1
|
Zeng X, Yi ZJ, Zhu GY, Zhu NN, Chen YF, Xiao JM, Chen RH, Yang M, Jin H, Bin DS, Li D. Stable Na/K-S Batteries with Conductive Organosulfur Polymer Microcages as Cathodes. J Am Chem Soc 2025; 147:566-575. [PMID: 39686872 DOI: 10.1021/jacs.4c11845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Na-S and K-S batteries, with high-energy density, using naturally more abundant and affordable metals compared with rare resources like Li, Co, and Ni elements, have inspired intense research interest. However, the sulfur cathodes for Na/K storage are plagued by soluble polysulfide shuttling, larger volumetric deformation, and sluggish redox kinetics. Here, we report that a conductive organosulfur polymer microcage, fabricated facilely with the microbe and elemental sulfur as precursors, can effectively address these issues for stable high-capacity Na-S and K-S batteries. The covalently bonded short-chain sulfur species enable superior reaction kinetics and avoid soluble polysulfide formation. The microcage architecture with built-in cavities buffers the volume deformation to ensure a resilient electrode. The resultant conductive organosulfur polymer can promise a combination of high capacity and extraordinary cyclability with a promising rate and Coulombic efficiency. Especially, as a K-S battery cathode, it could deliver a high capacity of 1206.5 mAh g-1 together with an extraordinary cyclability (>99% capacity retention over 1100 cycles), which is much better than that of state-of-the-art sulfur cathodes. This work envisions new perspectives on building conductive organosulfur cathode materials with high performance via a simple and feasible protocol.
Collapse
Affiliation(s)
- Xian Zeng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Zi-Jian Yi
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Guo-Yu Zhu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Ning-Ning Zhu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Yan-Fei Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Ji-Miao Xiao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Run-Hang Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Menghua Yang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Hongchang Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - De-Shan Bin
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Fan H, Wang Q, Liu H, Han B, Liu H, Yang G. Surface Engineering of Biochar Toward Simultaneously Generating Superamphiphilicity and Catalytic Activity for Strengthening Pickering Interfacial Catalysis. CHEMSUSCHEM 2024; 17:e202400248. [PMID: 38695866 DOI: 10.1002/cssc.202400248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Indexed: 06/06/2024]
Abstract
Multifunctional carbon materials have revealed distinctive features and excellent performance in the field of catalysis. However, the facile fabrication of bifunctional carbon materials with special wettability and catalytic activity remains a grand challenge in Pickering emulsion catalysis. Herein, we reported one-step construction of bifunctional biochar with superamphiphilicity and catalytic activity directly from the thermolysis of sawdust and 1-butyl-3-methylimidazolium tetrafluoroborate for enhancing the oxidation of benzyl alcohol in Pickering emulsion. Co-doping of B and F enhanced the hydrophilicity of biochar, and the oleophilicity of biochar was kept simultaneously. Conversion became 4 times using bifunctional biochar compared with blank results during the oxidation of benzyl alcohol. More interestingly, the turnover frequency (TOF) value using bifunctional biochar enhanced 61 % than that employing N-doped superamphiphilic carbon without catalytic activity. Catalytic activities of bifunctional biochar could be ascribed to the existence of different chemical bonds containing the element B. This work paves a path toward rational design of bifunctional biochar materials with special wettability and catalytic activity for greatly enhancing the liquid-liquid biphasic reaction efficiencies.
