1
|
Zhang J, Sun M, Elmaidomy AH, Youssif KA, Zaki AMM, Hassan Kamal H, Sayed AM, Abdelmohsen UR. Emerging trends and applications of metabolomics in food science and nutrition. Food Funct 2023; 14:9050-9082. [PMID: 37740352 DOI: 10.1039/d3fo01770b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The study of all chemical processes involving metabolites is known as metabolomics. It has been developed into an essential tool in several disciplines, such as the study of plant physiology, drug development, human diseases, and nutrition. The field of food science, diagnostic biomarker research, etiological analysis in the field of medical therapy, and raw material quality, processing, and safety have all benefited from the use of metabolomics recently. Food metabolomics includes the use of metabolomics in food production, processing, and human diets. As a result of changing consumer habits and the rising of food industries all over the world, there is a remarkable increase in interest in food quality and safety. It requires the employment of various technologies for the food supply chain, processing of food, and even plant breeding. This can be achieved by understanding the metabolome of food, including its biochemistry and composition. Additionally, Food metabolomics can be used to determine the similarities and differences across crop kinds, as an indicator for tracking the process of ripening to increase crops' shelf life and attractiveness, and identifying metabolites linked to pathways responsible for postharvest disorders. Moreover, nutritional metabolomics is used to investigate the connection between diet and human health through detection of certain biomarkers. This review assessed and compiled literature on food metabolomics research with an emphasis on metabolite extraction, detection, and data processing as well as its applications to the study of food nutrition, food-based illness, and phytochemical analysis. Several studies have been published on the applications of metabolomics in food but further research concerning the use of standard reproducible procedures must be done. The results published showed promising uses in the food industry in many areas such as food production, processing, and human diets. Finally, metabolome-wide association studies (MWASs) could also be a useful predictor to detect the connection between certain diseases and low molecular weight biomarkers.
Collapse
Affiliation(s)
- Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Khayrya A Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, El-Saleheya El Gadida University, Cairo, Egypt
| | - Adham M M Zaki
- Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hossam Hassan Kamal
- Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Almaaqal University, 61014 Basra, Iraq
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
2
|
Hotea I, Sirbu C, Plotuna AM, Tîrziu E, Badea C, Berbecea A, Dragomirescu M, Radulov I. Integrating (Nutri-)Metabolomics into the One Health Tendency-The Key for Personalized Medicine Advancement. Metabolites 2023; 13:800. [PMID: 37512507 PMCID: PMC10384896 DOI: 10.3390/metabo13070800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Metabolomics is an advanced technology, still under development, with multiple research applications, especially in the field of health. Individual metabolic profiles, the functionality of the body, as well as its interaction with the environment, can be established using this technology. The body's response to various external factors, including the food consumed and the nutrients it contains, has increased researchers' interest in nutrimetabolomics. Establishing correlations between diet and the occurrence of various diseases, or even the development of personalized nutrition plans, could contribute to advances in precision medicine. The interdependence between humans, animals, and the environment is of particular importance today, with the dramatic emergence and spread of zoonotic diseases, food, water and soil contamination, and the degradation of resources and habitats. All these events have led to an increase in risk factors for functional diseases, burdening global health. Thus, this study aimed to highlight the importance of metabolomics, and, in particular, nutrimetabolomics, as a technical solution for a holistic, collaborative, and precise approach for the advancement of the One Health strategy.
Collapse
Affiliation(s)
- Ionela Hotea
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Catalin Sirbu
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Ana-Maria Plotuna
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Emil Tîrziu
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Corina Badea
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Adina Berbecea
- Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Monica Dragomirescu
- Faculty of Bioengineering of Animal Resources, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Isidora Radulov
- Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| |
Collapse
|
3
|
NMR-Based Metabolomics: A New Paradigm to Unravel Defense-Related Metabolites in Insect-Resistant Cotton Variety through Different Multivariate Data Analysis Approaches. Molecules 2023; 28:molecules28041763. [PMID: 36838756 PMCID: PMC9966674 DOI: 10.3390/molecules28041763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 02/16/2023] Open
Abstract
Cotton (Gossypium hirsutum) is an economically important crop and is widely cultivated around the globe. However, the major problem of cotton is its high vulnerability to biotic and abiotic stresses. It has been around three decades since the cotton plant was genetically engineered with genes encoding insecticidal proteins (mainly Cry proteins) with an aim to protect it against insect attack. Several studies have been reported on the impact of these genes on cotton production and fiber quality. However, the metabolites responsible for conferring resistance in genetically modified cotton need to be explored. The current work aims to unveil the key metabolites responsible for insect resistance in Bt cotton and also compare the conventional multivariate analysis methods with deep learning approaches to perform clustering analysis. We aim to unveil the marker compounds which are responsible for inducing insect resistance in cotton plants. For this purpose, we employed 1H-NMR spectroscopy to perform metabolite profiling of Bt and non-Bt cotton varieties, and a total of 42 different metabolites were identified in cotton plants. In cluster analysis, deep learning approaches (linear discriminant analysis (LDA) and neural networks) showed better separation among cotton varieties compared to conventional methods (principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLSDA)). The key metabolites responsible for inter-class separation were terpinolene, α-ketoglutaric acid, aspartic acid, stigmasterol, fructose, maltose, arabinose, xylulose, cinnamic acid, malic acid, valine, nonanoic acid, citrulline, and shikimic acid. The metabolites which regulated differently with the level of significance p < 0.001 amongst different cotton varieties belonged to the tricarboxylic acid cycle (TCA), Shikimic acid, and phenylpropanoid pathways. Our analyses underscore a biosignature of metabolites that might involve in inducing insect resistance in Bt cotton. Moreover, novel evidence from our study could be used in the metabolic engineering of these biological pathways to improve the resilience of Bt cotton against insect/pest attacks. Lastly, our findings are also in complete support of employing deep machine learning algorithms as a useful tool in metabolomics studies.
Collapse
|
4
|
Mata MMD, Rocha PD, Farias IKTD, Silva JLBD, Medeiros EP, Silva CS, Simões SDS. Distinguishing cotton seed genotypes by means of vibrational spectroscopic methods (NIR and Raman) and chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120399. [PMID: 34597869 DOI: 10.1016/j.saa.2021.120399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The use of vibrational spectroscopy, such as near infrared (NIR) and Raman, combined with multivariate analysis methods to analyze agricultural products are promising for investigating genetically modified organisms (GMO). In Brazil, cotton is grown under humid tropical conditions and is highly affected by pests and diseases, requiring the use of large amounts of phytosanitary chemicals. To avoid the use of those pesticides, genetic improvement can be carried out to produce species tolerant to herbicides, resistant to fungi and insects, or even to provide greater productivity and better quality. Even with these advantages, it is necessary to manage and limit the contact of transgenic species with native ones, avoiding possible contamination or even extinction of conventional species. The identification of the presence of GMOs is based on complex DNA-based analysis, which is usually laborious, expensive, time-consuming, destructive, and generally unavailable. In the present study, a new methodology to identify GMOs using partial least squares discriminant analysis (PLS-DA) on NIR and Raman data is proposed to distinguish conventional and transgenic cotton seed genotypes, providing classification errors for prediction set of 2.23% for NIR and 0.0% for Raman.
