still limited. In this study, we elucidate competitive protein adsorption behaviors sequentially occurring onto nanoscale block copolymer (BCP) surfaces via combined experimental and computer simulation approaches. The model systems chosen for our investigation are immunoglobulin G and fibrinogen introduced in different orders into the self-assembled nanodomains of poly(styrene)-block-poly(methylmethacrylate). We unambiguously reveal the adsorption, desorption, and replacement events of the same protein molecules via single protein tracking with atomic force microscopy. We then ascertain adsorption-related behaviors such as lateral mobility and self-association of proteins. We provide the much-needed, direct experimental proof of sequential adsorption events at the biomolecular level, which was virtually nonexistent before. We determine key protein adsorption pathways and dominant tendencies of sequential protein adsorption. We also reveal preadsorbed surface-associated behaviors in sequential adsorption, distinct from situations involving initially empty surfaces. We perform Monte-Carlo simulations to further substantiate our experimental outcomes. Our endeavors in this study may facilitate a well-guided mechanistic understanding of protein-polymer interactions by providing definite experimental evidence of competitive, sequential adsorption at the nanoscale. Increasingly, biomaterial and biomedical applications rely on systems of multicomponent proteins and chemically intricate, nanoscale polymer surfaces. Hence, our findings can also be beneficial for the development of next-generation nanobiomaterials and nanobiosensors exploiting self-assembled BCP nanodomain surfaces.
Collapse
Affiliation(s)
- Tian Xie
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Lee MCG, Sun B. Quantitation of nonspecific protein adsorption at solid–liquid interfaces for single-cell proteomics. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein nonspecific adsorption that occurred at the solid–liquid interface has been subjected to intense physical and chemical characterizations due to its crucial role in a wide range of applications, including food and pharmaceutical industries, medical implants, biosensing, and so on. Protein-adsorption caused sample loss has largely hindered the studies of single-cell proteomics; the prevention of such loss requires the understanding of protein–surface adsorption at the proteome level, in which the competitive adsorption of thousands and millions of proteins with vast dynamic range occurs. To this end, we feel the necessity to review current methodologies on their potentials to characterize — more specifically to quantify — the proteome-wide adsorption. We hope this effort can help advancing single-cell proteomics and trace proteomics.
Collapse
Affiliation(s)
| | - Bingyun Sun
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
13
|
Hinman SS, McKeating KS, Cheng Q. Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. Anal Chem 2018; 90:19-39. [PMID: 29053253 PMCID: PMC6041476 DOI: 10.1021/acs.analchem.7b04251] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
| | - Kristy S. McKeating
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| | - Quan Cheng
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| |
Collapse
|
14
|
Enzyme-assisted polymer film degradation-enabled biomolecule sensing with poly (N-isopropylacrylamide)-based optical devices. Anal Chim Acta 2018; 999:139-143. [DOI: 10.1016/j.aca.2017.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
|
15
|
Enzyme Adsorption on Nanoparticle Surface Probed by Highly Sensitive Second Harmonic Light Scattering. Methods Enzymol 2017. [PMID: 28411644 DOI: 10.1016/bs.mie.2017.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Recent developments in second harmonic light scattering technique and the associated theoretical models have provided a deeper insight of molecular interactions on micro- and nanoparticle surfaces. This technique is extended to probe the thermodynamics of protein adsorption on nanoparticle surface which is crucial for understanding the fate of nanoparticle-based formulations in biomedical applications. A modified Langmuir adsorption model has been applied to extract the thermodynamic parameters from the experimental data. The general applicability of the technique is established by extracting free energy change, association constant, and binding stoichiometry of adsorption of a moderate size protein, alcohol dehydrogenase, and a small size protein, insulin, on gold nanoparticles. The free energy change for the adsorption is found to be of the order of -55kJ/mol, which indicates that the interaction of proteins with the nanoparticle surface involves weak forces. On the other hand, the low value of the free energy change makes the detachment of the protein from the particle surface easier and guarantees reversibility of the binding process. In addition, one gets the binding stoichiometry of the proteins with the nanoparticle surface which opens up the possibility of controlling the payload of the protein- or peptide-based therapeutics in future biomedical applications.
