1
|
Huang Y, Zhang Y, Yang X, Lin Z. A high-performance protein preparation approach in a single column-free step. Trends Biotechnol 2025; 43:476-487. [PMID: 39537535 DOI: 10.1016/j.tibtech.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Protein purification remains a formidable and costly technical obstacle in biotechnology. Here, we present a new column-free method, utilizing the cleavable self-aggregating tag 2.0 (cSAT2.0) scheme, to streamline protein production in Escherichia coli, yielding high quantities with exceptional purity. In shake-flask experiments using lysogeny broth (LB) medium, the cSAT2.0 scheme successfully produced one peptide and five proteins, with yields ranging from 24 mg/l to 89 mg/l, and purity levels exceeding 98%. The cSAT2.0 scheme also enabled high-throughput protein preparation on microplates. Furthermore, we scaled up the fermentation process for caplacizumab, achieving 1.4 g/l of highly purified protein in a 5-l fermenter. Our results demonstrate that the cSAT2.0 scheme can serve as an economical and robust platform for protein production from microplate to fermenter scales.
Collapse
Affiliation(s)
- Yuan Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yuanyuan Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Xiang Y, Lao Z, Lin Z, Yang X. SpyFixer enables efficient site-specific immobilization for protein-protein interaction analysis and antibody purification. Int J Biol Macromol 2025; 287:138548. [PMID: 39653208 DOI: 10.1016/j.ijbiomac.2024.138548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
Traditional methods of protein immobilization often result in activity loss due to random coupling. This study introduces SpyFixer, a variant of SpyCatcher that achieves over 99% efficient site-specific protein immobilization. We applied SpyFixer on two platforms: bio-layer interferometry (BLI) for protein-protein interaction analysis and epoxy agarose resin for antibody purification. Using human growth hormone (hGH) and the Z domain of Protein A as model proteins, we demonstrated that SpyFixer enables efficient, site-specific immobilization on BLI sensors, yielding reproducible kinetic data with lower variability than conventional methods. Additionally, we developed a cost-effective strategy for antibody purification utilizing SpyFixer-modified resin, which exhibited remarkable capture efficiencies exceeding 90%, elution efficiencies over 70%, and purities over 90% for human immunoglobulin G (hIgG) from complex samples, including bacterial lysates, human serum, and recombinant fermentation broth. The resin's loading capacity surpassed 200 mg/mL, and no significant activity loss was observed after 20 regeneration cycles. This study further advances the potential of Spy chemistry in biotechnological applications.
Collapse
Affiliation(s)
- Ya Xiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zisha Lao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China; School of Biomedicine, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
3
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Groves K, Ashcroft AE, Cryar A, Sula A, Wallace BA, Stocks BB, Burns C, Cooper-Shepherd D, De Lorenzi E, Rodriguez E, Zhang H, Ault JR, Ferguson J, Phillips JJ, Pacholarz K, Thalassinos K, Luckau L, Ashton L, Durrant O, Barran P, Dalby P, Vicedo P, Colombo R, Davis R, Parakra R, Upton R, Hill S, Wood V, Soloviev Z, Quaglia M. Reference Protocol to Assess Analytical Performance of Higher Order Structural Analysis Measurements: Results from an Interlaboratory Comparison. Anal Chem 2021; 93:9041-9048. [PMID: 34165299 DOI: 10.1021/acs.analchem.0c04625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Measurements of protein higher order structure (HOS) provide important information on stability, potency, efficacy, immunogenicity, and biosimilarity of biopharmaceuticals, with a significant number of techniques and methods available to perform these measurements. The comparison of the analytical performance of HOS methods and the standardization of the results is, however, not a trivial task, due to the lack of reference protocols and reference measurement procedures. Here, we developed a protocol to structurally alter and compare samples of somatropin, a recombinant biotherapeutic, and describe the results obtained by using a number of techniques, methods and in different laboratories. This, with the final aim to provide tools and generate a pool of data to compare and benchmark analytical platforms and define method sensitivity to structural changes. Changes in somatropin HOS, induced by the presence of zinc at increasing concentrations, were observed, both globally and at more localized resolution, across many of the methods utilized in this study and with different sensitivities, suggesting the suitability of the protocol to improve understanding of inter- and cross-platform measurement comparability and assess analytical performance as appropriate.
