1
|
Danielsson A, Samsonov SA, Liwo A, Sieradzan AK. Extension of the SUGRES-1P Coarse-Grained Model of Polysaccharides to Heparin. J Chem Theory Comput 2023; 19:6023-6036. [PMID: 37587433 PMCID: PMC10500997 DOI: 10.1021/acs.jctc.3c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 08/18/2023]
Abstract
Heparin is an unbranched periodic polysaccharide composed of negatively charged monomers and involved in key biological processes, including anticoagulation, angiogenesis, and inflammation. Its structure and dynamics have been studied extensively using experimental as well as theoretical approaches. The conventional approach of computational chemistry applied to the analysis of biomolecules is all-atom molecular dynamics, which captures the interactions of individual atoms by solving Newton's equation of motion. An alternative is molecular dynamics simulations using coarse-grained models of biomacromolecules, which offer a reduction of the representation and consequently enable us to extend the time and size scale of simulations by orders of magnitude. In this work, we extend the UNIfied COarse-gRaiNed (UNICORN) model of biological macromolecules developed in our laboratory to heparin. We carried out extensive tests to estimate the optimal weights of energy terms of the effective energy function as well as the optimal Debye-Hückel screening factor for electrostatic interactions. We applied the model to study unbound heparin molecules of polymerization degree ranging from 6 to 68 residues. We compare the obtained coarse-grained heparin conformations with models obtained from X-ray diffraction studies of heparin. The SUGRES-1P force field was able to accurately predict the general shape and global characteristics of heparin molecules.
Collapse
Affiliation(s)
- Annemarie Danielsson
- Faculty of Chemistry, University
of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Sergey A. Samsonov
- Faculty of Chemistry, University
of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Adam Liwo
- Faculty of Chemistry, University
of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Adam K. Sieradzan
- Faculty of Chemistry, University
of Gdansk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
2
|
Al-Hakim A. General Considerations for Diversifying Heparin Drug Products by Improving the Current Heparin Manufacturing Process and Reintroducing Bovine Sourced Heparin to the US Market. Clin Appl Thromb Hemost 2021; 27:10760296211052293. [PMID: 34894779 PMCID: PMC8678904 DOI: 10.1177/10760296211052293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Heparin is one of the most widely used drugs in the world. It has been described as a lifesaving drug due to its roles in treating many serious diseases and illnesses including kidney dialysis, surgery, cardiac-invasive, heart attack, cardiac arrhythmia, acute coronary syndrome, pulmonary embolism, stroke, deep vein thrombosis, blood clot prevention, and many other related uses. Heparin drug products currently approved in the United States are obtained from porcine intestinal mucosa sourced from pigs, the majority of which is imported from China. However, due to the heparin contamination crisis (2008) and potential shortage and to safeguard the quality of current and future heparin supply chains including raw material, Food and Drug administration (FDA) posted a notification on its website titled “FDA Encourages Reintroduction of Bovine-Sourced Heparin”. This perspective is intended to address the history of regulatory and scientific background of heparin drug products obtained from bovine and porcine sources and general recommendations for improving the quality of current heparin manufacturing process including Critical Quality Attributes (CQA), control management, process control, related tests, limits, etc. Additionally, a general plan with systematic steps is proposed for diversifying heparin supply chains by reintroduction of bovine sourced heparin to the US market.
Collapse
Affiliation(s)
- Ali Al-Hakim
- Office of New Drug Products, OPQ/CDER/FDA, Silver Spring, USA
| |
Collapse
|
3
|
Souza PR, de Oliveira AC, Vilsinski BH, Kipper MJ, Martins AF. Polysaccharide-Based Materials Created by Physical Processes: From Preparation to Biomedical Applications. Pharmaceutics 2021; 13:621. [PMID: 33925380 PMCID: PMC8146878 DOI: 10.3390/pharmaceutics13050621] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharide-based materials created by physical processes have received considerable attention for biomedical applications. These structures are often made by associating charged polyelectrolytes in aqueous solutions, avoiding toxic chemistries (crosslinking agents). We review the principal polysaccharides (glycosaminoglycans, marine polysaccharides, and derivatives) containing ionizable groups in their structures and cellulose (neutral polysaccharide). Physical materials with high stability in aqueous media can be developed depending on the selected strategy. We review strategies, including coacervation, ionotropic gelation, electrospinning, layer-by-layer coating, gelation of polymer blends, solvent evaporation, and freezing-thawing methods, that create polysaccharide-based assemblies via in situ (one-step) methods for biomedical applications. We focus on materials used for growth factor (GFs) delivery, scaffolds, antimicrobial coatings, and wound dressings.