Collapse
|
16
|
Bivalent kinetic binding model to surface plasmon resonance studies of antigen-antibody displacement reactions. Anal Biochem 2017; 518:110-125. [DOI: 10.1016/j.ab.2016.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022]
|
17
|
Aubé A, Charbonneau DM, Pelletier JN, Masson JF. Response Monitoring of Acute Lymphoblastic Leukemia Patients Undergoing l-Asparaginase Therapy: Successes and Challenges Associated with Clinical Sample Analysis in Plasmonic Sensing. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alexandra Aubé
- Département
de Chimie and Département de Biochimie, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
| | - David M. Charbonneau
- Département
de Chimie and Département de Biochimie, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
| | - Joelle N. Pelletier
- Département
de Chimie and Département de Biochimie, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
| | - Jean-François Masson
- Département
de Chimie and Département de Biochimie, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada
- Centre
for Self-Assembled Chemical Structures (CSACS), McGill University, 801
Sherbrooke Street West, Montreal, Québec, H3A 2K6, Canada
| |
Collapse
|
18
|
Vaisocherová-Lísalová H, Surman F, Víšová I, Vala M, Špringer T, Ermini ML, Šípová H, Šedivák P, Houska M, Riedel T, Pop-Georgievski O, Brynda E, Homola J. Copolymer Brush-Based Ultralow-Fouling Biorecognition Surface Platform for Food Safety. Anal Chem 2016; 88:10533-10539. [PMID: 27689386 DOI: 10.1021/acs.analchem.6b02617] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Functional polymer coatings that combine the ability to resist nonspecific fouling from complex media with high biorecognition element (BRE) immobilization capacity represent an emerging class of new functional materials for a number of bioanalytical and biosensor technologies for medical diagnostics, security, and food safety. Here, we report on a random copolymer brush surface - poly(CBMAA-ran-HPMAA) - providing high BRE immobilization capacity while simultaneously exhibiting ultralow-fouling behavior in complex food media. We demonstrate that both the functionalization and fouling resistance capabilities of such copolymer brushes can be tuned by changing the surface contents of the two monomer units: nonionic N-(2-hydroxypropyl) methacrylamide (HPMAA) and carboxy-functional zwitterionic carboxybetaine methacrylamide (CBMAA). It is demonstrated that the resistance to fouling decreases with the surface content of CBMAA; poly(CBMAA-ran-HPMAA) brushes with CBMAA molar content up to 15 mol % maintain excellent resistance to fouling from a variety of homogenized foods (hamburger, cucumber, milk, and lettuce) even after covalent attachment of BREs to carboxy groups of CBMAA. The poly(CBMAA 15 mol %-ran-HPMAA) brushes functionalized with antibodies are demonstrated to exhibit fouling resistance from food samples by up to 3 orders of magnitude better when compared with the widely used low-fouling carboxy-functional oligo(ethylene glycol) (OEG)-based alkanethiolate self-assembled monolayers (AT SAMs) and, furthermore, by up to 2 orders of magnitude better when compared with the most successful ultralow-fouling biorecognition coatings - poly(carboxybetaine acrylamide), poly(CBAA). When model SPR detections of food-borne bacterial pathogens in homogenized foods are used, it is also demonstrated that the antibody-functionalized poly(CBMAA 15 mol %-ran-HPMAA) brush exhibits superior biorecognition properties over the poly(CBAA).
