1
|
Fu L, Song T, Li Q, Zou G, Zhang F, Li Z, Guan H, Guo Y. Recent advances and future prospects in oxidative-reduction low-triggering-potential electrochemiluminescence strategies based on nanoparticle luminophores. Analyst 2024; 150:34-45. [PMID: 39611382 DOI: 10.1039/d4an01314j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The oxidative-reduction electrochemiluminescence (ECL) potential of a luminophore is one of the most significant parameters during light generation processes when considering the growing demand for anti-interference analysis techniques, electrode compatibility and the reduction of damage to biological molecules due to excessive excitation potential. Nanoparticle luminophores, including quantum dots (QDs) and metal nanoclusters (NCs), possess tremendous potential for forming various ECL sensors due to their adjustable surface states. However, few reviews focused on nanoparticle luminophore-based ECL systems for low-triggering-potential (LTP) oxidative-reduction ECL to avoid the possible interference and oxidative damage of biological molecules. This review summarizes the recent advances in the LTP oxidative-reduction ECL potential strategy with nanoparticle luminophores as ECL emitters, including matching efficient coreactants and nanoparticle luminophores, doping nanoparticle luminophores, constructing donor-acceptor systems, choosing suitable working electrodes, combining multiplex nanoparticle luminophores, and employing surface-engineering strategies. In the context of the different LTP ECL systems, potential-lowering strategies and bio-related applications are discussed in detail. Additionally, the future trends and challenges of low ECL-triggering-potential strategies are discussed.
Collapse
Affiliation(s)
- Li Fu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250100, China.
| | - Tianyuan Song
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250100, China.
| | - Qi Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250100, China.
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Fuwei Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250100, China.
| | - Zongchao Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250100, China.
| | - Haotian Guan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250100, China.
| | - Yingshu Guo
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250100, China.
| |
Collapse
|
2
|
Fu L, Dong P, Liu Z, Li Q, Guo Y. Unary Au Nanocrystal with Prestored Electrons and Intrinsic Low Hole-Injected Potential for Low-Triggering Potential Electrochemiluminescence. Anal Chem 2024; 96:18254-18261. [PMID: 39480793 DOI: 10.1021/acs.analchem.4c04594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Screening a novel electrochemiluminescence (ECL) system and lowering the ECL triggering potential are essential to ECL evolution. Herein, the near-infrared (NIR) ECL system with low-triggering potential ECL was constructed with weakly reductive tert-butylamine borane as coreactant and mercaptosuccinic acid/citrate (MSA/Cit)-capped Au (MSA/Cit@AuNCs) as luminophores. Toxic-element-free and dual-ligand MSA/Cit@AuNCs were prepared via ligand exchange and utilized as a model for developing unary metal NCs-based luminophores with more enhanced ECL performance than monoligand Au nanocrystals (AuNCs), which exhibited a two hole-injected process at around 0.48 and 0.80 V, respectively. Beneficial to the intrinsic low hole-injected potential of AuNCs, MSA/Cit@AuNCs exhibited similar low-triggering ECL potential at around 0.57 V with the participation of series coreactants or not, originating from the recombination of an internal prestored electron within the conduction band (CB) and electroinjected holes at around 0.25 V. Furthermore, the enhanced low-triggering potential around 0.57 V and NIR ECL around 835 nm of MSA/Cit@AuNCs was eventually obtained with the reductive tert-butylamine borane or N2H4·H2O containing a -C-N single-bond structure merely as coreactant. The low-triggering potential ECL of MSA/Cit@AuNCs/tert-butylamine borane system at 0.57 V can be harnessed to selectively determine a carcinoembryonic antigen (CEA) with one linear range spanning from 2 to 20000 fg/mL and a limit of detection of 0.33 fg/mL (S/N = 3). This study will contribute to a more comprehensive understanding of the ECL mechanism in terms of both regulating NCs and selecting coreactants.
Collapse
Affiliation(s)
- Li Fu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| | - Pengjie Dong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| | - Zerui Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| | - Qi Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| | - Yingshu Guo
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), University Road # 3501, Jinan 250100, China
| |
Collapse
|
3
|
Wu P, Zhang L, Zhang G, Cheng L, Zhang F, Li Y, Lei Y, Qi H, Zhang C, Gao Q. Highly Sensitive Electrochemiluminescence Biosensing Method for SARS-CoV-2 N Protein Incorporating the Micelle Probes of Quantum Dots and Dibenzoyl Peroxide Using the Screen-Printed Carbon Electrode Modified with a Carboxyl-Functionalized Graphene. Anal Chem 2024; 96:17345-17352. [PMID: 39417563 DOI: 10.1021/acs.analchem.4c04024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Obtaining stable electrochemiluminescence (ECL) emissions from a hydrophobic luminophore in aqueous solutions and designing a method without the use of an exogenous coreactant are promising for ECL biosensing. Here, a highly sensitive signal-on ECL immunoassay for the SARS-CoV-2 N protein was developed using micelles as an ECL tag. The micelles were prepared by coencapsulating the luminophore hydrophobic CdSe/ZnS quantum dots and coreactant dibenzoyl peroxide within the hydrophobic core of micelles. The ECL probe was obtained by covalently bonding a SARS-CoV-2 N protein-binding aptamer onto the micelle surface. The construction of the immunosensor was initiated by the immobilization of the anti-SARS-CoV-2 N protein antibody onto the screen-printed carbon electrode (SPCE) with a -COOH-functionalized surface. The surface functionalization of SPCEs was achieved through paste-exfoliated graphene, which was modified with a -COOH group through supramolecular-covalent scaffolds on SPCE. Upon achieving sandwich complexes on the immunosensor, an efficient ECL signal response at -1.4 V versus Ag/AgCl was obtained in phosphate buffer solution. The ECL assay was used for the sensitive determination of SARS-CoV-2 N protein with the linear range from 0.01 to 50 ng mL-1, and the detection limit was 3.0 pg mL-1. The immunosensor showed good reproducibility and stability, and the ECL immunoassay was used to determine the SARS-CoV-2 N protein in serum samples. The proposed approach to obtain micelles is versatile for the preparation of stable ECL luminophores by using hydrophobic materials, and the strategy provides an alternative for ECL bioassays based on the coreactant route.