Collapse
Affiliation(s)
- Mayara Macedo da Mata
- Graduate Program in Chemistry, State University of Paraiba, Rua Baraúnas, 351, Bairro Universitário, Bodocongó, Campina Grande, Paraiba, 58429-500, Brazil
| | - Priscila Dantas Rocha
- Graduate Program in Chemistry, State University of Paraiba, Rua Baraúnas, 351, Bairro Universitário, Bodocongó, Campina Grande, Paraiba, 58429-500, Brazil
| | - Ingrid Kelly Teles de Farias
- Graduate Program in Chemistry, State University of Paraiba, Rua Baraúnas, 351, Bairro Universitário, Bodocongó, Campina Grande, Paraiba, 58429-500, Brazil
| | - Juliana Lima Brasil da Silva
- Graduate Program in Chemistry, State University of Paraiba, Rua Baraúnas, 351, Bairro Universitário, Bodocongó, Campina Grande, Paraiba, 58429-500, Brazil
| | - Everaldo Paulo Medeiros
- Department of Chemistry Engineering, Federal University of Pernambuco, Av. da Arquitetura, Cidade Universitária, Recife, Pernambuco, 50740-540, Brazil
| | - Carolina Santos Silva
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, Msida, Malta; Brazilian Agricultural Research Corporation, Embrapa Cotton, Rua Osvaldo Cruz, 1143, Bairro Centenário, Campina Grande, Paraiba, 58428-095, Brazil
| | - Simone da Silva Simões
- Graduate Program in Chemistry, State University of Paraiba, Rua Baraúnas, 351, Bairro Universitário, Bodocongó, Campina Grande, Paraiba, 58429-500, Brazil.
| |
Collapse
|
5
|
González-Sálamo J, Varela-Martínez DA, González-Curbelo MÁ, Hernández-Borges J. The Role of Chromatographic and Electromigration Techniques in Foodomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:31-49. [PMID: 34628626 DOI: 10.1007/978-3-030-77252-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Foodomics is the discipline aimed at studying the prevention of diseases by food, identifying chemical, biological and biochemical food contaminants, determining changes in genetically modified foods, identifying biomarkers able to confirm the authenticity and quality of foods or studying the safety, quality and traceability of foods, among other issues. It is mainly based on the use of genomic, transcriptomic, proteomic and metabolomic tools, among others, in order to understand the effect of food on animals and humans at the level of genes, messenger ribonucleic acid, proteins and metabolites. Since the first definition of Foodomics, a reasonable number of works have shown the extremely high possibilities of this discipline, which is highly based on the use of advanced analytical hyphenated techniques - especially for proteomics and metabolomics. This book chapter aims at providing a general description of the role of chromatographic and electromigration techniques that are currently being applied to achieve the main objectives of Foodomics, particularly in the proteomic and metabolomic fields, since most published works have been focused on these approaches, and to highlight relevant applications.
Collapse
Affiliation(s)
- Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Diana Angélica Varela-Martínez
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain.,Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad EAN, Bogotá D.C., Colombia
| | | | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain. .,Instituto Universitario de Enfermedades Tropicales y Salud Pública, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain.
| |
Collapse
|
6
|
Zhang L, Yu R, Yu Y. Analysis of metabolites and metabolic mechanism in Bt transgenic and non-transgenic maize. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Pedrosa MC, Lima L, Heleno S, Carocho M, Ferreira ICFR, Barros L. Food Metabolites as Tools for Authentication, Processing, and Nutritive Value Assessment. Foods 2021; 10:2213. [PMID: 34574323 PMCID: PMC8465241 DOI: 10.3390/foods10092213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022] Open
Abstract
Secondary metabolites are molecules with unlimited applications that have been gaining importance in various industries and studied from many angles. They are mainly used for their bioactive capabilities, but due to the improvement of sensibility in analytical chemistry, they are also used for authentication and as a quality control parameter for foods, further allowing to help avoid food adulteration and food fraud, as well as helping understand the nutritional value of foods. This manuscript covers the examples of secondary metabolites that have been used as qualitative and authentication molecules in foods, from production, through processing and along their shelf-life. Furthermore, perspectives of analytical chemistry and their contribution to metabolite detection and general perspectives of metabolomics are also discussed.
Collapse
Affiliation(s)
| | | | | | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.C.P.); (L.L.); (S.H.); (I.C.F.R.F.); (L.B.)
| | | | | |
Collapse
|
8
|
Medeiros DB, Brotman Y, Fernie AR. The utility of metabolomics as a tool to inform maize biology. PLANT COMMUNICATIONS 2021; 2:100187. [PMID: 34327322 PMCID: PMC8299083 DOI: 10.1016/j.xplc.2021.100187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/26/2021] [Accepted: 04/19/2021] [Indexed: 05/04/2023]
Abstract
With the rise of high-throughput omics tools and the importance of maize and its products as food and bioethanol, maize metabolism has been extensively explored. Modern maize is still rich in genetic and phenotypic variation, yielding a wide range of structurally and functionally diverse metabolites. The maize metabolome is also incredibly dynamic in terms of topology and subcellular compartmentalization. In this review, we examine a broad range of studies that cover recent developments in maize metabolism. Particular attention is given to current methodologies and to the use of metabolomics as a tool to define biosynthetic pathways and address biological questions. We also touch upon the use of metabolomics to understand maize natural variation and evolution, with a special focus on research that has used metabolite-based genome-wide association studies (mGWASs).
Collapse
Affiliation(s)
- David B. Medeiros
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | | |
Collapse
|
9
|
Capillary electrophoresis-mass spectrometry metabolic fingerprinting of green and roasted coffee. J Chromatogr A 2019; 1605:360353. [DOI: 10.1016/j.chroma.2019.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/30/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
|
10
|
Liu SJ, Wu YN, Chan L. Application of Metabonomics Approach in Food Safety Research-A Review. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1655571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Si Jie Liu
- Department of Chemistry and Physics, Jilin Provincial Center for Disease Prevention and Control, Changchun, P. R. China
| | - Yong Ning Wu
- Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, P. R. China
| | - Laurie Chan
- Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
11
|
Böhme K, Calo-Mata P, Barros-Velázquez J, Ortea I. Recent applications of omics-based technologies to main topics in food authentication. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Huang T, Armbruster M, Lee R, Hui DS, Edwards JL. Metabolomic analysis of mammalian cells and human tissue through one-pot two stage derivatizations using sheathless capillary electrophoresis-electrospray ionization-mass spectrometry. J Chromatogr A 2018; 1567:219-225. [PMID: 30005940 DOI: 10.1016/j.chroma.2018.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/14/2018] [Accepted: 07/02/2018] [Indexed: 11/15/2022]
Abstract
Analysis of metabolites is often performed using separations coupled to mass spectrometry which is challenging due to their vast structural heterogeneity and variable charge states. Metabolites are often separated based on their class/functional group which in large part determine their acidity or basicity. This charge state dictates the ionization mode and efficiency of the molecule. To improve the sensitivity and expand the coverage of the mammalian metabolome, multifunctional derivatization with sheathless CE-ESI-MS was undertaken. In this work, amines, hydroxyls and carboxylates were labeled with tertiary amines tags. This derivatization was performed in under 100 min and resulted in high positive charge states for all analytes investigated. Amino acids and organic acids showed average limits of detection of 76 nM with good linearity of 0.96 and 10% RSD for peak area. Applying this metabolomic profiling system to bovine aortic endothelial cells showed changes in 15 metabolites after treatment with high glucose. The sample injection volume on-capillary was <300 cells for quantitative analyses. Targeted metabolites were found in human tissue, which indicates possible application of the system complex metabolome quantitation.