Collapse
Affiliation(s)
- Hana Vaisocherová-Lísalová
- Institute of Photonics and Electronics, Czech Academy of Sciences , Chaberská 57, Prague, Czech Republic
| | - František Surman
- Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského nám. 2, Prague, Czech Republic
| | - Ivana Víšová
- Institute of Photonics and Electronics, Czech Academy of Sciences , Chaberská 57, Prague, Czech Republic
| | - Milan Vala
- Institute of Photonics and Electronics, Czech Academy of Sciences , Chaberská 57, Prague, Czech Republic
| | - Tomáš Špringer
- Institute of Photonics and Electronics, Czech Academy of Sciences , Chaberská 57, Prague, Czech Republic
| | - Maria Laura Ermini
- Institute of Photonics and Electronics, Czech Academy of Sciences , Chaberská 57, Prague, Czech Republic
| | - Hana Šípová
- Institute of Photonics and Electronics, Czech Academy of Sciences , Chaberská 57, Prague, Czech Republic
| | - Petr Šedivák
- Police of the Czech Republic , Kapucínská 214/2, Prague, Czech Republic
| | - Milan Houska
- Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského nám. 2, Prague, Czech Republic
| | - Tomáš Riedel
- Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského nám. 2, Prague, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského nám. 2, Prague, Czech Republic
| | - Eduard Brynda
- Institute of Macromolecular Chemistry, Czech Academy of Sciences , Heyrovského nám. 2, Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences , Chaberská 57, Prague, Czech Republic
| |
Collapse
|
19
|
Song S, Xie T, Ravensbergen K, Hahm JI. Ascertaining effects of nanoscale polymeric interfaces on competitive protein adsorption at the individual protein level. NANOSCALE 2016; 8:3496-3509. [PMID: 26794230 DOI: 10.1039/c5nr07465g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
With the recent development of biomaterials and biodevices with reduced dimensionality, it is critical to comprehend protein adhesion processes to nanoscale solid surfaces, especially those occurring in a competitive adsorption environment. Complex sequences of adhesion events in competitive adsorption involving multicomponent protein systems have been extensively investigated, but our understanding is still limited primarily to macroscopic adhesion onto chemically simple surfaces. We examine the competitive adsorption behavior from a binary protein mixture containing bovine serum albumin and fibrinogen at the single protein level. We subsequently evaluate a series of adsorption and displacement processes occurring on both the macroscopic homopolymer and nanoscopic diblock copolymer surfaces, while systematically varying the protein concentration and incubation time. We identify the similarities and dissimilarities in competitive protein adsorption behavior between the two polymeric surfaces, the former presenting chemical uniformity at macroscale versus the latter exhibiting periodic nanointerfaces of chemically alternating polymeric segments. We then present our novel experimental finding of a large increase in the nanointerface-engaged residence time of the initially bound proteins and further explain the origin of this phenomenon manifested on nanoscale diblock copolymer surfaces. The outcomes of this study may provide timely insight into nanoscale competitive protein adsorption that is much needed in designing bioimplant and tissue engineering materials. In addition, the fundamental understanding gained from this study can be beneficial for the development of highly miniaturized biodevices and biomaterials fabricated by using nanoscale polymeric materials and interfaces.
Collapse
Affiliation(s)
- Sheng Song
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA.
| | | | | | | |
Collapse
|
20
|
Forest S, Breault-Turcot J, Chaurand P, Masson JF. Surface Plasmon Resonance Imaging-MALDI-TOF Imaging Mass Spectrometry of Thin Tissue Sections. Anal Chem 2016; 88:2072-9. [DOI: 10.1021/acs.analchem.5b03309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Simon Forest
- Département
de Chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Julien Breault-Turcot
- Département
de Chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Pierre Chaurand
- Département
de Chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Jean-Francois Masson
- Département
de Chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
- Centre
for Self-Assembled Chemical Structures (CSACS), McGill University, Montreal, Quebec H3A 2K6, Canada
| |
Collapse
|
21
|
Lessim S, Oughlis S, Lataillade JJ, Migonney V, Changotade S, Lutomski D, Poirier F. Protein selective adsorption properties of a polyethylene terephtalate artificial ligament grafted with poly(sodium styrene sulfonate) (polyNaSS): correlation with physicochemical parameters of proteins. ACTA ACUST UNITED AC 2015; 10:065021. [PMID: 26658022 DOI: 10.1088/1748-6041/10/6/065021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Immediately after surgical placement of biomaterials, a first step consists in the adsorption of proteins from the biological environment on the artificial surfaces. Because the composition of the adsorbed protein layer modulates the cell response to the implanted material, researchers in the biomaterials field have focused on coating proteins or peptides onto surfaces to improve cell response and therefore the long-term compatibility of the implant. However, some materials used in tissue engineering, mainly synthetic polymers, are too hydrophobic to allow the optimal adsorption of proteins and have to be first submitted to physical or chemical treatments. In our laboratory, we have demonstrated that grafting of poly(sodium styrene sulfonate) (polyNaSS) onto biomaterials can strongly modulate the protein adsorption and the cellular response compared to unmodified surfaces. In this study, we used a liquid chromatography strategy coupled to proteomics to evaluate the adsorptive properties of a polyethylene terephtalate (PET) artificial ligament grafted with polyNaSS, and to identify and analyse proteins adsorbed on PET fibers. Results obtained with platelet rich plasma (PRP) proteins demonstrated that grafting significantly increases the protein adsorption of the PET and also selectively modulates the adsorption of proteins on PET fibers. Finally, regarding physicochemical parameters calculated from the amino acid sequence of identified proteins, we found that the aliphatic index is highly correlated with the selective adsorption of proteins onto the polyNaSS/PET surface. Therefore, the proteomic approach complemented with physicochemical property evaluation could provide a powerful tool for the elaboration of new biomaterials based on protein layer deposition.