Collapse
Affiliation(s)
- Pengxue Wu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Liang Zhang
- Department of Microbiology, Faculty of Preclinical Medicine, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Guilan Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Linfeng Cheng
- Department of Microbiology, Faculty of Preclinical Medicine, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Fanglin Zhang
- Department of Microbiology, Faculty of Preclinical Medicine, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Yulan Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yingfeng Lei
- Department of Microbiology, Faculty of Preclinical Medicine, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
4
|
Li Y, Wan Y, Fu X, Chen J, Wu W, Feng X, Man T, Huang Y, Piao Y, Zhu L, Lei J, Deng S. Sub-Second Electrochemiluminescence Imaging Assay of SARS-CoV-2 Nucleocapsid Protein Based on Reticulation of Endo-Coreactants. Anal Chem 2024. [PMID: 38335519 DOI: 10.1021/acs.analchem.3c05388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The nonphotodriven electrochemiluminescence (ECL) imageology necessitates concentrated coreacting additives plus longtime exposures. Seeking biosafe and streamlined ensembles can help lower the bar for quality ECL bioimaging to which call the crystallized endo-coreaction in nanoreticula might provide a potent solution. Herein, an exo-coreactant-free ECL visualizer was fabricated out in one-pot, which densified the dyad triethylamine analogue: 1,4-diazabicyclo-[2.2.2]octane (DABCO) in the lamellar hive of 9,10-di(p-carboxyphenyl)anthracene (DPA)-Zn2+. This biligated non-noble metal-organic framework (m-MOF) facilitated a self-contained anodic ECL with a yield as much as 70% of Ru(bPy)32+ in blank phosphate buffered saline. Its featured two-stage emissions rendered an efficient and endurant CCD imaging at 1.0 V under mere 0.5 s swift snapshots and 0.1 s step-pulsed stimulation. Upon structural and spectral cause analyses as well as parametric set optimization, simplistic ECL-graphic immunoassay was mounted in the in situ imager to enact an ultrasensitive measurement of coronaviral N-protein in both signal-on and off modes by the privilege of straight surface amidation on m-MOFs, resulting in a wide dynamic range (10-4-10 ng/mL), a competent detection limit down to 56 fg/mL, along with nice precision and parallelism in human saliva tests. The overall work manifests a rudimentary endeavor in self-sufficient ECL visuality for brisk, biocompatible, and brilliant production of point-of-care diagnostic "Big Data".
Collapse
Affiliation(s)
- Yuansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuanyu Fu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jialiang Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weihan Wu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuyu Feng
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tiantian Man
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yaqi Huang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuhao Piao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianping Lei
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210003, China
| | - Shengyuan Deng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
5
|
Gao X, Tian Z, Ren X, Ai Y, Zhang B, Zou G. Silver Nanocluster-Tagged Electrochemiluminescence Immunoassay with a Sole and Narrow Triggering Potential Window. Anal Chem 2024; 96:1700-1706. [PMID: 38235596 DOI: 10.1021/acs.analchem.3c04816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The commercialized electrochemiluminescence (ECL) immunoassay is carried out by holding luminophore Ru(bpy)32+ at a given potential. Designing an electrochemiluminophore with a narrow triggering potential window is strongly anticipated to decrease the electrochemical cross-talk and improve the flux of the commercialized ECL immunoassay in a potential-resolved way. Herein, L-penicillamine-capped silver nanoclusters (LPA-AgNCs) are facilely synthesized and utilized as tags to perform the ECL immunoassay with a sole and narrow triggering potential window of 0.24 V by employing hydrazine (N2H4) as a coreactant. The maximum ECL emission of the LPA-AgNCs/N2H4 system is located ca. +1.27 V. Upon immobilizing LPA-AgNCs onto the electrode surface via forming a sandwich immunocomplex, the ECL of LPA-AgNCs/N2H4 can be utilized to sensitively and selectively determine human carcinoembryonic antigen from 0.5 to 1000 pg/mL with a low limit of detection of 0.1 pg/mL (S/N = 3). This work might open a way to screen electrochemiluminophores for the multiple ECL immunoassay in a potential-resolved way.
Collapse
Affiliation(s)
- Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhijian Tian
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaoxuan Ren
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yaojia Ai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
6
|
Zhu H, Zhou JL, Ma C, Jiang D, Cao Y, Zhu JJ. Self-Enhanced Electrochemiluminescence Imaging System Based on the Accelerated Generation of ROS under Ultrasound. Anal Chem 2023. [PMID: 37463345 DOI: 10.1021/acs.analchem.3c02183] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Electrochemiluminescence (ECL) imaging, as an optical technology, has been developed at full tilt in the field of life science and nanomaterials. However, the relatively low ECL intensity or the high co-reactant concentration needed in the electrochemical reaction blocks its practical application. Here, we developed an ECL imaging system based on the rGO-TiO2-x composite material, where the co-reactant, reactive oxygen species (ROS), is generated in situ under the synergetic effect of of ultrasound (US) and electric irradiation. The rGO-TiO2-x composites facilitate the separation of electron (e-) and hole (h+) pairs and inhibit recombination triggered by external US irradiation due to the high electroconductivity of rGO and oxygen-deficient structures of TiO2, thus significantly boosting ROS generation. Furthermore, the increased defects on rGO accelerate the electron transfer rate, improving the electrocatalytic performance of the composite and forming more ROS. This high ultrasonic-electric synergistic efficacy is demonstrated through the enhancement of photon emission. Compared with the luminescence intensity triggered by US irradiation and electric field, an enhancement of ∼20-fold and 10-fold of the US combined with electric field-triggered emission is observed from this composite. Under the optimized conditions, using dopamine (DA) as a model target, the sensitivity of the US combined ECL strategy for detection of DA is two orders of magnitude higher than that of the ECL method. The successful detection of DA at low concentrations makes us believe that this strategy provides the possibility of applying ECL imaging for cellular single-molecule analysis and cancer therapy.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jia-Lin Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yue Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210046, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Sun H, Zhou P, Su B. Electrochemiluminescence of Semiconductor Quantum Dots and Its Biosensing Applications: A Comprehensive Review. BIOSENSORS 2023; 13:708. [PMID: 37504107 PMCID: PMC10377090 DOI: 10.3390/bios13070708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Electrochemiluminescence (ECL) is the chemiluminescence triggered by electrochemical reactions. Due to the unique excitation mode and inherent low background, ECL has been a powerful analytical technique to be widely used in biosensing and imaging. As an emerging ECL luminophore, semiconductor quantum dots (QDs) have apparent advantages over traditional molecular luminophores in terms of luminescence efficiency and signal modulation ability. Therefore, the development of an efficient ECL system with QDs as luminophores is of great significance to improve the sensitivity and detection flux of ECL biosensors. In this review, we give a comprehensive summary of recent advances in ECL using semiconductor QDs as luminophores. The luminescence process and ECL mechanism of semiconductor QDs with various coreactants are discussed first. Specifically, the influence of surface defects on ECL performance of semiconductor QDs is emphasized and several typical ECL enhancement strategies are summarized. Then, the applications of semiconductor QDs in ECL biosensing are overviewed, including immunoassay, nucleic acid analysis and the detection of small molecules. Finally, the challenges and prospects of semiconductor QDs as ECL luminophores in biosensing are featured.
