1
|
Zhang W, Liu K, Zhang P, Cheng W, Zhang Y, Li L, Yu Z, Chen M, Chen L, Li L, Zhang X. All-in-one approaches for rapid and highly specific quantifcation of single nucleotide polymorphisms based on ligase detection reaction using molecular beacons as turn-on probes. Talanta 2020; 224:121717. [PMID: 33378999 DOI: 10.1016/j.talanta.2020.121717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 11/27/2022]
Abstract
Rapid, simple, specific and sensitive approaches for single nucleotide polymorphisms (SNPs) detection are essential for clinical diagnosis. In this study, all-in-one approaches, consisting of the whole detection process including ligase detection reaction (LDR) and real time quantitative polymerase chain reaction performed in one PCR tube by a one-step operation on a real-time PCR system using molecular beacon (MB) as turn-on probe, were developed for rapid, simple, specific and sensitive quantifcation of SNPs. High specificity of the all-in-one approach was achieved by using the LDR, which employs a thermostable and single-base discerning Hifi Taq DNA ligase to ligate adjacently hybridized LDR-specific probes. In addition, a highly specific probe, MB, was used to detect the products of all-in-one approach, which doubly enhances the specificity of the all-in-one approach. The linear dynamic range and high sensitivity of mutant DNA (MutDNA) and wild-type DNA (WtDNA) all-in-one approaches for the detection of MutDNA and WtDNA were studied in vitro, with a broad linear dynamic range of 0.1 fM to 1 pM and detection limits of 65.3 aM and 31.2 aM, respectively. In addition, the MutDNA and WtDNA all-in-one approaches were able to accurately detect allele frequency changes as low as 0.1%. In particular, the epidermal growth factor receptor T790M MutDNA frequency in the tissue of five patients with non-small cell lung cancer detected by all-in-one approaches were in agreement with clinical detection results, indicating the excellent practicability of the developed approaches for the quantification of SNPs in real samples. In summary, the developed all-in-one approaches exhibited promising potential for further applications in clinical diagnosis.
Collapse
Affiliation(s)
- Wancun Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; Department of Pediatric Oncology Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Kangbo Liu
- Biological Testing Room, Henan Medical Equipment Inspection Institute, Henan Medical Equipment Inspection and Testing Engineering Technology Research Center, Henan Medical Equipment Biotechnology and Application Engineering Research Center, Zhengzhou, 450000, China
| | - Pin Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Weyland Cheng
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yaodong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Linfei Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Zhidan Yu
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Mengmeng Chen
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Lin Chen
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, 450063, Zhengzhou, China.
| | - Lifeng Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; Departments of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| | - Xianwei Zhang
- Department of Pediatric Oncology Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| |
Collapse
|
2
|
Nevídalová H, Michalcová L, Glatz Z. Capillary electrophoresis-based immunoassay and aptamer assay: A review. Electrophoresis 2020; 41:414-433. [PMID: 31975407 DOI: 10.1002/elps.201900426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/31/2022]
Abstract
Over the last two decades, the group of techniques called affinity probe CE has been widely used for the detection and the determination of several types of biomolecules with high sensitivity. These techniques combine the low sample consumption and high separation power of CE with the selectivity of the probe to the target molecule. The assays can be defined according to the type of probe used: CE immunoassays, with an antibody as the probe, or aptamer-based CE, with an aptamer as the probe. Immunoassays are generally divided into homogeneous and heterogeneous groups, and homogeneous variant can be further performed in competitive or noncompetitive formats. Interacting partners are free in solution at homogeneous assay, as opposed to heterogeneous analyses, where one of them is immobilized onto a solid support. Highly sensitive fluorescence, chemiluminescence or electrochemical detections were typically used in this type of study. The use of the aptamers as probes has several advantages over antibodies such as shorter generation time, higher thermal stability, lower price, and lower variability. The aptamer-based CE technique was in practice utilized for the determination of proteins in biological fluids and environmentally or clinically important small molecules. Both techniques were also transferred to microchip. This review is focused on theoretical principles of these techniques and a summary of their applications in research.
Collapse
Affiliation(s)
- Hana Nevídalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Michalcová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
3
|
Takahashi T, Fukagawa M, Sakurai T, Hoshino H. Non-hybridization single nucleotide polymorphism detection and genotyping assay through direct discrimination of single base mutation by capillary electrophoretic separation of single-stranded DNA. J Sep Sci 2019; 43:657-662. [PMID: 31707747 DOI: 10.1002/jssc.201900897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022]
Abstract
The significant demands for single nucleotide polymorphism detection and genotyping assays have grown. Most common assays are based on the recognition of the target sequence by the hybridization with its specific probe having the complementary sequence of the target. Herein, a simple, label-free, and economical non-hybridization assay was developed for single nucleotide polymorphism detection and genotyping, based on the direct discrimination of single base mutation by simple capillary electrophoresis separation for single-stranded DNA in an acidic electrophoretic buffer solution containing urea. Capillary electrophoresis separation of single-base sequential isomers of DNA was achieved due to charge differences resulting from the different protonation properties of the DNA bases. Single nucleotide polymorphism detection and genotyping were achieved by discriminating the electropherogram pattern change, that is, peak number in the electropherogram, obtained by the proposed method. The successful practical application of the proposed method was demonstrated through single nucleotide polymorphism detection and genotyping on a known gene region of 84-mer, in which guanine to adenine single-base mutation is commonly observed, using a human hair sample in combination with genomic DNA extraction, polymerase chain reaction amplification, DNA purification from polymerase chain reaction products, and capillary electrophoresis separation.