Collapse
Affiliation(s)
- Tianjiao Huang
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, Saint Louis, MO 63102, USA
| | - Michael Armbruster
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, Saint Louis, MO 63102, USA
| | - Richard Lee
- Cardiovascular Comprehensive Care Center, Saint Louis University, 3635 Vista Ave, St Louis, MO, USA
| | - Dawn S Hui
- Cardiovascular Comprehensive Care Center, Saint Louis University, 3635 Vista Ave, St Louis, MO, USA
| | - James L Edwards
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, Saint Louis, MO 63102, USA.
| |
Collapse
|
13
|
Bernillon S, Maucourt M, Deborde C, Chéreau S, Jacob D, Priymenko N, Laporte B, Coumoul X, Salles B, Rogowsky PM, Richard-Forget F, Moing A. Characterization of GMO or glyphosate effects on the composition of maize grain and maize-based diet for rat feeding. Metabolomics 2018; 14:36. [PMID: 30830357 DOI: 10.1007/s11306-018-1329-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/25/2018] [Indexed: 01/10/2023]
Abstract
INTRODUCTION In addition to classical targeted biochemical analyses, metabolomic analyses seem pertinent to reveal expected as well as unexpected compositional differences between plant genetically modified organisms (GMO) and non-GMO samples. Data previously published in the existing literature led to divergent conclusions on the effect of maize transgenes on grain compositional changes and feeding effects. Therefore, a new study examining field-grown harvested products and feeds derived from them remains useful. OBJECTIVES Our aim was to use a metabolomics approach to characterize grain and grain-based diet compositional changes for two GMO events, one involving Bacillus thuringiensis toxin to provide insect resistance and the other one conferring herbicide tolerance by detoxification of glyphosate. We also investigated the potential compositional modifications induced by the use of a glyphosate-based herbicide on the transgenic line conferring glyphosate tolerance. RESULTS The majority of statistically significant differences in grain composition, evidenced by the use of 1H-NMR profiling of polar extracts and LC-ESI-QTOF-MS profiling of semi-polar extracts, could be attributed to the combined effect of genotype and environment. In comparison, transgene and glyphosate effects remained limited in grain for the compound families studied. Some but not all compositional changes observed in grain were also detected in grain-based diets formulated for rats. CONCLUSION Only part of the data previously published in the existing literature on maize grains of plants with the same GMO events could be reproduced in our experiment. All spectra have been deposited in a repository freely accessible to the public. Our grain and diet characterization opened the way for an in depth study of the effects of these diets on rat health.
Collapse
Affiliation(s)
- Stéphane Bernillon
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, PHENOME, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
| | - Mickaël Maucourt
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, PHENOME, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
| | - Catherine Deborde
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, PHENOME, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
| | - Sylvain Chéreau
- UR MycSA, INRA, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
| | - Daniel Jacob
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, PHENOME, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
| | - Nathalie Priymenko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Bérengère Laporte
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Xavier Coumoul
- UMRS1124, Toxicologie, Pharmacologie et Signalisation Cellulaire, INSERM, Univ. Paris Descartes, 75000, Paris, France
| | - Bernard Salles
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France
| | - Peter M Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon 1 CNRS, INRA, 69000, Lyon, France
| | - Florence Richard-Forget
- UR MycSA, INRA, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France
| | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France.
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, PHENOME, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140, Villenave d'Ornon, France.
| |
Collapse
|
14
|
Ning K, Ding C, Zhu W, Zhang W, Dong Y, Shen Y, Su X. Comparative Metabolomic Analysis of the Cambium Tissue of Non-transgenic and Multi-Gene Transgenic Poplar ( Populus × euramericana 'Guariento'). FRONTIERS IN PLANT SCIENCE 2018; 9:1201. [PMID: 30174679 PMCID: PMC6108131 DOI: 10.3389/fpls.2018.01201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/26/2018] [Indexed: 05/09/2023]
Abstract
Poplar, a model for woody plant research, is the most widely distributed tree species in the world. Metabolites are the basis of phenotypes, allowing an intuitive and effective understanding of biological processes and their mechanisms. However, metabolites in non-transgenic and multi-gene transgenic poplar remains poorly characterized, especially in regards of the influences on quantity and in the analysis of the relative abundance of metabolites after the introduction of multi stress-related genes. In this study, we investigated the cambium metabolomes of one non-transgenic (D5-0) and two multi-gene (vgb, SacB, ERF36, BtCry3A, and OC-I) transgenic lines (D5-20 and D5-21) of hybrid poplar (Populus × euramericana 'Guariento') using both gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). We aimed to explore the effects of the exogenous genes on metabolite composition and to screen out metabolites with important biological functions. Finally, we identified 239 named metabolites and determined their relative abundance. Among these, 197 metabolites had a different abundance across the three lines. These methabolites spanned nine primary and 44 secondary metabolism pathways. Arginine and glutamate, as substrates and intermediates in nitrogen metabolism, and important in growth and stress-related processes, as well as sucrose, uridine diphosphate glucose, and their derivatives, precursors in cell wall pathways, and catechol, relevant to insect resistance, differed greatly between the genetically modified and non-transgenic poplar. These findings may provide a basis for further study of cambium metabolism, and fully understand metabolites associated with stress response.
Collapse
Affiliation(s)
- Kun Ning
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China
| | - Wenxu Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China
| | - Yufeng Dong
- Shandong Provincial Key Laboratory of Forest Tree Genetic Improvement, Shandong Academy of Forestry, Jinan, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Xiaohua Su,
| |
Collapse
|
15
|
|
16
|
Álvarez G, Montero L, Llorens L, Castro-Puyana M, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2017; 39:136-159. [PMID: 28975648 DOI: 10.1002/elps.201700321] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
This review work presents and discusses the main applications of capillary electromigration methods in food analysis and Foodomics. Papers that were published during the period February 2015-February 2017 are included following the previous review by Acunha et al. (Electrophoresis 2016, 37, 111-141). The paper shows the large variety of food related molecules that have been analyzed by CE including amino acids, biogenic amines, carbohydrates, chiral compounds, contaminants, DNAs, food additives, heterocyclic amines, lipids, peptides, pesticides, phenols, pigments, polyphenols, proteins, residues, toxins, vitamins, small organic and inorganic compounds, as well as other minor compounds. This work describes the last results on food quality and safety, nutritional value, storage, bioactivity, as well as uses of CE for monitoring food interactions and food processing including recent microchips developments and new applications of CE in Foodomics.