Collapse
Affiliation(s)
- Paulo R. Souza
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Ariel C. de Oliveira
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
| | - Bruno H. Vilsinski
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| | - Alessandro F. Martins
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Zhang M, Li G, Zhang Y, Kang J. Quantitative analysis of antithrombin III binding site in low molecular weight heparins by exhausetive heparinases digestion and capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:78-83. [PMID: 29031112 DOI: 10.1016/j.jchromb.2017.08.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/12/2017] [Accepted: 08/16/2017] [Indexed: 10/18/2022]
Abstract
The antithrombin III (ATIII)-binding site, which contains a special 3-O-sulfated, N-sulfated glucosamine residue with or without 6-O-sulfation, is mainly responsible for the anticoagulant activity of heparin. Undergoing the chemical depolymerization process, the preservation of the ATIII-binding site in low molecular weight heparins (LMWHs) are varied leading to the fluctuation of the anticoagulant activity. Herein we report a capillary electrophoresis (CE) method in combination with heparinase digestion and affinity chromatography for the measurement of molar percentage of ATIII-binding site of LMWHs. After exhaustively digesting LMWHs with the mixture of heparinase I, II and III, almost all the resulting oligosaccharide building blocks, including the three 3-O-sulfated tetrasaccharides derived from the ATIII-binding site, were resolved by CE separation. The peak area of each building block permits quantification of the molar percentage of the ATIII-binding site. The peaks corresponding to the 3-O-sulfated tetrasaccharides were assigned based on the linear relationship between the electrophoretic mobilities of the oligosaccharides and their charge to mass ratios. The peak assignment was further confirmed by analysis of the high ATIII affinity fractions, which contains much high 3-O-sulfated tetrasaccharides. With the method, the molar percentage of the ATIII-binding site of enoxaparin from different batches and different manufactures were measured and compared. It was demonstrated that the CE method provides more precise data for assessing the anti-FXa activity than that of the biochemical assay method.
Collapse
Affiliation(s)
- Mingyu Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Lingling Road 345, Shanghai 200032, China
| | - Gong Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Lingling Road 345, Shanghai 200032, China
| | - Yi Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Lingling Road 345, Shanghai 200032, China
| | - Jingwu Kang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Lingling Road 345, Shanghai 200032, China; School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200031, China.
| |
Collapse
|
5
|
Dinges MM, Solakyildirim K, Larive CK. Affinity capillary electrophoresis for the determination of binding affinities for low molecular weight heparins and antithrombin-III. Electrophoresis 2014; 35:1469-77. [DOI: 10.1002/elps.201300549] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Meredith M. Dinges
- Department of Chemistry; University of California-Riverside; Riverside CA USA
| | - Kemal Solakyildirim
- Department of Chemistry; University of California-Riverside; Riverside CA USA
| | - Cynthia K. Larive
- Department of Chemistry; University of California-Riverside; Riverside CA USA
| |
Collapse
|
6
|
|
7
|
Mazák K, Beecher CN, Kraszni M, Larive CK. The interaction of enoxaparin and fondaparinux with calcium. Carbohydr Res 2013; 384:13-9. [PMID: 24334236 DOI: 10.1016/j.carres.2013.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/24/2013] [Accepted: 11/11/2013] [Indexed: 01/06/2023]
Abstract
The main sites of calcium binding were determined for the low molecular weight heparin drug enoxaparin and the synthetic pentasaccharide Arixtra (fondaparinux). [(1)H,(13)C] HSQC pH titrations were carried out to characterize the acid-base properties of these samples both in the presence and absence of calcium. The differences in the titration curves were used to determine the structural components of enoxaparin and fondaparinux responsible for Ca(2+) binding. In enoxaparin both unsubstituted and 2-O-sulfated iduronic acid residues are important in calcium binding and the presence of the 2-O-sulfo group does not seem to influence the Ca(2+) binding capability of the iduronate ring. In fondaparinux changes in chemical shifts upon Ca(2+) binding were smaller than observed for enoxaparin, and were observed for both the glucuronic acid and 2-O-sulfated iduronic acid residues. In enoxaparin significant perturbations of the chemical shift of the N-sulfoglucosamine anomeric carbon in residues connected to 2-O-sulfated iduronic acid were detected on Ca(2+) binding, however it was not possible to determine whether these changes reflect direct involvement in calcium complexation or result from through space interactions or conformational changes.