Collapse
Affiliation(s)
- Hui Sun
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ping Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Ye Z, Liu Y, Pan M, Tao X, Chen Y, Ma P, Zhuo Y, Song D. AgInZnS quantum dots as anodic emitters with strong and stable electrochemiluminescence for biosensing application. Biosens Bioelectron 2023; 228:115219. [PMID: 36913885 DOI: 10.1016/j.bios.2023.115219] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Quantum dots (QDs) have become promising electrochemiluminescence (ECL) emitters with high quantum yield and size-tunable luminescence. However, most QDs generate strong ECL emission at the cathode, developing anodic ECL-emitting QDs with excellent performance is challenging. In this work, low-toxic quaternary AgInZnS QDs synthesized by a one-step aqueous phase method were used as novel anodic ECL emitters. AgInZnS QDs exhibited strong and stable ECL emission and a low excitation potential, which could avoid the side reaction of oxygen evolution. Furthermore, AgInZnS QDs displayed high ECL efficiency (ΦECL) of 5.84, taking the ΦECL of Ru(bpy)32+/tripropylamine (TPrA) ECL system as 1. Compared to AgInS2 QDs without Zn doping and traditional anode luminescent CdTe QDs, the ECL intensity of AgInZnS QDs was 1.62 times and 3.64 times higher than that of AgInS2 QDs and CdTe QDs, respectively. As a proof-of-concept, we further designed an "on-off-on" ECL biosensor for detecting microRNA-141 based on a dual isothermal enzyme-free strand displacement reaction (SDR), which not only to achieve the cyclic amplification of the target and ECL signal, but also to construct a switch of the biosensor. The ECL biosensor had a wide linear range from 100 aM to 10 nM with a low detection limit of 33.3 aM. Together, the constructed ECL sensing platform is a promising tool for rapid and accurate diagnosis of clinical diseases.
Collapse
Affiliation(s)
- Zhuoxin Ye
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Yibing Liu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Meichen Pan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xiuli Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yuxuan Chen
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
9
|
Gao X, Ren X, Ai Y, Li M, Zhang B, Zou G. Luminophore-Surface-Engineering-Enabled Low-Triggering-Potential and Coreactant-Free Electrochemiluminescence for Protein Determination. Anal Chem 2023; 95:6948-6954. [PMID: 37083347 DOI: 10.1021/acs.analchem.3c00250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Coreactant-free electrochemiluminescence (ECL) is promising for removing the exogenous effects of coreactant and simplify the operation procedures and setups of commercialized ECL bioassays. Herein, an electrosterically involved strategy for achieving a low-triggering-potential (+0.21 V vs Ag/AgCl) and coreactant-free ECL from dual-stabilizer-capped CdTe nanocrystals (NCs) is proposed with mercaptopropionic acid (MPA) and hexametaphosphate (HMP) as the capping agents of luminophores. Upon employing the CdTe NCs as the ECL tag for the immunoassay, all the tags in the bioconjugates of the CdTe NCs and the secondary antibody (Ab2|CdTe) as well as in the final achieved sandwich-type immunocomplexes can exhibit efficient coreactant-free ECL with an electrosterically involved triggering potential nature. The bioconjugates of Ab2|CdTe with Ab2 no more than 30 kDa, such as the thyroid stimulating hormone (30 kDa) and the recombinant pro-gastrin releasing peptide (ProGRP, 14 kDa), merely exhibit coreactant-free ECL around +0.24 V, while bioconjugates of Ab2|CdTe with an Ab2 beyond 30 kDa only give off coreactant-free ECL around +0.82 V. Due to the further enhanced electrosteric effect in sandwich-type immunocomplexes, only the ECL immunosensor with ProGRP as the target can give off coreactant-free ECL around +0.24 V. The electrosterically involved and coreactant-free ECL of CdTe NCs is consequently utilized to sensitively and selectively determine the molecular protein ProGRP, which demonstrates a wide linearity range from 0.1 to 2000 pg/mL and a low limit of detection at 0.05 pg/mL (S/N = 3). This low-triggering-potential and coreactant-free combined ECL platform indicates that engineering the surface of CdTe NCs with a protein can improve the performance of ECL tags in a protein-weight-involved electrosterical way.
Collapse
Affiliation(s)
- Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaoxuan Ren
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yaojia Ai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Mengwei Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
10
|
Wang C, Liu S, Ju H. Electrochemiluminescence nanoemitters for immunoassay of protein biomarkers. Bioelectrochemistry 2023; 149:108281. [PMID: 36283193 DOI: 10.1016/j.bioelechem.2022.108281] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
The family of electrochemiluminescent luminophores has witnessed quick development since the electrochemiluminescence (ECL) phenomenon of silicon nanoparticles was first reported in 2002. Moreover, these developed ECL nanoemitters have extensively been applied in sensitive detection of protein biomarker by combining with immunological recognition. This review firstly summarized the origin and development of various ECL nanoemitters including inorganic and organic nanomaterials, with an emphasis on metal-organic frameworks (MOFs)-based ECL nanoemitters. Several effective strategies to amplify the ECL response of nanoemitters and improve the sensitivity of immunosensing were discussed. The application of ECL nanoemitters in immunoassay of protein biomarkers for diagnosis of cancers and other diseases, especially lung cancer and heart diseases, was comprehensively presented. The recent development of ECL imaging with the nanoemitters as ECL tags for detection of multiplex protein biomarkers on single cell membrane also attracted attention. Finally, the future opportunities and challenges in the ECL biosensing field were highlighted.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
11
|
Feng Y, Wang N, Ju H. Electrochemiluminescence biosensing and bioimaging with nanomaterials as emitters. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Wang D, Liu X, Zeng Y, Zhang Q, Zhang B, Zou G. Low-Triggering-Potential Single-Color Electrochemiluminescence from Bovine Serum Albumin-Stabilized Unary Au Nanocrystals for Immunoassays. Anal Chem 2022; 94:11688-11694. [PMID: 35943953 DOI: 10.1021/acs.analchem.2c02474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, low-triggering-potential (LTP) electrochemiluminescence (ECL) with an onset around 0.0 V (vs Ag/AgCl) is proposed with bovine serum albumin (BSA)-stabilized Au nanocrystals (BSA-AuNCs) as a luminophore and hydrazine hydrate (N2H4) as a coreactant. The BSA-AuNCs/N2H4 system can exhibit efficient LTP-ECL around 0.37 V with the luminophore of both monodispersed and surface-confined states. The LTP-ECL of BSA-AuNCs/N2H4 is a kind of single-color emission with a maximum emission wavelength around 740 nm, which is obviously red-shifted for 80 nm from that of BSA-AuNCs PL, and indicates that the ECL is generated in a surface-defect-involved route instead of the band-gap-engineered route. Importantly, BSA-AuNCs can be utilized as ECL tags to perform sandwich-type immunoassays with acceptable sensitivity and selectivity, which exhibits a wide linear response for determining CA125 from 0.5 to 1000 mU/mL and a limit of detection of 0.05 mU/mL (S/N = 3).