Collapse
Affiliation(s)
| | | | | | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Madrid, Spain
| | | |
Collapse
|
17
|
Andjelković U, Šrajer Gajdošik M, Gašo-Sokač D, Martinović T, Josić D. Foodomics and Food Safety: Where We Are. Food Technol Biotechnol 2017; 55:290-307. [PMID: 29089845 PMCID: PMC5654429 DOI: 10.17113/ftb.55.03.17.5044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
The power of foodomics as a discipline that is now broadly used for quality assurance of food products and adulteration identification, as well as for determining the safety of food, is presented. Concerning sample preparation and application, maintenance of highly sophisticated instruments for both high-performance and high-throughput techniques, and analysis and data interpretation, special attention has to be paid to the development of skilled analysts. The obtained data shall be integrated under a strong bioinformatics environment. Modern mass spectrometry is an extremely powerful analytical tool since it can provide direct qualitative and quantitative information about a molecule of interest from only a minute amount of sample. Quality of this information is influenced by the sample preparation procedure, the type of mass spectrometer used and the analyst's skills. Technical advances are bringing new instruments of increased sensitivity, resolution and speed to the market. Other methods presented here give additional information and can be used as complementary tools to mass spectrometry or for validation of obtained results. Genomics and transcriptomics, as well as affinity-based methods, still have a broad use in food analysis. Serious drawbacks of some of them, especially the affinity-based methods, are the cross-reactivity between similar molecules and the influence of complex food matrices. However, these techniques can be used for pre-screening in order to reduce the large number of samples. Great progress has been made in the application of bioinformatics in foodomics. These developments enabled processing of large amounts of generated data for both identification and quantification, and for corresponding modeling.
Collapse
Affiliation(s)
- Uroš Andjelković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, RS-11000 Belgrade, Serbia
| | - Martina Šrajer Gajdošik
- Department of Chemistry, J. J. Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Dajana Gašo-Sokač
- Faculty of Food Technology, J. J. Strossmayer University of Osijek, Franje Kuhača 20, HR-31000 Osijek, Croatia
| | - Tamara Martinović
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Djuro Josić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
- Warren Alpert Medical School, Brown University, 222 Richmond St, Providence, RI 02903, USA
| |
Collapse
|
18
|
Ndimba RJ, Kruger J, Mehlo L, Barnabas A, Kossmann J, Ndimba BK. A Comparative Study of Selected Physical and Biochemical Traits of Wild-Type and Transgenic Sorghum to Reveal Differences Relevant to Grain Quality. FRONTIERS IN PLANT SCIENCE 2017; 8:952. [PMID: 28638394 PMCID: PMC5461292 DOI: 10.3389/fpls.2017.00952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/22/2017] [Indexed: 06/14/2023]
Abstract
Transgenic sorghum featuring RNAi suppression of certain kafirins was developed recently, to address the problem of poor protein digestibility in the grain. However, it was not firmly established if other important quality parameters were adversely affected by this genetic intervention. In the present study several quality parameters were investigated by surveying several important physical and biochemical grain traits. Important differences in grain weight, density and endosperm texture were found that serve to differentiate the transgenic grains from their wild-type counterpart. In addition, ultrastructural analysis of the protein bodies revealed a changed morphology that is indicative of the effect of suppressed kafirins. Importantly, lysine was found to be significantly increased in one of the transgenic lines in comparison to wild-type; while no significant changes in anti-nutritional factors could be detected. The results have been insightful for demonstrating some of the corollary changes in transgenic sorghum grain, that emerge from imposed kafirin suppression.
Collapse
Affiliation(s)
- Roya J. Ndimba
- iThemba LABS, National Research FoundationCape Town, South Africa
- Institute for Plant Biotechnology, University of StellenboschMatieland, South Africa
| | - Johanita Kruger
- Department of Food Science and Institute for Food Nutrition and Well-Being, University of PretoriaPretoria, South Africa
| | - Luke Mehlo
- Enterprise Creation for Development Unit, Council for Scientific and Industrial ResearchPretoria, South Africa
| | - Alban Barnabas
- iThemba LABS, National Research FoundationCape Town, South Africa
| | - Jens Kossmann
- Institute for Plant Biotechnology, University of StellenboschMatieland, South Africa
| | - Bongani K. Ndimba
- Agricultural Research Council, Infruitec-NietvoorbijStellenbosch, South Africa
- Proteomics Unit, Department of Biotechnology, University of the Western CapeBellville, South Africa
| |
Collapse
|
19
|
Liu W, Liu C, Chen F, Yang J, Zheng L. Discrimination of transgenic soybean seeds by terahertz spectroscopy. Sci Rep 2016; 6:35799. [PMID: 27782205 PMCID: PMC5080623 DOI: 10.1038/srep35799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/30/2016] [Indexed: 11/09/2022] Open
Abstract
Discrimination of genetically modified organisms is increasingly demanded by legislation and consumers worldwide. The feasibility of a non-destructive discrimination of glyphosate-resistant and conventional soybean seeds and their hybrid descendants was examined by terahertz time-domain spectroscopy system combined with chemometrics. Principal component analysis (PCA), least squares-support vector machines (LS-SVM) and PCA-back propagation neural network (PCA-BPNN) models with the first and second derivative and standard normal variate (SNV) transformation pre-treatments were applied to classify soybean seeds based on genotype. Results demonstrated clear differences among glyphosate-resistant, hybrid descendants and conventional non-transformed soybean seeds could easily be visualized with an excellent classification (accuracy was 88.33% in validation set) using the LS-SVM and the spectra with SNV pre-treatment. The results indicated that THz spectroscopy techniques together with chemometrics would be a promising technique to distinguish transgenic soybean seeds from non-transformed seeds with high efficiency and without any major sample preparation.
Collapse
Affiliation(s)
- Wei Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
- Intelligent Control and Compute Vision Lab, Hefei University, Hefei 230601, China
| | - Changhong Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, United States
| | - Jianbo Yang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Lei Zheng
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
- School of Medical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
20
|
Wen W, Brotman Y, Willmitzer L, Yan J, Fernie AR. Broadening Our Portfolio in the Genetic Improvement of Maize Chemical Composition. Trends Genet 2016; 32:459-469. [DOI: 10.1016/j.tig.2016.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
|
21
|
Venkatesh TV, Chassy AW, Fiehn O, Flint-Garcia S, Zeng Q, Skogerson K, Harrigan GG. Metabolomic Assessment of Key Maize Resources: GC-MS and NMR Profiling of Grain from B73 Hybrids of the Nested Association Mapping (NAM) Founders and of Geographically Diverse Landraces. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2162-72. [PMID: 26923484 DOI: 10.1021/acs.jafc.5b04901] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The present study expands metabolomic assessments of maize beyond commercial lines to include two sets of hybrids used extensively in the scientific community. One set included hybrids derived from the nested association mapping (NAM) founder lines, a collection of 25 inbreds selected on the basis of genetic diversity and used to investigate the genetic basis of complex plant traits. A second set included 24 hybrids derived from a collection of landraces representative of native diversity from North and South America that may serve as a source of new alleles for improving modern maize hybrids. Metabolomic analysis of grain harvested from these hybrids utilized gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) and (1)H nuclear magnetic resonance spectroscopy ((1)H NMR) techniques. Results highlighted extensive metabolomic variation in grain from both hybrid sets, but also demonstrated that, within each hybrid set, subpopulations could be differentiated in a pattern consistent with the known genetic and compositional variation of these lines. Correlation analysis did not indicate a strong association of the metabolomic data with grain nutrient composition, although some metabolites did show moderately strong correlations with agronomic features such as plant and ear height. Overall, this study provides insights into the extensive metabolomic diversity associated with conventional maize germplasm.