Collapse
Affiliation(s)
- Károly Mazák
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA; Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E. u. 9, 1092 Budapest, Hungary
| | - Consuelo N Beecher
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Márta Kraszni
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA; Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E. u. 9, 1092 Budapest, Hungary
| | - Cynthia K Larive
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
8
|
Furukawa JI, Fujitani N, Shinohara Y. Recent advances in cellular glycomic analyses. Biomolecules 2013; 3:198-225. [PMID: 24970165 PMCID: PMC4030886 DOI: 10.3390/biom3010198] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/28/2013] [Accepted: 02/14/2013] [Indexed: 12/21/2022] Open
Abstract
A large variety of glycans is intricately located on the cell surface, and the overall profile (the glycome, given the entire repertoire of glycoconjugate-associated sugars in cells and tissues) is believed to be crucial for the diverse roles of glycans, which are mediated by specific interactions that control cell-cell adhesion, immune response, microbial pathogenesis and other cellular events. The glycomic profile also reflects cellular alterations, such as development, differentiation and cancerous change. A glycoconjugate-based approach would therefore be expected to streamline discovery of novel cellular biomarkers. Development of such an approach has proven challenging, due to the technical difficulties associated with the analysis of various types of cellular glycomes; however, recent progress in the development of analytical methodologies and strategies has begun to clarify the cellular glycomics of various classes of glycoconjugates. This review focuses on recent advances in the technical aspects of cellular glycomic analyses of major classes of glycoconjugates, including N- and O-linked glycans, derived from glycoproteins, proteoglycans and glycosphingolipids. Articles that unveil the glycomics of various biologically important cells, including embryonic and somatic stem cells, induced pluripotent stem (iPS) cells and cancer cells, are discussed.
Collapse
Affiliation(s)
- Jun-Ichi Furukawa
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Naoki Fujitani
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasuro Shinohara
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
9
|
Zhang Q, Chen X, Zhu Z, Zhan X, Wu Y, Song L, Kang J. Structural Analysis of Low Molecular Weight Heparin by Ultraperformance Size Exclusion Chromatography/Time of Flight Mass Spectrometry and Capillary Zone Electrophoresis. Anal Chem 2013; 85:1819-27. [DOI: 10.1021/ac303185w] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qianqian Zhang
- Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences,
Lingling Road 345, Shanghai 200032, China
| | - Xi Chen
- Waters Corporation, Block
13, Jinhai Road 1000 , Pudong New District, Shanghai 201206,
China
| | - Zhijia Zhu
- College of Chemistry,
Chemical
Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xueqiang Zhan
- College of Chemistry,
Chemical
Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yanfang Wu
- College of Chemistry,
Chemical
Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Lankun Song
- Waters Corporation, Block
13, Jinhai Road 1000 , Pudong New District, Shanghai 201206,
China
| | - Jingwu Kang
- Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences,
Lingling Road 345, Shanghai 200032, China
| |
Collapse
|
10
|
Determination of binding constants between one protein and multiple carbohydrates by affinity chromatography on a microchip. J Chromatogr A 2012. [DOI: 10.1016/j.chroma.2012.10.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Characterization of currently marketed heparin products: Analysis of heparin digests by RPIP-UHPLC–QTOF-MS. J Pharm Biomed Anal 2012; 67-68:42-50. [DOI: 10.1016/j.jpba.2012.04.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 11/20/2022]
|
12
|
Zhao X, Yang B, Datta P, Gasmili L, Zhang F, Linhardt RJ. Cell-Based Microscale Isolation of Glycoaminoglycans for Glycomics Study. J Carbohydr Chem 2012; 31:420-435. [PMID: 24068855 DOI: 10.1080/07328303.2012.658126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Glycomics research requires the isolation of glycans from cells for structural characterization and functional studies of the glycans. A method for cell-based microscale isolation and quantification of highly sulfated, moderately sulfated, and nonsulfated glycosaminoglycans (GAGs) was developed using Chinese hamster ovary (CHO) cells. This microscale isolation relies on a mini-strong anion exchange spin column eluted stepwise with different concentrations of sodium chloride solution. Hyaluronic acid, chondroitin sulfate, and heparin were used to optimize the isolation of the endogenous glycosaminoglycans in CHO cells. This method can also be used to determine the presence of nonsulfated GAGs including heparosan, hyaluronic acid, and nonsulfated chondroitin.