Collapse
Affiliation(s)
- Honglei Fan
- School of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264006, China
| | - Qiuxia Wang
- School of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Hongliang Liu
- School of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264006, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guanying Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
3
|
Li Y, Cui Z, Shi L, Bao Q, Shu R, Zhu W, Zhang W, Ji Y, Shen Y, Cheng J, Wang J. Asymmetric Nanobowl Confinement-Engineered "Plasmonic Storms" for Machine Learning-Assisted Ultrasensitive Immunochromatographic Assay of Pathogens. Anal Chem 2024. [PMID: 39252431 DOI: 10.1021/acs.analchem.4c03417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Efficient field enhancement effects through plasmonic chemistry for ultrasensitive biosensing still face a great challenge. Herein, nanoconfinement engineering accumulation and synergistic effects are used to develop a "plasmonic storms" strategy with a high field enhancement effect, and gold nanoparticles (AuNPs) are used as active sites for a proof of concept because of their distinctive localized surface plasmon resonance and neighborly coupled electromagnetic field. Briefly, a large number of AuNPs are selectively and accurately stacked in the confined nanocavity of the bowl-like nanostructure through an in situ-synthesized strategy, which provides a space for strong coupling of electromagnetic fields between these adjacent AuNPs, forming "plasmonic storms" with an enhanced field that is 3 orders of magnitude higher than that of free AuNPs. The proposed nanoconfinement-engineered "plasmonic storms" are demonstrated by surface-enhanced Raman scattering (SERS) and photothermal experiments and theoretically visualized by finite element simulation. Finally, the proposed "plasmonic storms" are used for enhanced colorimetric/SERS/photothermal immunochromatographic assay to detect Salmonella typhimurium with the help of a machine learning algorithm, achieving a low limit of detection of 142 CFU mL-1, highlighting the potential of nanoconfinement in biosensing.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Zhaowen Cui
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Qinyuan Bao
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yizhong Shen
- School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technologies for Agro-Products, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Pi Y, Li H, Liu J. Design of hollow structured nanoreactors for liquid-phase hydrogenations. Chem Commun (Camb) 2024; 60:9340-9351. [PMID: 39118564 DOI: 10.1039/d4cc02837f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Inspired by the attractive structures and functions of natural matter (such as cells, organelles and enzymes), chemists are constantly exploring innovative material platforms to mimic natural catalytic systems, particularly liquid-phase hydrogenations, which are of great significance for chemical upgrading and synthesis. Hollow structured nanoreactors (HSNRs), featuring unique nanoarchitectures and advantageous properties, offer new opportunities for achieving excellent catalytic activity, selectivity, stability and sustainability. Notwithstanding the great progress made in HSNRs, there still remain the challenges of precise synthetic chemistry, and mesoscale catalytic kinetic investigation, and smart catalysis. To this extent, we provide an overview of recent developments in the synthetic chemistry of HSNRs, the unique characteristics of these materials and catalytic mechanisms in HSNRs. Finally, a brief outlook, challenges and further opportunities for their synthetic methodologies and catalytic application are discussed. This review might promote the creation of further HSNRs, realize the sustainable production of fine chemicals and pharmaceuticals, and contribute to the development of materials science.
Collapse
Affiliation(s)
- Yutong Pi
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Haitao Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| | - Jian Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010021, P. R. China.
| |
Collapse
|
5
|
Chen RH, Xiao JM, Zhu NN, Xiao RH, Liu WY, Zeng X, Chen YF, Yi ZJ, Zhu GY, Liu L, Bin DS, Li D. Shell Modulation of Hollow Metal Sulfide Nanocomposite for Stable Potassium Storage at Room and High Temperature. Angew Chem Int Ed Engl 2024; 63:e202402497. [PMID: 38679571 DOI: 10.1002/anie.202402497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
The large size of K-ion makes the pursuit of stable high-capacity anodes for K-ion batteries (KIBs) a formidable challenge, particularly for high temperature KIBs as the electrode instability becomes more aggravated with temperature climbing. Herein, we demonstrate that a hollow ZnS@C nanocomposite (h-ZnS@C) with a precise shell modulation can resist electrode disintegration to enable stable high-capacity potassium storage at room and high temperature. Based on a model electrode, we identify an interesting structure-function correlation of the h-ZnS@C: with an increase in the shell thickness, the cyclability increases while the rate and capacity decrease, shedding light on the design of high-performance h-ZnS@C anodes via engineering the shell thickness. Typically, the h-ZnS@C anode with a shell thickness of 60 nm can deliver an impressive comprehensive performance at room temperature; the h-ZnS@C with shell thickness increasing to 75 nm can achieve an extraordinary stability (88.6 % capacity retention over 450 cycles) with a high capacity (450 mAh g-1) and a superb rate even at an extreme temperature of 60 °C, which is much superior than those reported anodes. This contribution envisions new perspectives on rational design of functional metal sulfides composite toward high-performance KIBs with insights into the significant structure-function correlation.