Collapse
Affiliation(s)
| | - Alexander W Chassy
- Genome Center - Metabolomics, University of California at Davis , Davis, California 95616, United States
| | - Oliver Fiehn
- Genome Center - Metabolomics, University of California at Davis , Davis, California 95616, United States
- Biochemistry Department, King Abudalaziz University , Jeddah, Saudi-Arabia
| | - Sherry Flint-Garcia
- Agricultural Research Service, U.S. Department of Agriculture , Columbia, Missouri 65211, United States
- Division of Plant Sciences, University of Missouri , Columbia, Missouri 65211, United States
| | - Qin Zeng
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Kirsten Skogerson
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - George G Harrigan
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| |
Collapse
|
22
|
Abstract
Metabolomics is an analytical toolbox to describe (all) low-molecular-weight compounds in a biological system, as cells, tissues, urine, and feces, as well as in serum and plasma. To analyze such complex biological samples, high requirements on the analytical technique are needed due to the high variation in compound physico-chemistry (cholesterol derivatives, amino acids, fatty acids as SCFA, MCFA, or LCFA, or pathway-related metabolites belonging to each individual organism) and concentration dynamic range. All main separation techniques (LC-MS, GC-MS) are applied in routine to metabolomics hyphenated or not to mass spectrometry, and capillary electrophoresis is a powerful high-resolving technique but still underused in this field of complex samples. Metabolomics can be performed in the non-targeted way to gain an overview on metabolite profiles in biological samples. Targeted metabolomics is applied to analyze quantitatively pre-selected metabolites. This chapter reviews the use of capillary electrophoresis in the field of metabolomics and exemplifies solutions in metabolite profiling and analysis in urine and plasma.
Collapse
|
23
|
Acunha T, Ibáñez C, García-Cañas V, Simó C, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2015; 37:111-41. [DOI: 10.1002/elps.201500291] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Tanize Acunha
- Laboratory of Foodomics; CIAL, CSIC; Madrid Spain
- CAPES Foundation; Ministry of Education of Brazil; Brasília DF Brazil
| | - Clara Ibáñez
- Laboratory of Foodomics; CIAL, CSIC; Madrid Spain
| | | | | | | |
Collapse
|
24
|
Lesiak AD, Cody RB, Dane AJ, Musah RA. Plant Seed Species Identification from Chemical Fingerprints: A High-Throughput Application of Direct Analysis in Real Time Mass Spectrometry. Anal Chem 2015; 87:8748-57. [DOI: 10.1021/acs.analchem.5b01611] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ashton D. Lesiak
- Department
of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Robert B. Cody
- JEOL USA Inc., 11 Dearborn
Road, Peabody, Massachusetts 01960, United States
| | - A. John Dane
- JEOL USA Inc., 11 Dearborn
Road, Peabody, Massachusetts 01960, United States
| | - Rabi A. Musah
- Department
of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
25
|
Xu W, Xie L, Ye Z, Gao W, Yao Y, Chen M, Qin J, Ying Y. Discrimination of Transgenic Rice containing the Cry1Ab Protein using Terahertz Spectroscopy and Chemometrics. Sci Rep 2015; 5:11115. [PMID: 26154950 PMCID: PMC4495602 DOI: 10.1038/srep11115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/14/2015] [Indexed: 01/25/2023] Open
Abstract
Spectroscopic techniques combined with chemometrics methods have proven to be effective tools for the discrimination of objects with similar properties. In this work, terahertz time-domain spectroscopy (THz-TDS) combined with discriminate analysis (DA) and principal component analysis (PCA) with derivative pretreatments was performed to differentiate transgenic rice (Hua Hui 1, containing the Cry1Ab protein) from its parent (Ming Hui 63). Both rice samples and the Cry1Ab protein were ground and pressed into pellets for terahertz (THz) measurements. The resulting time-domain spectra were transformed into frequency-domain spectra, and then, the transmittances of the rice and Cry1Ab protein were calculated. By applying the first derivative of the THz spectra in conjunction with the DA model, the discrimination of transgenic from non-transgenic rice was possible with accuracies up to 89.4% and 85.0% for the calibration set and validation set, respectively. The results indicated that THz spectroscopic techniques and chemometrics methods could be new feasible ways to differentiate transgenic rice.
Collapse
Affiliation(s)
- Wendao Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Rd., 310058 Hangzhou, PR China
| | - Lijuan Xie
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Rd., 310058 Hangzhou, PR China
| | - Zunzhong Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Rd., 310058 Hangzhou, PR China
| | - Weilu Gao
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Yang Yao
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Rd., 310058 Hangzhou, PR China
| | - Min Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Rd., 310058 Hangzhou, PR China
| | - Jianyuan Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Rd., 310058 Hangzhou, PR China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Rd., 310058 Hangzhou, PR China
| |
Collapse
|
26
|
Vijaykrishnaraj M, Prabhasankar P. Marine protein hydrolysates: their present and future perspectives in food chemistry – a review. RSC Adv 2015. [DOI: 10.1039/c4ra17205a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Marine protein hydrolysates are usually prepared by the enzymatic digestion with different proteases at controlled pH and temperature.
Collapse
Affiliation(s)
- M. Vijaykrishnaraj
- Flour Milling Baking and Confectionery Technology Department
- CSIR-Central Food Technological Research Institute
- Mysore – 570 020
- India
| | - P. Prabhasankar
- Flour Milling Baking and Confectionery Technology Department
- CSIR-Central Food Technological Research Institute
- Mysore – 570 020
- India
| |
Collapse
|
27
|
|
28
|
Simó C, Ibáñez C, Valdés A, Cifuentes A, García-Cañas V. Metabolomics of genetically modified crops. Int J Mol Sci 2014; 15:18941-66. [PMID: 25334064 PMCID: PMC4227254 DOI: 10.3390/ijms151018941] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 01/03/2023] Open
Abstract
Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.
Collapse
Affiliation(s)
- Carolina Simó
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC), Nicolas Cabrera 9, Cantoblanco Campus, Madrid 28049, Spain.
| | - Clara Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC), Nicolas Cabrera 9, Cantoblanco Campus, Madrid 28049, Spain.
| | - Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC), Nicolas Cabrera 9, Cantoblanco Campus, Madrid 28049, Spain.
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC), Nicolas Cabrera 9, Cantoblanco Campus, Madrid 28049, Spain.
| | - Virginia García-Cañas
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), Spanish National Research Council (CSIC), Nicolas Cabrera 9, Cantoblanco Campus, Madrid 28049, Spain.
| |
Collapse
|
29
|
Troise AD, Ferracane R, Palermo M, Fogliano V. Targeted metabolite profile of food bioactive compounds by Orbitrap high resolution mass spectrometry: The “FancyTiles” approach. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
CE-TOF MS-based metabolomic profiling revealed characteristic metabolic pathways in postmortem porcine fast and slow type muscles. Meat Sci 2014; 98:726-35. [PMID: 25105492 DOI: 10.1016/j.meatsci.2014.07.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/30/2014] [Accepted: 07/04/2014] [Indexed: 12/18/2022]
Abstract
To determine key compounds and metabolic pathways associated with meat quality, we profiled metabolites in postmortem porcine longissimus lumborum (LL) and vastus intermedius (VI) muscles with different aging times by global metabolomics using capillary electrophoresis-time of flight mass spectrometry. Loading analyses of the principal component analysis showed that hydrophilic amino acids and β-alanine-related compounds contributed to the muscle type positively and negatively, respectively, whereas glycolytic and ATP degradation products contributed to aging time. At 168h postmortem, LL samples were characterized by abundance of combinations of amino acids, dipeptides, and glycolytic products, whereas the VI samples were characterized by abundance of both sulfur-containing compounds and amino acids. The AMP and inosine contents in the VI were approx. 10 times higher than those in the LL at 4h postmortem, suggesting different rates of inosine 5'-monophosphate (IMP) accumulation by adenylate kinase 7 and 5'-nucleotidase, and subsequent different production levels of IMP and hypoxanthine between these two porcine muscles.