Collapse
Affiliation(s)
- K Groves
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| | - A E Ashcroft
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - A Cryar
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| | - A Sula
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, U.K
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, U.K
| | - B B Stocks
- National Research Council Canada, 1200 Montreal Road, Ottawa K1A 0R6, Canada
| | - C Burns
- Biotherapeutics Division, National Institute for Biological Standards and Control, Blanche Lane South Mimms, Potters Bar, Hertfordshire EN6 3QG, U.K
| | - D Cooper-Shepherd
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| | - E De Lorenzi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - E Rodriguez
- UCB Celltech, 216 Bath Road, Slough, Berkshire SL1 3WE, U.K
| | - H Zhang
- Department of Biochemical Engineering, University College London, London WC1E 6BT, U.K
| | - J R Ault
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - J Ferguson
- Biotherapeutics Division, National Institute for Biological Standards and Control, Blanche Lane South Mimms, Potters Bar, Hertfordshire EN6 3QG, U.K
| | - J J Phillips
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, , U.K
| | - K Pacholarz
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - K Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6AR, U.K
| | - L Luckau
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| | - L Ashton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - O Durrant
- UCB Celltech, 216 Bath Road, Slough, Berkshire SL1 3WE, U.K
| | - P Barran
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - P Dalby
- Department of Biochemical Engineering, University College London, London WC1E 6BT, U.K
| | - P Vicedo
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - R Colombo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - R Davis
- UCB Celltech, 216 Bath Road, Slough, Berkshire SL1 3WE, U.K
| | - R Parakra
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter EX4 4QD, , U.K
| | - R Upton
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - S Hill
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| | - V Wood
- Department of Biochemical Engineering, University College London, London WC1E 6BT, U.K
| | - Z Soloviev
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6AR, U.K
| | - M Quaglia
- National Measurement Laboratory, LGC Ltd. Queens Road, Teddington, Middlesex TW11 0LY, U.K
| |
Collapse
|
5
|
Wollenberg DTW, Pengelley S, Mouritsen JC, Suckau D, Jørgensen CI, Jørgensen TJD. Avoiding H/D Scrambling with Minimal Ion Transmission Loss for HDX-MS/MS-ETD Analysis on a High-Resolution Q-TOF Mass Spectrometer. Anal Chem 2020; 92:7453-7461. [PMID: 32427467 DOI: 10.1021/acs.analchem.9b05208] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) enables the study of protein dynamics by measuring the time-resolved deuterium incorporation into a protein incubated in D2O. Using electron-based fragmentation in the gas phase it is possible to measure deuterium uptake at single-residue resolution. However, a prerequisite for this approach is that the solution-phase labeling is conserved in the gas phase prior to precursor fragmentation. It is therefore essential to reduce or even avoid intramolecular hydrogen/deuterium migration, which causes randomization of the deuterium labels along the peptide (hydrogen scrambling). Here, we describe an optimization strategy for reducing scrambling to a negligible level while minimizing the impact on sensitivity on a high-resolution Q-TOF equipped with ETD and an electrospray ionization interface consisting of a glass transfer capillary followed by a dual ion funnel. In our strategy we narrowed down the optimization to two accelerating potentials, and we defined the optimization of these in a simple rule by accounting for their interdependency in relation to scrambling and transmission efficiency. Using this rule, we were able to reduce scrambling from 75% to below 5% on average using the highly scrambling-sensitive quadruply charged P1 peptide scrambling probe resulting in a minor 33% transmission loss. To demonstrate the applicability of this approach, we probe the dynamics of certain regions in cytochrome c.
Collapse
Affiliation(s)
- Daniel T Weltz Wollenberg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.,Novozymes A/S, Krogshøjvej 36, Bagsværd 2280, Denmark
| | - Stuart Pengelley
- Bruker Daltonik GmbH, Fahrenheitstrasse 4, Bremen, 28359, Germany
| | | | - Detlev Suckau
- Bruker Daltonik GmbH, Fahrenheitstrasse 4, Bremen, 28359, Germany
| | | | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark
| |
Collapse
|
6
|
Kan ZY, Ye X, Skinner JJ, Mayne L, Englander SW. ExMS2: An Integrated Solution for Hydrogen-Deuterium Exchange Mass Spectrometry Data Analysis. Anal Chem 2019; 91:7474-7481. [PMID: 31082210 DOI: 10.1021/acs.analchem.9b01682] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX MS) has become an important technique for the analysis of protein structure and dynamics. Data analysis remains a bottleneck in the workflow. Sophisticated computer analysis is required to scan through the voluminous MS output in order to find, identify, and validate many partially deuterated peptides, elicit the HDX information, and extend the results to higher structural resolution. We previously made available two software suites, ExMS for identification and analysis of peptide isotopic envelopes in the HDX MS raw data and HDsite for residue-level resolution. Further experience has led to advances in the usability and performance of both programs. Also, newly added modules deal with ETD/ECD analysis, multimodal mass spectra analysis, and presentation options. These advances have been integrated into a stand-alone software solution named ExMS2. The package has been successfully tested by many workers in fine scale epitope mapping, in protein folding studies, and in dissecting structure and structure change of large protein complexes. A description and tutorial for this major upgrade are given here.