Collapse
Affiliation(s)
- Xue Zhao
- College of Food Science and Technology, Ocean University of China, Qingdao, Shandong, 266003, P.R. China ; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | | | |
Collapse
|
13
|
Langeslay DJ, Jones CJ, Beni S, Larive CK. Glycosaminoglycans: oligosaccharide analysis by liquid chromatography, capillary electrophoresis, and specific labeling. Methods Mol Biol 2012; 836:131-44. [PMID: 22252632 DOI: 10.1007/978-1-61779-498-8_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Glycosaminoglycans (GAGs) are a class of biopolymers that include chondrotin sulfate, dermatan sulfate, keratan sulfate, hyaluronic acid, heparin, and heparan sulfate. The GAGs are linear polysaccharides that are microheterogeneous in composition and polydisperse in size. Because they have the most complex structures, this article is aimed at describing a step-by-step procedure for processing and analyzing heparin and heparan sulfate-derived oligosaccharides, although the basic protocols and procedures apply equally well to other members of the GAG family. The methods described in this manuscript include the preparation of oligosaccharides through enzymatic depolymerization, size fractionation by preparative scale size-exclusion chromatography (SEC), and disaccharide isomer analysis by reverse-phase ion-pair high-performance liquid chromatography (RPIP-HPLC) and capillary electrophoresis (CE).
Collapse
Affiliation(s)
- Derek J Langeslay
- Department of Chemistry, University of California-Riverside, Riverside, CA, USA
| | | | | | | |
Collapse
|
14
|
Chang Y, Yang B, Zhao X, Linhardt RJ. Analysis of glycosaminoglycan-derived disaccharides by capillary electrophoresis using laser-induced fluorescence detection. Anal Biochem 2012; 427:91-8. [PMID: 22609076 DOI: 10.1016/j.ab.2012.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/05/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
Abstract
A quantitative and highly sensitive method for the analysis of glycosaminoglycan (GAG)-derived disaccharides that relies on capillary electrophoresis (CE) with laser-induced fluorescence detection is presented. This method enables complete separation of 17 GAG-derived disaccharides in a single run. Unsaturated disaccharides were derivatized with 2-aminoacridone to improve sensitivity. The limit of detection was at the attomole level and approximately 100-fold more sensitive than traditional CE-ultraviolet detection. A CE separation timetable was developed to achieve complete resolution and shorten analysis time. The relative standard deviations of migration time and peak areas at both low and high concentrations of unsaturated disaccharides are all less than 2.7 and 3.2%, respectively, demonstrating that this is a reproducible method. This analysis was successfully applied to cultured Chinese hamster ovary cell samples for determination of GAG disaccharides. The current method simplifies GAG extraction steps and reduces inaccuracy in calculating ratios of heparin/heparan sulfate to chondroitin sulfate/dermatan sulfate resulting from the separate analyses of a single sample.