Collapse
Affiliation(s)
- Dongyang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiancheng Liu
- Shenzhen Lifotronic Technology Company Limited, No. 1008 Songbai Road, Nanshan District, Shenzhen 518055, P. R. China
| | - Ying Zeng
- Shenzhen Lifotronic Technology Company Limited, No. 1008 Songbai Road, Nanshan District, Shenzhen 518055, P. R. China
| | - Qingqing Zhang
- Shenzhen Lifotronic Technology Company Limited, No. 1008 Songbai Road, Nanshan District, Shenzhen 518055, P. R. China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
13
|
Xiang W, Luo Y, Yue Y, Ding H, Dong Y. Inhibiting effect of molybdenum disulfide nanosheets on cathodic Ru(bpy)32+ electrochemiluminescence in ionic liquids and its sensing application. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Quantum dots for electrochemiluminescence bioanalysis - A review. Anal Chim Acta 2022; 1209:339140. [PMID: 35569860 DOI: 10.1016/j.aca.2021.339140] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
Electrochemiluminescence (ECL) bioanalysis has become increasingly important in various fields from bioanalysis to clinical diagnosis due to its outstanding merits, including low background signal, high sensitivity, and simple instrumentation. Quantum dots (QDs) are a significant theme in ECL bioanalysis since their excellent optical, electrochemical properties, and ease of functionalization endow them with versatile roles and new mechanisms of signal transduction in ECL. Herein, this review details recent advances of QDs-based ECL bioanalysis by using QDs as ECL emitters, coreactants, or ECL resonance energy transfer donors/acceptors, mainly focused on their optical and electrochemical properties and ECL reaction mechanism. In the end, we will discuss the current limitations and future developments in QDs ECL bioanalysis to address the requirement about selectivity, sensitivity, toxicity, and emerging applications.
Collapse
|
15
|
Wang Z, Guo H, Luo Z, Duan Y, Feng Y. Low-Triggering-Potential Electrochemiluminescence from a Luminol Analogue Functionalized Semiconducting Polymer Dots for Imaging Detection of Blood Glucose. Anal Chem 2022; 94:5615-5623. [PMID: 35352933 DOI: 10.1021/acs.analchem.1c05377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, semiconducting polymer dots (Pdots) as environmentally friendly and high-brightness electrochemiluminescence (ECL) nanoemitters have attracted intense attention in ECL biosensing and imaging. However, most of the available Pdots have a high ECL excitation potential in the aqueous phase (>1.0 V vs Ag/AgCl), which causes poor selectivity in actual sample detection. Therefore, it is particularly important to construct a simple and universal strategy to lower the trigger potential of Pdots. This work has realized the ECL emission of Pdots at low-trigger-potential based on the electrochemiluminescence resonance energy transfer (ERET) strategy. By covalently coupling the Pdots with a luminol analogue, N-(4-aminobutyl)-N-ethylisoluminol (ABEI), the ABEI-Pdots showed an anodic ECL emission with a low onset potential of +0.34 V and a peak potential at +0.45 V (vs Ag/AgCl), which was the lowest trigger potential reported so far. We further explored this low-triggering-potential ECL for imaging detection of glucose in buffer and serum. By imaging the ABEI-Pdots-modified screen-printed electrodes (SPCE) at +0.45 V for 16 s, the ECL imaging method could quantify the glucose concentration in buffer from 10 to 200 μM with detection limits of 3.3 μM, while exhibiting excellent selectivity. When applied to real serum, the results of our method were highly consistent with a commercial blood glucose meter, with the relative errors ranging from 3.2 to 13%. This work provided a universal strategy for constructing low potential Pdots and demonstrated its application potential in complex biological sample analysis.
Collapse
Affiliation(s)
- Zhuanzhuan Wang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Haijing Guo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Yaqiang Feng
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| |
Collapse
|
16
|
Dong S, Gao X, Fu L, Jia J, Zou G. Low-Triggering-Potential Electrochemiluminescence from Surface-Confined CuInS 2@ZnS Nanocrystals and their Biosensing Applications. Anal Chem 2021; 93:12250-12256. [PMID: 34463494 DOI: 10.1021/acs.analchem.1c01601] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Electrochemiluminescence (ECL) of low triggering potential is strongly anticipated for ECL assays with less inherent electrochemical interference and improved long-term stability of the working electrode. Herein, effects of the thiol capping agents and the states of luminophores, i.e., the thiol-capped CuInS2@ZnS nanocrystals (CuInS2@ZnS-Thiol), on the ECL triggering potential of CuInS2@ZnS-Thiol/N2H4·H2O were explored on the Au working electrode. The thiol capping agent of glutathione (GSH) not only enabled CuInS2@ZnS-Thiol/N2H4·H2O with the stronger oxidative-reduction ECL than other thiol capping agents but also demonstrated the largest shift for the ECL triggering potential of CuInS2@ZnS-Thiol/N2H4·H2O upon changing the luminophores from the monodispersed state to the surface-confined state. CuInS2@ZnS-GSH/N2H4·H2O exhibited an efficient oxidative-reduction ECL around 0.78 V (vs Ag/AgCl) with CuInS2@ZnS-GSH of the monodispersed state. Upon employing CuInS2@ZnS-GSH as the ECL tag and immobilizing them onto the Au working electrode, the oxidative-reduction ECL of CuInS2@ZnS-GSH/N2H4·H2O was lowered to 0.32 V (vs Ag/AgCl), which was about 0.88 V lower than that of traditional Ru(bpy)32+/TPrA (typically ∼1.2 V, vs Ag/AgCl). The ECL of the CuInS2@ZnS-GSH/N2H4·H2O system with the luminophore of both monodispersed and surface-confined states was spectrally identical to each other, indicating that this surface-confining strategy exhibited negligible effect on the excited state for the ECL of CuInS2@ZnS-GSH. A surface-confined ECL sensor around 0.32 V was fabricated with CuInS2@ZnS-GSH as a luminophore, which could sensitively and selectively determine the K-RAS gene from 1 to 500 pM with a limit of detection at 0.5 pmol L-1 (S/N = 3).