Collapse
Affiliation(s)
- Zhong-Yuan Kan
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Xiang Ye
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - John J Skinner
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Leland Mayne
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - S Walter Englander
- Johnson Research Foundation, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
7
|
Hamuro Y, Zhang T. High-Resolution HDX-MS of Cytochrome c Using Pepsin/Fungal Protease Type XIII Mixed Bed Column. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:227-234. [PMID: 30374663 DOI: 10.1007/s13361-018-2087-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
A pepsin/FPXIII (protease from Aspergillus saitoi, type XIII) mixed bed column significantly improved the resolution of bottom-up hydrogen/deuterium exchange mass spectrometry (HDX-MS) data compared with a pepsin-only column. The HDX-MS method using the mixed bed column determined 65 amide hydrogen exchange rates out of one hundred cytochrome c backbone amide hydrogens. Different cleavage specificities of the two enzymes generated 138 unique high-quality peptic fragments, which allows fine sub-localization of deuterium. The exchange rates determined in this method are consistent within the current study as well as with the previous HDX-NMR study. High-resolution HDX-MS data can determine the exchange rate of each residue not the deuterium buildup curve of a peptic fragment. The exchange rates provide more precise and quantitative measurements of protein dynamics in a more reproducible manner. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- SGS Life North America, 606 Brandywine Parkway, West Chester, PA, 19380, USA.
- Janssen Pharmaceutical, 1400 McKean Road, Spring House, PA, 19477, USA.
| | - Terry Zhang
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA, 95134, USA
| |
Collapse
|
8
|
Zhan L, Liu Y, Xie X, Xiong C, Nie Z. Heat-Induced Rearrangement of the Disulfide Bond of Lactoglobulin Characterized by Multiply Charged MALDI-TOF/TOF Mass Spectrometry. Anal Chem 2018; 90:10670-10675. [DOI: 10.1021/acs.analchem.8b02563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lingpeng Zhan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobo Xie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- National Center for Mass Spectrometry in Beijing, Beijing 100190, China
| |
Collapse
|
9
|
Hamuro Y, E SY. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:989-1001. [PMID: 29500740 DOI: 10.1007/s13361-018-1892-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 06/08/2023]
Abstract
The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ, 08852, USA.
- SGS Life North America, 606 Brandywine Parkway, West Chester, PA, 19380, USA.
| | - Sook Yen E
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ, 08852, USA
- Regeneron, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| |
Collapse
|
10
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
11
|
Lakbub JC, Shipman JT, Desaire H. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins. Anal Bioanal Chem 2017; 410:2467-2484. [PMID: 29256076 DOI: 10.1007/s00216-017-0772-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022]
Abstract
Disulfide bonds are important structural moieties of proteins: they ensure proper folding, provide stability, and ensure proper function. With the increasing use of proteins for biotherapeutics, particularly monoclonal antibodies, which are highly disulfide bonded, it is now important to confirm the correct disulfide bond connectivity and to verify the presence, or absence, of disulfide bond variants in the protein therapeutics. These studies help to ensure safety and efficacy. Hence, disulfide bonds are among the critical quality attributes of proteins that have to be monitored closely during the development of biotherapeutics. However, disulfide bond analysis is challenging because of the complexity of the biomolecules. Mass spectrometry (MS) has been the go-to analytical tool for the characterization of such complex biomolecules, and several methods have been reported to meet the challenging task of mapping disulfide bonds in proteins. In this review, we describe the relevant, recent MS-based techniques and provide important considerations needed for efficient disulfide bond analysis in proteins. The review focuses on methods for proper sample preparation, fragmentation techniques for disulfide bond analysis, recent disulfide bond mapping methods based on the fragmentation techniques, and automated algorithms designed for rapid analysis of disulfide bonds from liquid chromatography-MS/MS data. Researchers involved in method development for protein characterization can use the information herein to facilitate development of new MS-based methods for protein disulfide bond analysis. In addition, individuals characterizing biotherapeutics, especially by disulfide bond mapping in antibodies, can use this review to choose the best strategies for disulfide bond assignment of their biologic products. Graphical Abstract This review, describing characterization methods for disulfide bonds in proteins, focuses on three critical components: sample preparation, mass spectrometry data, and software tools.