Collapse
Affiliation(s)
- Toru Takahashi
- Department of applied chemistry and biotechnology, Graduate school of engineering, University of Fukui, Fukui, Japan
| | - Mayu Fukagawa
- Department of applied chemistry and biotechnology, Faculty of engineering, University of Fukui, Fukui, Japan
| | - Takao Sakurai
- Department of Environmental Benign Systems, Graduate school of environmental studies, Tohoku University, Sendai, Japan
| | - Hitoshi Hoshino
- Department of Environmental Benign Systems, Graduate school of environmental studies, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Miyagawa A, Harada M, Okada T. Zeptomole Biosensing of DNA with Flexible Selectivity Based on Acoustic Levitation of a Single Microsphere Binding Gold Nanoparticles by Hybridization. ACS Sens 2018; 3:1870-1875. [PMID: 30152225 DOI: 10.1021/acssensors.8b00748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel scheme for DNA sensing at the zeptomole level is presented, based on the levitation of a single microsphere in a combined acoustic-gravitational (CAG) field. The levitation of a microsphere in the field is predominantly determined by its density. Capture and reporter probe DNAs are anchored on poly(methyl methacrylate) microsphere (PMMA) and gold nanoparticles (AuNPs), respectively, and a target DNA induces the binding of AuNPs on PMMA. This interparticle sandwich DNA-hybridization induces density increase in PMMA, which is detected as a shift in the levitation coordinate in the CAG field. The reporter DNAs are designed based on base-pair (bp) number selectivity, which is evaluated using direct interparticle hybridization between DNA-bound PMMA and complementary DNA-anchored AuNPs. Interestingly, the bp-number selectivity can be enlarged by lowering the reactant concentrations. Thus, the threshold bp, at which no density change is detected, can be adjusted by controlling the reactant concentrations. This strategy is extended to the sensing of HIV-2 DNA and single nucleotide polymorphism (SNP) detection of the KRAS gene by sandwich hybridization. In SNP detection, the present method selectively distinguishes wild-type DNA from mutant DNA differing by one nucleotide in the 21-nucleotide sequence by optimizing the lengths of probe DNAs and particle concentrations. This approach allows the detection of 1000 DNA molecules.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Makoto Harada
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
5
|
Wang Y, Gao J, Meng X, Wang Z. DNA microarray-based resonance light scattering assay for multiplexed detection of DNA mutation in papillary thyroid cancer. Analyst 2018; 143:914-919. [PMID: 29362729 DOI: 10.1039/c7an01773a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A DNA microarray-based resonance light scattering assay has been developed for multiplexed detection of papillary thyroid carcinoma (PTC) related genic mutation.
Collapse
Affiliation(s)
- Yaoqi Wang
- Department of Thyroid Surgery
- the First Hospital of Jilin University
- Changchun 130021
- P. R. China
| | - Jiaxue Gao
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xianying Meng
- Department of Thyroid Surgery
- the First Hospital of Jilin University
- Changchun 130021
- P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
7
|
Sun F, You Y, Liu J, Song Q, Shen X, Na N, Ouyang J. DNA Three-Way Junction for Differentiation of Single-Nucleotide Polymorphisms with Fluorescent Copper Nanoparticles. Chemistry 2017; 23:6979-6982. [DOI: 10.1002/chem.201701361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Feifei Sun
- Key Laboratory of Theoretical and Computational Photochemistry; Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 P. R. China
| | - Ying You
- Key Laboratory of Theoretical and Computational Photochemistry; Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 P. R. China
- High School Affiliated to Southwest University; Chongqing 400700 P. R. China
| | - Jie Liu
- Department of Chemistry; Tsinghua University; Beijing 100084 P. R. China
| | - Quanwei Song
- State Key Laboratory of Petroleum Pollution Control; Beijing 102206 P. R. China
- CNPC Research Institute of Safety and Environmental Technology; Beijing 102206 P. R. China
| | - Xiaotong Shen
- Key Laboratory of Theoretical and Computational Photochemistry; Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 P. R. China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry; Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 P. R. China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry; Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 P. R. China
| |
Collapse
|