Collapse
Affiliation(s)
- Shuangtian Dong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Li Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jingna Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
17
|
Fu L, Zhang B, Fu K, Gao X, Zou G. Electrochemically Lighting Up Luminophores at Similar Low Triggering Potentials with Mechanistic Insights. Anal Chem 2020; 92:6144-6149. [PMID: 32207298 DOI: 10.1021/acs.analchem.0c00819] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrochemiluminescence (ECL) with high electrode compatibility and less electrochemical interference has conventionally been envisioned by lowering the oxidative potential of luminophores and/or screening luminophores with a low oxidative potential. Herein, an alternative was developed by employing the environmental-friendly carbohydrazide as a coreactant, which enabled serial luminophores with oxidative-reduction ECL at one similar low triggering potential around 0.55 V versus Ag/AgCl, including Ru(bpy)32+ as well as CdTe, CdSe, CuInS2/ZnS, and Au nanocrystals. Because the eight-electron releasing process of carbohydrazide was electrochemically triggered at ∼0.25 V versus Ag/AgCl, the radicals generated via electrochemical oxidation of carbohydrazide could reduce the luminophores at a much lower potential than those of traditional coreactants. All the luminophore/carbohydrazide systems exhibited one ECL process around 0.55 V, which was about 0.65 V lower than that of a traditional Ru(bpy)32+/tri-n-propylamine system (typically around +1.2 V), and even lower than the oxidative potential of some luminophores. The ECL of the luminophore/carbohydrazide system was spectrally close to that of the corresponding luminophore/tri-n-propylamine system; the maximum emission wavelength of the low triggering potential ECL could shift from 540 to 783 nm via the selection of luminophores in this case. The coreactant screening strategy would be a favorable addition to the expected luminophore screening strategy for achieving enhanced ECL performance. This work created an avenue toward a deeper understanding of the ECL mechanism.
Collapse
Affiliation(s)
- Li Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Kena Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
18
|
Chen L, Kang Q, Li Z, Zhang B, Zou G, Shen D. Tunable electrochemiluminescence properties of CsPbBr3perovskite nanocrystals using mixed-monovalent cations. NEW J CHEM 2020. [DOI: 10.1039/c9nj05665c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, we demonstrate a simple approach for tuning the elecrochemiluminescence (ECL) properties of CsPbBr3perovskite nanocrystals by using mixed-monovalent cations.
Collapse
Affiliation(s)
- Lu Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Qi Kang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Zhe Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bin Zhang
- School of Chemistry and Chemical Engineering
- Jinan
- China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering
- Jinan
- China
| | - Dazhong Shen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
19
|
Husain RA, Barman SR, Chatterjee S, Khan I, Lin ZH. Enhanced biosensing strategies using electrogenerated chemiluminescence: recent progress and future prospects. J Mater Chem B 2020; 8:3192-3212. [DOI: 10.1039/c9tb02578b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of enhancement strategies for highly sensitive ECL-based sensing of bioanalytes enabling early detection of cancer.
Collapse
Affiliation(s)
- Rashaad A. Husain
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Snigdha Roy Barman
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Subhodeep Chatterjee
- Department of Power Mechanical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Imran Khan
- Institute of NanoEngineering and MicroSystems
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Zong-Hong Lin
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
- Department of Power Mechanical Engineering
| |
Collapse
|
20
|
Saqib M, Bashir S, Kitte SA, Li H, Jin Y. Acridine orange as a coreactant for efficient electrogenerated chemiluminescence of tris(2,2′-bipyridine)ruthenium(ii) and its use in selective and sensitive detection of thiourea. Chem Commun (Camb) 2020; 56:5154-5157. [DOI: 10.1039/d0cc01273d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduced a novel coreactant for efficient anodic electrochemiluminescence of Ru(bpy)32+ and applied it for the sensitive detection of thiourea for the first time.
Collapse
Affiliation(s)
- Muhammad Saqib
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Shahida Bashir
- Faculty of Science
- Department of Mathematics
- University of Gujrat
- Gujrat 50700
- Pakistan
| | - Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
21
|
Li Z, Wu S, Zhang B, Fu L, Zou G. Promising Mercaptobenzoic Acid-Bridged Charge Transfer for Electrochemiluminescence from CuInS 2@ZnS Nanocrystals via Internal Cu +/Cu 2+ Couple Cycling. J Phys Chem Lett 2019; 10:5408-5413. [PMID: 31464133 DOI: 10.1021/acs.jpclett.9b02400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Screening novel electrochemiluminescence (ECL) systems with less inherent interference is strongly anticipated for ECL evolution. Herein, near-infrared ECL (∼730 nm) with an ultralow triggering potential of 0.45 V (vs Ag/AgCl) is achieved under physiological conditions with 4-mercaptobenzoic acid (MBA) and citrate capped CuInS2@ZnS (CIS@ZnS) nanocrystals (NCs), which is promising for less autofluorescence and electrochemical interference. Cu+ species within the CIS@ZnS NCs can be electrochemically oxidized at 0.45 V to form internal Cu2+ defects, while the capping agent MBA can bridge a direct charge transfer between the oxidized NCs and the traditional coreactant tripropylamine (TPrA) for weak ECL at 0.45 V. When hydrazine hydrate is adopted as coreactant, CIS@ZnS NCs/hydrazine hydrate exhibits 8k-fold enhanced oxidative-reduction ECL via the internal Cu+/Cu2+ couple cycling at 0.45 V in comparison to CIS@ZnS NCs/TPrA. This work opens a way to enhance the radiative charge transfer of NCs.
Collapse
Affiliation(s)
- Zhipeng Li
- School of Chemistry , Dalian University of Technology , Dalian 116023 , China
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , China
| | - Shuo Wu
- School of Chemistry , Dalian University of Technology , Dalian 116023 , China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , China
| | - Li Fu
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , China
| |
Collapse
|
22
|
Saqib M, Bashir S, Li H, Li C, Wang S, Jin Y. Efficient Electrogenerated Chemiluminescence of Tris(2,2′-bipyridine)ruthenium(II) with N-Hydroxysulfosuccinimide as a Coreactant for Selective and Sensitive Detection of l-Proline and Mercury(II). Anal Chem 2019; 91:12517-12524. [DOI: 10.1021/acs.analchem.9b03314] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Muhammad Saqib
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Shahida Bashir
- Faculty of Science, Department of Mathematics, University of Gujrat, Gujrat 50700, Pakistan
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Chuanping Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Shanshan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
23
|
Gooneh-Farahani S, Naimi-Jamal MR, Naghib SM. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: a review. Expert Opin Drug Deliv 2018; 16:79-99. [PMID: 30514124 DOI: 10.1080/17425247.2019.1556257] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Recently, the use of chitosan (CS) in the drug delivery has reached an acceptable maturity. Graphene-based drug delivery is also increasing rapidly due to its unique physical, mechanical, chemical, and electrical properties. Therefore, the combination of CS and graphene can provide a promising carrier for the loading and controlled release of therapeutic agents. AREAS COVERED In this review, we will outline the advantages of this new drug delivery system (DDS) in association with CS and graphene alone and will list the various forms of these carriers, which have been studied in recent years as DDSs. Finally, we will discuss the application of this hybrid composite in other fields. EXPERT OPINION The introducing the GO amends the mechanical characteristics of CS, which is a major problem in the use of CS-based carriers in drug delivery due to burst release in a CS-based controlled release system through the poor mechanical strength of CS. Many related research on this area are still not fully unstated and occasionally they seem inconsistent in spite of the intent to be complementary. Therefore, a sensitive review may be needed to understand the role of graphene in CS/graphene carriers for future drug delivery applications.