Collapse
Affiliation(s)
- Jude C Lakbub
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr, Lawrence, KS, 66045, USA
| | - Joshua T Shipman
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr, Lawrence, KS, 66045, USA
| | - Heather Desaire
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr, Lawrence, KS, 66045, USA.
| |
Collapse
|
12
|
Hamuro Y. Regio-Selective Intramolecular Hydrogen/Deuterium Exchange in Gas-Phase Electron Transfer Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:971-977. [PMID: 28194737 DOI: 10.1007/s13361-017-1612-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/29/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Protein backbone amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) typically utilizes enzymatic digestion after the exchange reaction and before MS analysis to improve data resolution. Gas-phase fragmentation of a peptic fragment prior to MS analysis is a promising technique to further increase the resolution. The biggest technical challenge for this method is elimination of intramolecular hydrogen/deuterium exchange (scrambling) in the gas phase. The scrambling obscures the location of deuterium. Jørgensen's group pioneered a method to minimize the scrambling in gas-phase electron capture/transfer dissociation. Despite active investigation, the mechanism of hydrogen scrambling is not well-understood. The difficulty stems from the fact that the degree of hydrogen scrambling depends on instruments, various parameters of mass analysis, and peptide analyzed. In most hydrogen scrambling investigations, the hydrogen scrambling is measured by the percentage of scrambling in a whole molecule. This paper demonstrates that the degree of intramolecular hydrogen/deuterium exchange depends on the nature of exchangeable hydrogen sites. The deuterium on Tyr amide of neurotensin (9-13), Arg-Pro-Tyr-Ile-Leu, migrated significantly faster than that on Ile or Leu amides, indicating the loss of deuterium from the original sites is not mere randomization of hydrogen and deuterium but more site-specific phenomena. This more precise approach may help understand the mechanism of intramolecular hydrogen exchange and provide higher confidence for the parameter optimization to eliminate intramolecular hydrogen/deuterium exchange during gas-phase fragmentation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ, 08852, USA.
| |
Collapse
|
13
|
Hamuro Y. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:486-497. [PMID: 28108962 DOI: 10.1007/s13361-016-1571-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/02/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yoshitomo Hamuro
- ExSAR Corporation, 11 Deer Park Drive, Suite 103, Monmouth Junction, NJ, 08852, USA.
| |
Collapse
|
14
|
Donnarumma D, Faleri A, Costantino P, Rappuoli R, Norais N. The role of structural proteomics in vaccine development: recent advances and future prospects. Expert Rev Proteomics 2016; 13:55-68. [PMID: 26714563 DOI: 10.1586/14789450.2016.1121113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vaccines are the most effective way to fight infectious diseases saving countless lives since their introduction. Their evolution during the last century made use of the best technologies available to continuously increase their efficacy and safety. Mass spectrometry (MS) and proteomics are already playing a central role in the identification and characterization of novel antigens. Over the last years, we have been witnessing the emergence of structural proteomics in vaccinology, as a major tool for vaccine candidate discovery, antigen design and life cycle management of existing products. In this review, we describe the MS techniques associated to structural proteomics and we illustrate the contribution of structural proteomics to vaccinology discussing potential applications.
Collapse
|
15
|
Kopylov AT, Myasoedov NF, Dadayan AK, Zgoda VG, Medvedev AE, Zolotarev YA. Use of deuterium labeling by high-temperature solid-state hydrogen-exchange reaction for mass spectrometric analysis of bradykinin biotransformation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1283-1294. [PMID: 27173110 DOI: 10.1002/rcm.7558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/04/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