Collapse
Affiliation(s)
- S Lessim
- Université Paris 13-UMR CNRS 7244-CSPBAT-LBPS-UFR SMBH, Bobigny, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Huang R, Liu X, Ye H, Su R, Qi W, Wang L, He Z. Conjugation of Hyaluronic Acid onto Surfaces via the Interfacial Polymerization of Dopamine to Prevent Protein Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12061-12070. [PMID: 26488547 DOI: 10.1021/acs.langmuir.5b02320] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A versatile, convenient, and cost-effective method that can be used for grafting antifouling materials onto different surfaces is highly desirable in many applications. Here, we report the one-step fabrication of antifouling surfaces via the polymerization of dopamine and the simultaneous deposition of anionic hyaluronic acid (HA) on Au substrates. The water contact angle of the Au surfaces decreased from 84.9° to 24.8° after the attachment of a highly uniform polydopamine (PDA)/HA hybrid film. The results of surface plasmon resonance analysis showed that the Au-PDA/HA surfaces adsorbed proteins from solutions of bovine serum albumin, lysozyme, β-lactoglobulin, fibrinogen, and soybean milk in ultralow or low amounts (4.8-31.7 ng/cm(2)). The hydrophilicity and good antifouling performance of the PDA/HA surfaces is attributable to the HA chains that probably attached onto their upper surface via hydrogen bonding between PDA and HA. At the same time, the electrostatic repulsion between PDA and HA probably prevents the aggregation of PDA, resulting in the formation of a highly uniform PDA/HA hybrid film with the HA chains (with a stretched structure) on the upper surface. We also developed a simple method for removing this PDA/HA film and recycling the Au substrates by using an aqueous solution of NaOH as the hydrolyzing agent. The Au surface remained undamaged, and a PDA/HA film could be redeposited on the surface, with the surface exhibiting good antifouling performance even after 10 such cycles. Finally, it was found that this grafting method is applicable to other substrates, including epoxy resins, polystyrene, glass, and steel, owing to the strong adhesion of PDA with these substrates.
Collapse
Affiliation(s)
- Renliang Huang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University , Tianjin 300072, P. R. China
| | - Xia Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| | - Huijun Ye
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University , Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University , Tianjin 300072, P. R. China
| | - Libing Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, P. R. China
| |
Collapse
|
23
|
An optical biosensor-based immunoassay for the determination of bovine serum albumin in milk and milk products. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2015.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Blaszykowski C, Sheikh S, Thompson M. A survey of state-of-the-art surface chemistries to minimize fouling from human and animal biofluids. Biomater Sci 2015. [DOI: 10.1039/c5bm00085h] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fouling of artificial surfaces by biofluids is a plague Biotechnology deeply suffers from. Herein, we inventory the state-of-the-art surface chemistries developed to minimize this effect from both human and animal biosamples.
Collapse
Affiliation(s)
| | - Sonia Sheikh
- University of Toronto
- Department of Chemistry – St. George campus
- Toronto
- Canada M5S 3H6
| | - Michael Thompson
- Econous Systems Inc
- Toronto
- Canada M5S 3H6
- University of Toronto
- Department of Chemistry – St. George campus
| |
Collapse
|