Collapse
Affiliation(s)
- Sahar Gooneh-Farahani
- a Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department , Iran University of Science and Technology (IUST) , Tehran , Iran
| | - M Reza Naimi-Jamal
- a Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department , Iran University of Science and Technology (IUST) , Tehran , Iran
| | - Seyed Morteza Naghib
- b Nanotechnology Department, School of New Technologies , Iran University of Science and Technology (IUST) , Tehran , Iran
| |
Collapse
|
24
|
Cai XL, Zheng B, Zhou Y, Younis MR, Wang FB, Zhang WM, Zhou YG, Xia XH. Synergistically mediated enhancement of cathodic and anodic electrochemiluminescence of graphene quantum dots through chemical and electrochemical reactions of coreactants. Chem Sci 2018; 9:6080-6084. [PMID: 30079221 PMCID: PMC6053899 DOI: 10.1039/c8sc02110d] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 06/17/2018] [Indexed: 11/29/2022] Open
Abstract
A dual potential electrochemiluminescence (ECL) enhancement of graphene quantum dots is achieved through chemical and electrochemical reactions of two different coreactants.
We for the first time propose a new concept where a greater enhancement in dual potential electrochemiluminescence (ECL) of a single graphene quantum dot (GQD) emitter can be achieved through the coupling between chemical and electrochemical reactions of two different coreactants of K2S2O8 and Na2SO3.
Collapse
Affiliation(s)
- Xiao-Li Cai
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China .
| | - Bo Zheng
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China .
| | - Yue Zhou
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China .
| | - Muhammad Rizwan Younis
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China .
| | - Feng-Bin Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China .
| | - Wen-Min Zhang
- Institute of Chemical Biology and Nanomedicine , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China .
| | - Yi-Ge Zhou
- Institute of Chemical Biology and Nanomedicine , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China .
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China .
| |
Collapse
|
25
|
Long X, Zhang F, He Y, Hou S, Zhang B, Zou G. Promising Anodic Electrochemiluminescence of Nontoxic Core/Shell CuInS 2/ZnS Nanocrystals in Aqueous Medium and Its Biosensing Potential. Anal Chem 2018; 90:3563-3569. [PMID: 29417813 DOI: 10.1021/acs.analchem.8b00006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Copper indium sulfide (CuInS2, CIS) nanocrystals (NCs) are a promising solution to the toxic issue of Cd- and Pb-based NCs. Herein, electrochemiluminescence (ECL) of CIS NCs in aqueous medium is investigated for the first time with l-glutathione and sodium citrate-stabilized water-soluble CIS/ZnS NCs as model. The CIS/ZnS NCs can be oxidized to hole-injected states via electrochemically injecting holes into valence band at 0.55 and 0.94 V (vs Ag/AgCl), respectively. The hole-injected state around 0.94 V can bring out efficient oxidative-reduction ECL with a similar color to Ru(bpy)32+ in the presence of tri- n-propylamine (TPrA) and enable CIS/ZnS NCs promising ECL tags with l-glutathione as linker for labeling. The ECL of CIS/ZnS NCs/TPrA can be utilized to determine vascular endothelial growth factor (VEGF) from 0.10 to 1000 pM with the limit of detection at 0.050 pM (S/N = 3). Although the hole-injected state around 0.55 V is generated ahead of oxidation of TPrA and fails to bring out coreactant ECL, annihilation ECL proves that both hole-injected states generated, at 0.55 and 0.94 V, can be involved in electrochemical redox-induced radiative charge transfer by directly stepping CIS/ZnS NCs from electron-injecting potential to hole-injecting potential. CIS/ZnS NCs are promising nontoxic electrochemiluminophores with lowered ECL triggering potential around 0.55 V for less electrochemical interference upon the development of coreactant.
Collapse
|
26
|
Abdelhamid HN, Wu HF. Selective biosensing of Staphylococcus aureus using chitosan quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:50-56. [PMID: 28689078 DOI: 10.1016/j.saa.2017.06.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 05/29/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Selective biosensing of Staphylococcus aureus (S. aureus) using chitosan modified quantum dots (CTS@CdS QDs) in the presence of hydrogen peroxide is reported. The method is based on the intrinsic positive catalase activity of S. aureus. CTS@CdS quantum dots provide high dispersion in aqueous media with high fluorescence emission. Staphylococcus aureus causes a selective quenching of the fluorescence emission of CTS@CdS QDs in the presence of H2O2 compared to other pathogens such as Escherichia coli and Pseudomonas aeruginosa. The intrinsic enzymatic character of S. aureus (catalase positive) offers selective and fast biosensing. The present method is highly selective for positive catalase species and requires no expensive reagents such as antibodies, aptamers or microbeads. It could be extended for other species that are positive catalase.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 800, Taiwan; Department of Chemistry, Assuit University, Assuit 71515, Egypt
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 800, Taiwan; Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung 80424, Taiwan; Institue of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
27
|
Self-electrochemiluminescent CdTe quantum dots: one-pot synthesis, characterization, and electrochemical properties. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3845-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Zhu S, Lin X, Ran P, Mo F, Xia Q, Fu Y. A glassy carbon electrode modified with C-dots and silver nanoparticles for enzymatic electrochemiluminescent detection of glutamate enantiomers. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2515-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Benoit L, Choi JP. Electrogenerated Chemiluminescence of Semiconductor Nanoparticles and Their Applications in Biosensors. ChemElectroChem 2017. [DOI: 10.1002/celc.201700219] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lora Benoit
- Department of Chemistry; California State University, Fresno; 2555 San Ramon Avenue M/S SB70 Fresno CA 93740 USA
| | - Jai-Pil Choi
- Department of Chemistry; California State University, Fresno; 2555 San Ramon Avenue M/S SB70 Fresno CA 93740 USA
| |
Collapse
|
30
|
Zhang R, Shao M, Han X, Wang C, Li Y, Hu B, Pang D, Xie Z. ATP synthesis in the energy metabolism pathway: a new perspective for manipulating CdSe quantum dots biosynthesized in Saccharomyces cerevisiae. Int J Nanomedicine 2017; 12:3865-3879. [PMID: 28579774 PMCID: PMC5446969 DOI: 10.2147/ijn.s132719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Due to a growing trend in their biomedical application, biosynthesized nanomaterials are of great interest to researchers nowadays with their biocompatible, low-energy consumption, economic, and tunable characteristics. It is important to understand the mechanism of biosynthesis in order to achieve more efficient applications. Since there are only rare studies on the influences of cellular energy levels on biosynthesis, the influence of energy is often overlooked. Through determination of the intracellular ATP concentrations during the biosynthesis process, significant changes were observed. In addition, ATP synthesis deficiency caused great decreases in quantum dots (QDs) biosynthesis in the Δatp1, Δatp2, Δatp14, and Δatp17 strains. With inductively coupled plasma-atomic emission spectrometry and atomic absorption spectroscopy analyses, it was found that ATP affected the accumulation of the seleno-precursor and helped with the uptake of Cd and the formation of QDs. We successfully enhanced the fluorescence intensity 1.5 or 2 times through genetic modification to increase ATP or SeAM (the seleno analog of S-adenosylmethionine, the product that would accumulate when ATP is accrued). This work explains the mechanism for the correlation of the cellular energy level and QDs biosynthesis in living cells, demonstrates control of the biosynthesis using this mechanism, and thus provides a new manipulation strategy for the biosynthesis of other nanomaterials to widen their applications.