RATIONALE Studies of molecular biodegradation by mass spectrometry often require synthetic compounds labeled with stable isotopes as internal standards. However, labeling is very expensive especially when a large number of compounds are needed for analysis of biotransformation. Here we describe an approach for qualitative and quantitative analysis using bradykinin (BK) and its in vitro degradation metabolites as an example. Its novelty lies in the use of deuterated peptides which are obtained by a high-temperature solid-state exchange (HSCIE) reaction. METHODS Deuterated and native BK were analyzed by positive electrospray ionization high-resolution mass spectrometry (ESI-HRMS) using an Orbitrap Fusion mass spectrometer. High-energy collision-induced dissociation (HCD) experiments were performed on [M+H](+) and [M+2H](2+) ions in targeted-MS(2) mode with adjusted normalized HCD value. RESULTS After the HSCIE reaction, each amino acid residue of the deuterated peptide contained deuterium atoms and the average degree of substitution was 5.5 atoms per the peptide molecule. The deuterated peptide demonstrated the same chromatographic mobility as the unlabeled counterpart, and lack of racemization during substitution with deuterium. Deuterium-labeled and unlabeled BKs were incubated with human plasma and their corresponding fragments BK(1-5) and BK(1-7), well known as the major metabolites, were detected. CONCLUSIONS Quantitative assays demonstrated applicability of the heavy peptide for both sequencing and quantification of generated fragments. Applicability of the HSCIE deuterated peptide for analysis of routes of its degradation has been shown in in vitro experiments. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Arthur T Kopylov
- Institute of Biomedical Chemistry, bld.8, 10 Pogodinskaya str., 119121, Moscow, Russian Federation
| | - Nikolay F Myasoedov
- Institute of Molecular Genetics, 2 Academic Kurchatov Sq, 123182, Moscow, Russian Federation
| | - Alexander K Dadayan
- Institute of Molecular Genetics, 2 Academic Kurchatov Sq, 123182, Moscow, Russian Federation
| | - Victor G Zgoda
- Institute of Biomedical Chemistry, bld.8, 10 Pogodinskaya str., 119121, Moscow, Russian Federation
| | - Alexei E Medvedev
- Institute of Biomedical Chemistry, bld.8, 10 Pogodinskaya str., 119121, Moscow, Russian Federation
| | - Yurii A Zolotarev
- Institute of Molecular Genetics, 2 Academic Kurchatov Sq, 123182, Moscow, Russian Federation
| |
Collapse
|
16
|
Cho Y, Choi MH, Kim B, Kim S. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation. J Chromatogr A 2016; 1444:123-8. [DOI: 10.1016/j.chroma.2016.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/27/2016] [Accepted: 03/06/2016] [Indexed: 01/06/2023]
|
17
|
Trabjerg E, Jakobsen RU, Mysling S, Christensen S, Jørgensen TJD, Rand KD. Conformational analysis of large and highly disulfide-stabilized proteins by integrating online electrochemical reduction into an optimized H/D exchange mass spectrometry workflow. Anal Chem 2015; 87:8880-8. [PMID: 26249042 DOI: 10.1021/acs.analchem.5b01996] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Analysis of disulfide-bonded proteins by hydrogen/deuterium exchange mass spectrometry (HDX-MS) requires effective and rapid reduction of disulfide bonds before enzymatic digestion in order to increase sequence coverage. In a conventional HDX-MS workflow, disulfide bonds are reduced chemically by addition of a reducing agent to the quench solution (e.g., tris(2-carboxyethyl)phosphine (TCEP)). The chemical reduction, however, is severely limited under quenched conditions due to a narrow time window as well as low pH and temperature. Here, we demonstrate the real-world applicability of integrating electrochemical reduction into an online HDX-MS workflow. We have optimized the electrochemical reduction efficiency during HDX-MS analysis of two particularly challenging disulfide stabilized proteins: a therapeutic IgG1-antibody and nerve growth factor-β (NGF). Several different parameters (flow rate and applied square wave potential, as well as the type of labeling and quench buffer) were investigated, and the optimized workflow increased the sequence coverage of NGF from 46% with chemical reduction to 99%, when electrochemical reduction was applied. Additionally, the optimized workflow also enabled a similar high sequence coverage of 96% and 87% for the heavy and light chain of the IgG1-antibody, respectively. The presented results demonstrate the successful electrochemical reduction during HDX-MS analysis of both a small exceptional tightly disulfide-bonded protein (NGF) as well as the largest protein attempted to date (IgG1-antibody). We envision that online electrochemical reduction is poised to decrease the complexity of sample handling and increase the versatility of the HDX-MS technique.
Collapse
Affiliation(s)
- Esben Trabjerg
- Department of Pharmacy, University of Copenhagen , Universitetsparken 2, Copenhagen E, DK-2100, Denmark.,Department of Biologics, H. Lundbeck A/S , Ottiliavej 9, Valby, DK-2500, Denmark
| | - Rasmus U Jakobsen
- Department of Pharmacy, University of Copenhagen , Universitetsparken 2, Copenhagen E, DK-2100, Denmark
| | - Simon Mysling
- Finsen Laboratory, Rigshospitalet and Biotech Research and Innovation Centre (BRIC), Copenhagen Biocenter , Ole Maaløes vej 5, Copenhagen N, DK-2200, Denmark
| | - Søren Christensen
- Department of Biologics, H. Lundbeck A/S , Ottiliavej 9, Valby, DK-2500, Denmark
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , Campuvej 55, Odense, DK-5230, Denmark
| | - Kasper D Rand
- Department of Pharmacy, University of Copenhagen , Universitetsparken 2, Copenhagen E, DK-2100, Denmark
| |
Collapse
|