Collapse
Affiliation(s)
- Yuqing Chang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
15
|
Yang B, Chang Y, Weyers AM, Sterner E, Linhardt RJ. Disaccharide analysis of glycosaminoglycan mixtures by ultra-high-performance liquid chromatography-mass spectrometry. J Chromatogr A 2012; 1225:91-8. [PMID: 22236563 PMCID: PMC3268819 DOI: 10.1016/j.chroma.2011.12.063] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 11/26/2022]
Abstract
Glycosaminoglycans are a family of polysaccharides widely distributed in all eukaryotic cells. These polyanionic, linear chain polysaccharides are composed of repeating disaccharide units that are often differentially substituted with sulfo groups. The diversity of glycosaminoglycan structures in cells, tissues and among different organisms reflect their functional an evolutionary importance. Glycosaminoglycan composition and structure also changes in development, aging and in disease progression, making their accurate and reliable analysis a critical, albeit, challenging endeavor. Quantitative disaccharide compositional analysis is one of the primary ways to characterize glycosaminoglycan composition and structure and has a direct relationship with glycosaminoglycan biological functions. In this study, glycosaminoglycan disaccharides, prepared from heparan sulfate/heparin, chondroitin sulfate/dermatan sulfate and neutral hyaluronic acid using multiple polysaccharide lyases, were fluorescently labeled with 2-aminoacridone, fractionated into 17 well-resolved components by reverse-phase ultra-performance liquid chromatography, and analyzed by electrospray ionization mass spectrometry. This analysis was successfully applied to cell, tissue, and biological fluid samples for the picomole level detection of glycosaminoglycan composition and structure.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
16
|
Jones CJ, Beni S, Larive CK. Understanding the effect of the counterion on the reverse-phase ion-pair high-performance liquid chromatography (RPIP-HPLC) resolution of heparin-related saccharide anomers. Anal Chem 2011; 83:6762-9. [PMID: 21780769 DOI: 10.1021/ac2013724] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reverse-phase ion-pair high-performance liquid chromatography (RPIP-HPLC) is an increasingly popular chromatographic technique for the separation of charged compounds, including oligosaccharides derived from the glycosaminoglycans (GAGs) heparin and heparan sulfate (HS). This family of heparin disaccharides has been shown to be useful compounds to probe the details of the RPIP-HPLC separation mechanism, the aspects of which are still being debated. In this manuscript, the effects of ion-pairing reagent (IPR) concentration, counterion, and mobile phase pH on the quality of the RPIP-UPLC separation were examined with particular emphasis on how these factors impact the separation of the disaccharide anomers. These results highlight the role of the IPR counterion and demonstrate that the resolution of the disaccharide anomers can be minimized by conducting the separation at low pH, simplifying chromatographic analysis and improving resolution. The results presented herein can also provide insights into strategies for developing more sensitive and efficient reverse-phase separations for other charged analytes including larger GAG oligosaccharides.
Collapse
Affiliation(s)
- Christopher J Jones
- Department of Chemistry, University of California-Riverside, Riverside, California 92521, USA
| | | | | |
Collapse
|
17
|
Yang B, Weyers A, Baik JY, Sterner E, Sharfstein S, Mousa SA, Zhang F, Dordick JS, Linhardt RJ. Ultra-performance ion-pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for heparin disaccharide analysis. Anal Biochem 2011; 415:59-66. [PMID: 21530482 DOI: 10.1016/j.ab.2011.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 11/29/2022]
Abstract
A high-resolution method for the separation and analysis of disaccharides prepared from heparin and heparan sulfate (HS) using heparin lyases is described. Ultra-performance liquid chromatography in a reverse-phase ion-pairing mode efficiently separates eight heparin/HS disaccharides. The disaccharides can then be detected and quantified using electrospray ionization mass spectrometry. This method is particularly useful in the analysis of small amounts of biological samples, including cells, tissues, and biological fluids, because it provides high sensitivity without being subject to interference from proteins, peptides, and other sample impurities.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Limtiaco JFK, Langeslay DJ, Beni S, Larive CK. Getting to know the nitrogen next door: HNMBC measurements of amino sugars. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 209:323-331. [PMID: 21371922 DOI: 10.1016/j.jmr.2011.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/21/2011] [Accepted: 01/28/2011] [Indexed: 05/30/2023]