Collapse
Affiliation(s)
- Rong Zhang
- Hubei Key Laboratory of Cell Homeostasis
- College of Life Sciences, Wuhan University
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
| | - Ming Shao
- Hubei Key Laboratory of Cell Homeostasis
- College of Life Sciences, Wuhan University
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
| | - Xu Han
- Hubei Key Laboratory of Cell Homeostasis
- College of Life Sciences, Wuhan University
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
| | - Chuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, People’s Republic of China
| | - Yong Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, People’s Republic of China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, People’s Republic of China
| | - Daiwen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, People’s Republic of China
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis
- College of Life Sciences, Wuhan University
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
| |
Collapse
|
31
|
Zhai Q, Li J, Wang E. Recent Advances Based on Nanomaterials as Electrochemiluminescence Probes for the Fabrication of Sensors. ChemElectroChem 2017. [DOI: 10.1002/celc.201600898] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qingfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 China
| |
Collapse
|
32
|
Lou F, Lu Z, Hu F, Li CM. A 3D bio-platform constructed by glucose oxidase adsorbed on Au nanoparticles assembled polyaniline nanowires to sensitively detect glucose by electrochemiluminescence. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Han TT, Dong H, Ren LL, Bao N, Wu W, Ding SN. Self-electrochemiluminescence of CdTe nanocrystals capped with 2-diethylaminoethanethiol. Chem Commun (Camb) 2017; 53:5388-5391. [PMID: 28462967 DOI: 10.1039/c7cc01955f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-electrochemiluminescence of CdTe nanocrystals capped with 2-diethylaminoethanethiol was achieved via protective reagent exchange.
Collapse
Affiliation(s)
- Ting-Ting Han
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Hao Dong
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Lu-Lu Ren
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| | - Ning Bao
- School of Public Health
- Nantong University
- 226019 Nantong
- China
| | - Wenzhuo Wu
- School of Industrial Engineering
- Purdue University
- West Lafayette
- USA
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- China
| |
Collapse
|
34
|
Chen H, Li W, Wang Q, Jin X, Nie Z, Yao S. Nitrogen doped graphene quantum dots based single-luminophor generated dual-potential electrochemiluminescence system for ratiometric sensing of Co2+ ion. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
An ultrasensitive electrogenerated chemiluminescence-based immunoassay for specific detection of Zika virus. Sci Rep 2016; 6:32227. [PMID: 27554037 PMCID: PMC4995374 DOI: 10.1038/srep32227] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/04/2016] [Indexed: 01/21/2023] Open
Abstract
Zika virus (ZIKV) is a globally emerging mosquito-transmitted flavivirus that can cause severe fetal abnormalities, including microcephaly. As such, highly sensitive, specific, and cost-effective diagnostic methods are urgently needed. Here, we report a novel electrogenerated chemiluminescence (ECL)-based immunoassay for ultrasensitive and specific detection of ZIKV in human biological fluids. We loaded polystyrene beads (PSB) with a large number of ECL labels and conjugated them with anti-ZIKV monoclonal antibodies to generate anti-ZIKV-PSBs. These anti-ZIKV-PSBs efficiently captured ZIKV in solution forming ZIKV-anti-ZIKV-PSB complexes, which were subjected to measurement of ECL intensity after further magnetic beads separation. Our results show that the anti-ZIKV-PSBs can capture as little as 1 PFU of ZIKV in 100 μl of saline, human plasma, or human urine. This platform has the potential for development as a cost-effective, rapid and ultrasensitive assay for the detection of ZIKV and possibly other viruses in clinical diagnosis, epidemiologic and vector surveillance, and laboratory research.
Collapse
|
36
|
Yang Y, Wu W, Wang Q, Xiao H, Kuang Y, Liu C. Novel anodic electrochemiluminescence system of Pt nanocluster/graphene hybrids for ultrasensitive detection of Cu 2+. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.04.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Hildebrandt N, Spillmann CM, Algar WR, Pons T, Stewart MH, Oh E, Susumu K, Díaz SA, Delehanty JB, Medintz IL. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chem Rev 2016; 117:536-711. [DOI: 10.1021/acs.chemrev.6b00030] [Citation(s) in RCA: 457] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Niko Hildebrandt
- NanoBioPhotonics
Institut d’Electronique Fondamentale (I2BC), Université Paris-Saclay, Université Paris-Sud, CNRS, 91400 Orsay, France
| | | | - W. Russ Algar
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Thomas Pons
- LPEM;
ESPCI Paris, PSL Research University; CNRS; Sorbonne Universités, UPMC, F-75005 Paris, France
| | | | - Eunkeu Oh
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Kimihiro Susumu
- Sotera Defense Solutions, Inc., Columbia, Maryland 21046, United States
| | - Sebastian A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | |
Collapse
|
38
|
Li QL, Ding SN. Multicolor electrochemiluminescence of core-shell CdSe@ZnS quantum dots based on the size effect. Sci China Chem 2016. [DOI: 10.1007/s11426-016-5576-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Zhou W, Cao Y, Sui D, Lu C. Radical Pair-Driven Luminescence of Quantum Dots for Specific Detection of Peroxynitrite in Living Cells. Anal Chem 2016; 88:2659-65. [DOI: 10.1021/acs.analchem.5b03827] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wenjuan Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuqing Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dandan Sui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
40
|
Liu H, Zhang L, Li M, Yan M, Xue M, Zhang Y, Su M, Yu J, Ge S. Electrochemiluminescent molecular logic gates based on MCNTs for the multiplexed analysis of mercury(ii) and silver(i) ions. RSC Adv 2016. [DOI: 10.1039/c6ra02531e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, logic gates with electrochemiluminescence (ECL) signal as outputs were constructed based on the use of the thymine (T)-rich (S1) or cytosine (C)-rich (S2) oligonucleotides for the selective analysis of mercury ions (Hg2+) or silver ions (Ag+).