Collapse
|
31
|
Khakimov B, Bak S, Engelsen SB. High-throughput cereal metabolomics: Current analytical technologies, challenges and perspectives. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2013.10.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Recent developments in liquid-phase separation techniques for metabolomics. Bioanalysis 2014; 6:1011-26. [DOI: 10.4155/bio.14.51] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metabolomics is the comprehensive analysis of low molecular weight compounds in biological samples such as cells, body fluids and tissues. Comprehensive profiling of metabolites in complex sample matrices with the current analytical toolbox remains a huge challenge. Over the past few years, liquid chromatography–mass spectrometry (LC–MS) and capillary electrophoresis–mass spectrometry (CE–MS) have emerged as powerful complementary analytical techniques in the field of metabolomics. This Review provides an update of the most recent developments in LC–MS and CE–MS for metabolomics. Concerning LC–MS, attention is paid to developments in column technology and miniaturized systems, while strategies are discussed to improve the reproducibility and the concentration sensitivity of CE–MS for metabolomics studies. Novel interfacing techniques for coupling CE to MS are also considered. Representative examples illustrate the potential of the recent developments in LC–MS and CE–MS for metabolomics. Finally, some conclusions and perspectives are provided.
Collapse
|
33
|
Robledo VR, Smyth WF. Review of the CE-MS platform as a powerful alternative to conventional couplings in bio-omics and target-based applications. Electrophoresis 2014; 35:2292-308. [DOI: 10.1002/elps.201300561] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Virginia Rodríguez Robledo
- Faculty of Pharmacy; Department of Analytical Chemistry and Food Technology; University of Castilla-La Mancha (UCLM); Albacete Spain
| | - William Franklin Smyth
- School of Pharmacy and Pharmaceutical Sciences; University of Ulster; Coleraine Northern Ireland UK
| |
Collapse
|
34
|
Valdés A, Simó C, Ibáñez C, García-Cañas V. Foodomics strategies for the analysis of transgenic foods. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.05.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Clark M, Murray JD, Maga EA. Assessing unintended effects of a mammary-specific transgene at the whole animal level in host and non-target animals. Transgenic Res 2013; 23:245-56. [PMID: 24214495 DOI: 10.1007/s11248-013-9768-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/30/2013] [Indexed: 11/24/2022]
Abstract
Risk assessment in transgenic plants is intrinsically different than that for transgenic animals; however both require the verification of proper transgene function and in conjunction, an estimate of any unintended effects caused by expression of the transgene. This work was designed to gather data regarding methodologies to detect pleiotropic effects at the whole animal level using a line of transgenic goats that produce the antimicrobial protein human lysozyme (hLZ) in their milk with the goal of using the milk to treat childhood diarrhea. Metabolomics was used to determine the serum metabolite profile of both the host (lactating does) and non-target organism (kid goats raised on control or hLZ milk) prior to weaning (60 days), at weaning (90 days) and 1 month post-weaning (120 days). In addition, intestinal histology of the kid goats was also carried out. Histological analysis of intestinal segments of the pre-weaning group revealed significantly wider duodenal villi (p = 0.014) and significantly longer villi (p = 0.028) and deeper crypts (p = 0.030) in the ileum of kid goats consuming hLZ milk. Serum metabolomics was capable of detecting differences over time but revealed no significant differences in metabolites between control and hLZ fed kids after correction for false discovery rate. Serum metabolomics of control or hLZ lactating does showed only one significant difference in an unknown metabolite (q = 0.0422). The results as a whole indicate that consumption of hLZ milk results in positive or insignificant intestinal morphology and metabolic changes. This work contributes to the establishment of the safety and durability of the hLZ mammary-specific transgene.
Collapse
Affiliation(s)
- Merritt Clark
- Department of Animal Science, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | | | | |
Collapse
|
36
|
Ibáñez C, Simó C, García-Cañas V, Cifuentes A, Castro-Puyana M. Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in Foodomics: A review. Anal Chim Acta 2013; 802:1-13. [DOI: 10.1016/j.aca.2013.07.042] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/20/2013] [Accepted: 07/17/2013] [Indexed: 01/05/2023]
|
37
|
Swainston N, Mendes P, Kell DB. An analysis of a 'community-driven' reconstruction of the human metabolic network. Metabolomics 2013; 9:757-764. [PMID: 23888127 PMCID: PMC3715687 DOI: 10.1007/s11306-013-0564-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/28/2013] [Indexed: 12/22/2022]
Abstract
Following a strategy similar to that used in baker's yeast (Herrgård et al. Nat Biotechnol 26:1155-1160, 2008). A consensus yeast metabolic network obtained from a community approach to systems biology (Herrgård et al. 2008; Dobson et al. BMC Syst Biol 4:145, 2010). Further developments towards a genome-scale metabolic model of yeast (Dobson et al. 2010; Heavner et al. BMC Syst Biol 6:55, 2012). Yeast 5-an expanded reconstruction of the Saccharomyces cerevisiae metabolic network (Heavner et al. 2012) and in Salmonella typhimurium (Thiele et al. BMC Syst Biol 5:8, 2011). A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonellatyphimurium LT2 (Thiele et al. 2011), a recent paper (Thiele et al. Nat Biotechnol 31:419-425, 2013). A community-driven global reconstruction of human metabolism (Thiele et al. 2013) described a much improved 'community consensus' reconstruction of the human metabolic network, called Recon 2, and the authors (that include the present ones) have made it freely available via a database at http://humanmetabolism.org/ and in SBML format at Biomodels (http://identifiers.org/biomodels.db/MODEL1109130000). This short analysis summarises the main findings, and suggests some approaches that will be able to exploit the availability of this model to advantage.
Collapse
Affiliation(s)
- Neil Swainston
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL UK
- Manchester Institute of Biotechnology, The University of Manchester, Princess Street, Manchester, M1 7DN UK
| | - Pedro Mendes
- Manchester Institute of Biotechnology, The University of Manchester, Princess Street, Manchester, M1 7DN UK
- School of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL UK
- Virginia Bioinformatics Institute, Virginia Tech, Washington St. 0477, Blacksburg, VA 24060 USA
| | - Douglas B. Kell
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL UK
- Manchester Institute of Biotechnology, The University of Manchester, Princess Street, Manchester, M1 7DN UK
| |
Collapse
|
38
|
Abstract
This paper presents a revision on the instrumental analytical techniques and methods used in food analysis together with their main applications in food science research. The present paper includes a brief historical perspective on food analysis, together with a deep revision on the current state of the art of modern analytical instruments, methodologies, and applications in food analysis with a special emphasis on the works published on this topic in the last three years (2009–2011). The article also discusses the present and future challenges in food analysis, the application of “omics” in food analysis (including epigenomics, genomics, transcriptomics, proteomics, and metabolomics), and provides an overview on the new discipline of Foodomics.