Abstract
Long-range ¹H-¹⁵N correlations detected by the heteronuclear multiple-bond correlation (HMBC) experiment are explored for the characterization of amino sugars. The gradient-enhanced HMBC, IMPACT-HMBC, and a modified pulse sequence with the ¹J-filters removed, IMPACT-HNMBC, are compared for sensitivity and resolution. ¹⁵N chemical shifts and long-range proton correlations are reported using the IMPACT-HNMBC experiment for N-acetyl-glucosamine, N-acetyl-galactosamine, and for a series of glucosamine analogs with an N-sulfo substitution, unmodified amino group, and 6-O-sulfonation. As is common with sugars, for all the compounds examined both anomeric forms are present in solution. For each compound studied, the ¹⁵N chemical shifts of the α anomer are downfield of the β form. For the N-acetylated sugars, the β anomer has a unique long-range ¹⁵N correlation to the anomeric proton not observed for the α anomer. Though N-sulfonation results in a significant change in the ¹⁵N chemical shift of the glucosamine analogs, 6-O sulfo substitution has no significant effect on the local environment of the amino nitrogen. For N-acetylated sugars in D₂O solution, peaks in the ¹⁵N projection of the HMBC spectrum appear as triplets as a result of J-modulation due to ²H-¹⁵N coupling.
Collapse
Affiliation(s)
- John F K Limtiaco
- Department of Chemistry, University of California - Riverside, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
19
|
Yang B, Solakyildirim K, Chang Y, Linhardt RJ. Hyphenated techniques for the analysis of heparin and heparan sulfate. Anal Bioanal Chem 2011; 399:541-57. [PMID: 20853165 PMCID: PMC3235348 DOI: 10.1007/s00216-010-4117-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/06/2010] [Accepted: 08/09/2010] [Indexed: 12/11/2022]
Abstract
The elucidation of the structure of glycosaminoglycan has proven to be challenging for analytical chemists. Molecules of glycosaminoglycan have a high negative charge and are polydisperse and microheterogeneous, thus requiring the application of multiple analytical techniques and methods. Heparin and heparan sulfate are the most structurally complex of the glycosaminoglycans and are widely distributed in nature. They play critical roles in physiological and pathophysiological processes through their interaction with heparin-binding proteins. Moreover, heparin and low-molecular weight heparin are currently used as pharmaceutical drugs to control blood coagulation. In 2008, the health crisis resulting from the contamination of pharmaceutical heparin led to considerable attention regarding their analysis and structural characterization. Modern analytical techniques, including high-performance liquid chromatography, capillary electrophoresis, mass spectrometry, and nuclear magnetic resonance spectroscopy, played critical roles in this effort. A successful combination of separation and spectral techniques will clearly provide a critical advantage in the future analysis of heparin and heparan sulfate. This review focuses on recent efforts to develop hyphenated techniques for the analysis of heparin and heparan sulfate.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kemal Solakyildirim
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Yuqing Chang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
20
|
Beni S, Limtiaco JFK, Larive CK. Analysis and characterization of heparin impurities. Anal Bioanal Chem 2010; 399:527-39. [PMID: 20814668 PMCID: PMC3015169 DOI: 10.1007/s00216-010-4121-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 12/16/2022]
Abstract
This review discusses recent developments in analytical methods available for the sensitive separation, detection and structural characterization of heparin contaminants. The adulteration of raw heparin with oversulfated chondroitin sulfate (OSCS) in 2007–2008 spawned a global crisis resulting in extensive revisions to the pharmacopeia monographs on heparin and prompting the FDA to recommend the development of additional physicochemical methods for the analysis of heparin purity. The analytical chemistry community quickly responded to this challenge, developing a wide variety of innovative approaches, several of which are reported in this special issue. This review provides an overview of methods of heparin isolation and digestion, discusses known heparin contaminants, including OSCS, and summarizes recent publications on heparin impurity analysis using sensors, near-IR, Raman, and NMR spectroscopy, as well as electrophoretic and chromatographic separations. Schematic illustrating the process for heparin impurity characterization ![]()
Collapse
Affiliation(s)
- Szabolcs Beni
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|