Collapse
Affiliation(s)
- Haiyun Liu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan 250022
- P. R. China
| | - Meng Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Mei Yan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Mei Xue
- College of Chemistry
- Chemical Engineering and Materials Science
- Shandong Normal University
- Jinan
- P. R. China
| | - Yan Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Min Su
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Shenguang Ge
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
41
|
Feng Y, Dai C, Lei J, Ju H, Cheng Y. Silole-Containing Polymer Nanodot: An Aqueous Low-Potential Electrochemiluminescence Emitter for Biosensing. Anal Chem 2015; 88:845-50. [DOI: 10.1021/acs.analchem.5b03391] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yaqiang Feng
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Chunhui Dai
- Key
Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianping Lei
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yixiang Cheng
- Key
Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
42
|
Shang Q, Zhou Z, Shen Y, Zhang Y, Li Y, Liu S, Zhang Y. Potential-Modulated Electrochemiluminescence of Carbon Nitride Nanosheets for Dual-Signal Sensing of Metal Ions. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23672-23678. [PMID: 26436898 DOI: 10.1021/acsami.5b07405] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As an emerging semiconductor, graphite-phase polymeric carbon nitride (GPPCN) has drawn much attention not only in photocatalysis but also in optical sensors such as electrochemiluminescence (ECL) sensing of metal ions. However, when the concentrations of interfering metal ions are several times higher than that of the target metal ion, it is almost impossible to distinguish which metal ion changes the ECL signals in real sample detection. Herein, we report that the dual-ECL signals could be actuated by different ECL reactions merely from GPPCN nanosheets at anodic and cathodic potentials, respectively. Interestingly, the different metal ions exhibited distinct quenching/enhancement of the ECL signal at different driven potentials, presumably ascribed to the diversity of energy-level matches between the metal ions and GPPCN nanosheets and catalytic interactions of the intermediate species in ECL reactions. On this basis, without any labeling and masking reagents, the accuracy and reliability of sensors based on the ECL of GPPCN nanosheets toward metal ions were largely improved; thus, the false-positive result caused by interferential metal ions could be effectively avoided. As an example, the proposed GPPCN ECL sensor with a detection limit of 1.13 nM was successfully applied for the detection of trace Ni(2+) ion in tap and lake water.
Collapse
Affiliation(s)
- Qiuwei Shang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Zhixin Zhou
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Yanfei Shen
- Medical School, Southeast University , Nanjing 210009, China
| | - Yuye Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Ying Li
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Songqin Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| | - Yuanjian Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, China
| |
Collapse
|
43
|
Yan P, Zhang J, Tang Q, Deng A, Li J. A quantum dot based electrochemiluminescent immunosensor for the detection of pg level phenylethanolamine A using gold nanoparticles as substrates and electron transfer accelerators. Analyst 2015; 139:4365-72. [PMID: 25011489 DOI: 10.1039/c4an00378k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study reports the development of an electrochemiluminescent (ECL) immunosensor for ultrasensitive detection of phenylethanolamine A (PA) based on CdSe quantum dots (QDs) and gold nanoparticles (GNPs). The GNPs/ovalbumin-PA/anti-PA-QD immunosensor was fabricated layer by layer using GNPs as substrates and electron transport accelerators. The use of GNPs greatly enhanced the sensitivity for detecting PA due to the excellent electron transportation ability and the large surface area of GNP carriers allowing several binding events of ovalbumin-PA on each nanosphere. Transmission electron microscopy images (TEM), photoluminescence spectra, ultraviolet-visible absorption spectra and dynamic light scattering (DLS) were used to characterize the QDs and GNPs. The sensor was characterized with electrochemical impedance spectra (EIS), and a strong ECL emission of the modified electrode could be observed during the cathodic process of S2O8(2-) and QDs in air-saturated PBS buffer containing 0.1 M K2S2O8 and 0.1 M KCl (pH 7.4). With a competitive immunoassay format, the ECL signal depended linearly on the logarithm of the phenylethanolamine A concentration within a range of 0.02 ng mL(-1) to 50 ng mL(-1), and the detection limit was 0.0047 ng mL(-1), much lower than those reported in the literature. This ECL immunosensor is rapid, simple and sensitive with acceptable precision, and it will extend the application of QD ECL in immunoassays of β-agonists and open new avenues for the detection of food additive residues in the future.
Collapse
Affiliation(s)
- Panpan Yan
- College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China.
| | | | | | | | | |
Collapse
|
44
|
Xu T, Liu N, Yuan J, Ma Z. Triple tumor markers assay based on carbon–gold nanocomposite. Biosens Bioelectron 2015; 70:161-6. [DOI: 10.1016/j.bios.2015.03.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/15/2015] [Accepted: 03/16/2015] [Indexed: 11/16/2022]
|
45
|
Multiple signal amplification electrogenerated chemiluminescence biosensors for sensitive protein kinase activity analysis and inhibition. Biosens Bioelectron 2015; 68:771-776. [DOI: 10.1016/j.bios.2015.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 11/24/2022]
|
46
|
Zhou H, Liu J, Zhang S. Quantum dot-based photoelectric conversion for biosensing applications. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.12.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Li M, Kong Q, Bian Z, Ma C, Ge S, Zhang Y, Yu J, Yan M. Ultrasensitive detection of lead ion sensor based on gold nanodendrites modified electrode and electrochemiluminescent quenching of quantum dots by electrocatalytic silver/zinc oxide coupled structures. Biosens Bioelectron 2015; 65:176-82. [DOI: 10.1016/j.bios.2014.10.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
|
48
|
Ding C, Zhang W, Wang W, Chen Y, Li X. Amplification strategies using electrochemiluminescence biosensors for the detection of DNA, bioactive molecules and cancer biomarkers. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.10.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Zhao HF, Liang RP, Wang JW, Qiu JD. One-pot synthesis of GO/AgNPs/luminol composites with electrochemiluminescence activity for sensitive detection of DNA methyltransferase activity. Biosens Bioelectron 2015; 63:458-464. [DOI: 10.1016/j.bios.2014.07.079] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/27/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
|
50
|
Lv X, Li Y, Yan T, Pang X, Hu L, Du B, Wei Q. An electrochemiluminescent immunosensor based on CdS–Fe3O4nanocomposite electrodes for the detection of Ochratoxin A. NEW J CHEM 2015. [DOI: 10.1039/c5nj00320b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A promising electrochemiluminescent immunosensor based on CdS–Fe3O4nanocomposites was developed for the detection of Ochratoxin A.
Collapse
Affiliation(s)
- Xiaohui Lv
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yueyun Li
- School of Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Tao Yan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xuehui Pang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Lihua Hu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Bin Du
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|