Collapse
Affiliation(s)
- Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), CSIC, Nicolas Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
39
|
Zhao SS, Zhong X, Tie C, Chen DD. Capillary electrophoresis-mass spectrometry for analysis of complex samples. Proteomics 2012; 12:2991-3012. [DOI: 10.1002/pmic.201200221] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/10/2012] [Accepted: 07/18/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Shuai Sherry Zhao
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| | - Xuefei Zhong
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| | - Cai Tie
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| | - David D.Y. Chen
- Department of Chemistry; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
40
|
Truus K, Vaher M, Borissova M, Robal M, Levandi T, Tuvikene R, Toomik P, Kaljurand M. Characterization of Yew Tree ( Taxus) Varieties by Fingerprint and Principal Component Analyses. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The composition of varieties of Taxus growing in Estonia was analyzed by capillary electrophoresis with diode array detection (CE-DAD) for the separation of phenolic compounds, and by high performance liquid chromatography-mass spectrometry (HPLC-MS) for the determination of taxoids. The main purpose of this study was the chemotaxonomic differentiation of varieties of Taxus by using data from these analyses. Fingerprints scanned at 214 nm on the basis of CE separation at pH 9.3 were used to characterize seven varieties of yew. The contents of four key taxoids (10-deacetylbaccatin, baccatin III, cephalomannine and paclitaxel) in six Taxus varieties were comparatively determined by HPLC-MS. The set of electropherograms/chromatograms of the various Taxus extracts were subjected to principal component analysis (PCA), using the peak areas of 16 phenolic compounds and 14 taxoids as characteristics. The formation of distinct clusters in accordance with botanical classification proves the suitability of PCA for differentiating varieties of Taxus.
Collapse
Affiliation(s)
- Kalle Truus
- Department of Natural Sciences, Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt 25, 10120 Tallinn, Estonia
| | - Merike Vaher
- Department of Chemistry, Institute of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Maria Borissova
- Department of Chemistry, Institute of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Marju Robal
- Department of Natural Sciences, Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt 25, 10120 Tallinn, Estonia
| | - Tuuli Levandi
- Department of Chemistry, Institute of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Rando Tuvikene
- Department of Natural Sciences, Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt 25, 10120 Tallinn, Estonia
| | - Peeter Toomik
- Faculty of Food Science and Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 58A, 51014 Tartu, Estonia
| | - Mihkel Kaljurand
- Department of Chemistry, Institute of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
41
|
Qiu B, Zhang YS, Lin YB, Lu YJ, Lin ZY, Wong KY, Chen GN. A novel fluorescent biosensor for detection of target DNA fragment from the transgene cauliflower mosaic virus 35S promoter. Biosens Bioelectron 2012; 41:168-71. [PMID: 22959013 DOI: 10.1016/j.bios.2012.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
Abstract
In this paper, we reported a convenient fluorescence method for the detection of genetically modified organisms (GMOs). As it is known that the cauliflower mosaic virus (CaMV) 35S promoter is widely used in most transgenic plants (Schnurr and Guerra, 2000), we thus design a simple method based on the detection of a section target DNA (DNA-T) from the transgene CaMV 35S promoter. In this method, the full-length guanine-rich single-strand sequences were split into fragments (Probe 1 and 2) and each part of the fragment possesses two GGG repeats. In the presence of K(+) ion and berberine, if a complementary target DNA of the CaMV 35S promoter was introduced to hybridize with Probe 1 and 2, a G-quadruplex-berberine complex was thus formed and generated a strong fluorescence signal. The generation of fluorescence signal indicates the presence of CaMV 35S promoter. This method is able to identify and quantify Genetically Modified Organisms (GMOs), and it shows wide linear ranges from 5.0×10(-9) to 9.0×10(-7) mol/L with a detection limit of 2.0×10(-9) mol/L.
Collapse
Affiliation(s)
- Bin Qiu
- Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety Fuzhou University, Department of Chemistry, Fuzhou University, Fuzhou 350002, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Ibáñez C, Simó C, García-Cañas V, Gómez-Martínez Á, Ferragut JA, Cifuentes A. CE/LC-MS multiplatform for broad metabolomic analysis of dietary polyphenols effect on colon cancer cells proliferation. Electrophoresis 2012; 33:2328-36. [DOI: 10.1002/elps.201200143] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Clara Ibáñez
- Laboratory of Foodomics; CIAL (CSIC); Madrid; Spain
| | | | | | - Ángeles Gómez-Martínez
- Institute of Molecular and Cellular Biology; Miguel Hernández University; Avda. Universidad s/n; Elche; Alicante; Spain
| | - José A. Ferragut
- Institute of Molecular and Cellular Biology; Miguel Hernández University; Avda. Universidad s/n; Elche; Alicante; Spain
| | | |
Collapse
|
43
|
Ohnoutkova L, Zitka O, Mrizova K, Vaskova J, Galuszka P, Cernei N, Smedley MA, Harwood WA, Adam V, Kizek R. Electrophoretic and chromatographic evaluation of transgenic barley expressing a bacterial dihydrodipicolinate synthase. Electrophoresis 2012; 33:2365-73. [DOI: 10.1002/elps.201200033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Katarina Mrizova
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research; Palacky University; Olomouc; Czech Republic
| | - Jana Vaskova
- Institute of Experimental Botany; Academy of Sciences of the Czech Republic; Olomouc; Czech Republic
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research; Palacky University; Olomouc; Czech Republic
| | - Natalie Cernei
- Department of Chemistry and Biochemistry; Faculty of Agronomy, Mendel University in Brno; Brno; Czech Republic
| | - Mark A. Smedley
- Department of Crop Genetics, John Innes Centre; Norwich Research Park; United Kingdom
| | - Wendy A. Harwood
- Department of Crop Genetics, John Innes Centre; Norwich Research Park; United Kingdom
| | | | | |
Collapse
|
44
|
Frank T, Röhlig RM, Davies HV, Barros E, Engel KH. Metabolite profiling of maize kernels--genetic modification versus environmental influence. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3005-12. [PMID: 22375597 DOI: 10.1021/jf204167t] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A metabolite profiling approach based on gas chromatography-mass spectrometry (GC-MS) was applied to investigate the metabolite profiles of genetically modified (GM) Bt-maize (DKC78-15B, TXP 138F) and Roundup Ready-maize (DKC78-35R). For the comparative investigation of the impact of genetic modification versus environmental influence on the metabolite profiles, GM maize was grown together with the non-GM near-isogenic comparators under different environmental conditions, including several growing locations and seasons in Germany and South Africa. Analyses of variance (ANOVA) revealed significant differences between GM and non-GM maize grown in Germany and South Africa. For the factor genotype, 4 and 3%, respectively, of the total number of peaks detected by GC-MS showed statistically significant differences (p < 0.01) in peak heights as compared to the respective isogenic lines. However, ANOVA for the factor environment (growing location, season) revealed higher numbers of significant differences (p < 0.01) between the GM and the non-GM maize grown in Germany (42%) and South Africa (10%), respectively. This indicates that the majority of differences observed are related to natural variability rather than to the genetic modifications. In addition, multivariate data assessment by means of principal component analysis revealed that environmental factors, that is, growing locations and seasons, were dominant parameters driving the variability of the maize metabolite profiles.
Collapse
Affiliation(s)
- Thomas Frank
- Technische Universität München, Lehrstuhl für Allgemeine Lebensmitteltechnologie, D-85350 Freising-Weihenstephan, Germany
| | | | | | | | | |
Collapse
|
45
|
Chang Y, Zhao C, Zhu Z, Wu Z, Zhou J, Zhao Y, Lu X, Xu G. Metabolic profiling based on LC/MS to evaluate unintended effects of transgenic rice with cry1Ac and sck genes. PLANT MOLECULAR BIOLOGY 2012; 78:477-87. [PMID: 22271304 DOI: 10.1007/s11103-012-9876-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 01/04/2012] [Indexed: 05/11/2023]
Abstract
As a primary characteristic of substantial equivalence, the evaluation of unintended effects of genetically modified plants has been evolving into an important field of research. In this study, a metabolic profiling method for rice seeds was developed using rapid resolution liquid chromatography/quadrupole time-of-flight mass spectrometry. The analytical properties of the method, including the linearity, reproducibility, intra-day precision and inter-day precision, were investigated and were found to be satisfactory. The method was then applied to investigate the differences between transgenic rice and its native counterparts, in addition to the differences found between native rice with different sowing dates or locations. Global metabolic phenotype differences were visualized, and metabolites from different discriminated groups were discovered using multivariate data analysis. The results indicated that environmental factors played a greater role than gene modification for most metabolites, including tryptophan, 9,10,13-trihydroxyoctadec-11-enoic acid, and lysophosphatidylethanolamine 16:0. The concentrations of phytosphingosine, palmitic acid, 5-hydroxy-2-octadenoic acid and three other unidentified metabolites varied slightly due to gene modification.
Collapse
Affiliation(s)
- Yuwei Chang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian 116023, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Herrero M, Simó C, García-Cañas V, Ibáñez E, Cifuentes A. Foodomics: MS-based strategies in modern food science and nutrition. MASS SPECTROMETRY REVIEWS 2012; 31:49-69. [PMID: 21374694 DOI: 10.1002/mas.20335] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/02/2011] [Accepted: 02/02/2011] [Indexed: 05/23/2023]
Abstract
Modern research in food science and nutrition is moving from classical methodologies to advanced analytical strategies in which MS-based techniques play a crucial role. In this context, Foodomics has been recently defined as a new discipline that studies food and nutrition domains through the application of advanced omics technologies in which MS techniques are considered indispensable. Applications of Foodomics include the genomic, transcriptomic, proteomic, and/or metabolomic study of foods for compound profiling, authenticity, and/or biomarker-detection related to food quality or safety; the development of new transgenic foods, food contaminants, and whole toxicity studies; new investigations on food bioactivity, food effects on human health, etc. This review work does not intend to provide an exhaustive revision of the many works published so far on food analysis using MS techniques. The aim of the present work is to provide an overview of the different MS-based strategies that have been (or can be) applied in the new field of Foodomics, discussing their advantages and drawbacks. Besides, some ideas about the foreseen development and applications of MS-techniques in this new discipline are also provided.
Collapse
Affiliation(s)
- Miguel Herrero
- Institute of Food Science Research (CIAL), CSIC, Nicolas Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
47
|
Theodoridis G, Gika HG, Wilson ID. Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies. MASS SPECTROMETRY REVIEWS 2011; 30:884-906. [PMID: 21384411 DOI: 10.1002/mas.20306] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Metabonomics and metabolomics represent one of the three major platforms in systems biology. To perform metabolomics it is necessary to generate comprehensive "global" metabolite profiles from complex samples, for example, biological fluids or tissue extracts. Analytical technologies based on mass spectrometry (MS), and in particular on liquid chromatography-MS (LC-MS), have become a major tool providing a significant source of global metabolite profiling data. In the present review we describe and compare the utility of the different analytical strategies and technologies used for MS-based metabolomics with a particular focus on LC-MS. Both the advantages offered by the technology and also the challenges and limitations that need to be addressed for the successful application of LC-MS in metabolite analysis are described. Data treatment and approaches resulting in the detection and identification of biomarkers are considered. Special emphasis is given to validation issues, instrument stability, and QA/quality control (QC) procedures.
Collapse
Affiliation(s)
- Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | | | |
Collapse
|
48
|
García-Cañas V, Simó C, León C, Ibáñez E, Cifuentes A. MS-based analytical methodologies to characterize genetically modified crops. MASS SPECTROMETRY REVIEWS 2011; 30:396-416. [PMID: 21500243 DOI: 10.1002/mas.20286] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 11/18/2009] [Accepted: 11/18/2009] [Indexed: 05/09/2023]
Abstract
The development of genetically modified crops has had a great impact on the agriculture and food industries. However, the development of any genetically modified organism (GMO) requires the application of analytical procedures to confirm the equivalence of the GMO compared to its isogenic non-transgenic counterpart. Moreover, the use of GMOs in foods and agriculture faces numerous criticisms from consumers and ecological organizations that have led some countries to regulate their production, growth, and commercialization. These regulations have brought about the need of new and more powerful analytical methods to face the complexity of this topic. In this regard, MS-based technologies are increasingly used for GMOs analysis to provide very useful information on GMO composition (e.g., metabolites, proteins). This review focuses on the MS-based analytical methodologies used to characterize genetically modified crops (also called transgenic crops). First, an overview on genetically modified crops development is provided, together with the main difficulties of their analysis. Next, the different MS-based analytical approaches applied to characterize GM crops are critically discussed, and include "-omics" approaches and target-based approaches. These methodologies allow the study of intended and unintended effects that result from the genetic transformation. This information is considered to be essential to corroborate (or not) the equivalence of the GM crop with its isogenic non-transgenic counterpart.
Collapse
Affiliation(s)
- Virginia García-Cañas
- Institute of Industrial Fermentations (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
49
|
Ricroch AE, Bergé JB, Kuntz M. Evaluation of genetically engineered crops using transcriptomic, proteomic, and metabolomic profiling techniques. PLANT PHYSIOLOGY 2011; 155:1752-61. [PMID: 21350035 PMCID: PMC3091128 DOI: 10.1104/pp.111.173609] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/17/2011] [Indexed: 05/18/2023]
|
50
|
Kusano M, Redestig H, Hirai T, Oikawa A, Matsuda F, Fukushima A, Arita M, Watanabe S, Yano M, Hiwasa-Tanase K, Ezura H, Saito K. Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment. PLoS One 2011; 6:e16989. [PMID: 21359231 PMCID: PMC3040210 DOI: 10.1371/journal.pone.0016989] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/18/2011] [Indexed: 01/15/2023] Open
Abstract
As metabolomics can provide a biochemical snapshot of an organism's phenotype it is a promising approach for charting the unintended effects of genetic modification. A critical obstacle for this application is the inherently limited metabolomic coverage of any single analytical platform. We propose using multiple analytical platforms for the direct acquisition of an interpretable data set of estimable chemical diversity. As an example, we report an application of our multi-platform approach that assesses the substantial equivalence of tomatoes over-expressing the taste-modifying protein miraculin. In combination, the chosen platforms detected compounds that represent 86% of the estimated chemical diversity of the metabolites listed in the LycoCyc database. Following a proof-of-safety approach, we show that % had an acceptable range of variation while simultaneously indicating a reproducible transformation-related metabolic signature. We conclude that multi-platform metabolomics is an approach that is both sensitive and robust and that it constitutes a good starting point for characterizing genetically modified organisms.
Collapse
|