Collapse
Affiliation(s)
- Run-Hang Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Ji-Miao Xiao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Ning-Ning Zhu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Rong-Hui Xiao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Wan-Yi Liu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xian Zeng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Yan-Fei Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Zi-Jian Yi
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Guo-Yu Zhu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - De-Shan Bin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
6
|
Zheng ZL, Wu MM, Zeng X, Zhu XW, Luo D, Chen XL, Chen YF, Yang GZ, Bin DS, Zhou XP, Li D. Facile Fabrication of Hollow Nanoporous Carbon Architectures by Controlling MOF Crystalline Inhomogeneity for Ultra-Stable Na-Ion Storage. Angew Chem Int Ed Engl 2024; 63:e202400012. [PMID: 38340327 DOI: 10.1002/anie.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
Hollow nanoporous carbon architectures (HNCs) present significant utilitarian value for a wide variety of applications. Facile and efficient preparation of HNCs has long been pursued but still remains challenging. Herein, we for the first time demonstrate that single-component metal-organic frameworks (MOFs) crystals, rather than the widely reported hybrid ones which necessitate tedious operations for preparation, could enable the facile and versatile syntheses of functional HNCs. By controlling the growth kinetics, the MOFs crystals (STU-1) are readily engineered into different shapes with designated styles of crystalline inhomogeneity. A subsequent one-step pyrolysis of these MOFs with intraparticle difference can induce a simultaneous self-hollowing and carbonization process, thereby producing various functional HNCs including yolk-shell polyhedrons, hollow microspheres, mesoporous architectures, and superstructures. Superior to the existing methods, this synthetic strategy relies only on the complex nature of single-component MOFs crystals without involving tedious operations like coating, etching, or ligand exchange, making it convenient, efficient, and easy to scale up. An ultra-stable Na-ion battery anode is demonstrated by the HNCs with extraordinary cyclability (93 % capacity retention over 8000 cycles), highlighting a high level of functionality of the HNCs.
Collapse
Affiliation(s)
- Ze-Lin Zheng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Ming-Min Wu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xian Zeng
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xiao-Wei Zhu
- School of Chemistry and Environment, Guangdong Engineering Technology Developing Center of High-Performance CCL, Jiaying University, Meizhou, Guangdong, 514015, China
| | - Dong Luo
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xue-Ling Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Yan-Fei Chen
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Guo-Zhan Yang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - De-Shan Bin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
7
|
Silva DF, Melo ALP, Uchôa AFC, Pereira GMA, Alves AEF, Vasconcellos MC, Xavier-Júnior FH, Passos MF. Biomedical Approach of Nanotechnology and Biological Risks: A Mini-Review. Int J Mol Sci 2023; 24:16719. [PMID: 38069043 PMCID: PMC10706257 DOI: 10.3390/ijms242316719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nanotechnology has played a prominent role in biomedical engineering, offering innovative approaches to numerous treatments. Notable advances have been observed in the development of medical devices, contributing to the advancement of modern medicine. This article briefly discusses key applications of nanotechnology in tissue engineering, controlled drug release systems, biosensors and monitoring, and imaging and diagnosis. The particular emphasis on this theme will result in a better understanding, selection, and technical approach to nanomaterials for biomedical purposes, including biological risks, security, and biocompatibility criteria.
Collapse
Affiliation(s)
- Debora F. Silva
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
| | - Ailime L. P. Melo
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| | - Ana F. C. Uchôa
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Graziela M. A. Pereira
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Alisson E. F. Alves
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | | | - Francisco H. Xavier-Júnior
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Marcele F. Passos
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| |
Collapse
|
8
|
Pi Y, Cui L, Luo W, Li H, Ma Y, Ta N, Wang X, Gao R, Wang D, Yang Q, Liu J. Design of Hollow Nanoreactors for Size- and Shape-Selective Catalytic Semihydrogenation Driven by Molecular Recognition. Angew Chem Int Ed Engl 2023; 62:e202307096. [PMID: 37394778 DOI: 10.1002/anie.202307096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Mimicking the structures and functions of cells to create artificial organelles has spurred the development of efficient strategies for production of hollow nanoreactors with biomimetic catalytic functions. However, such structure are challenging to fabricate and are thus rarely reported. We report the design of hollow nanoreactors with hollow multishelled structure (HoMS) and spatially loaded metal nanoparticles. Starting from a molecular-level design strategy, well-defined hollow multishelled structure phenolic resins (HoMS-PR) and carbon (HoMS-C) submicron particles were accurately constructed. HoMS-C serves as an excellent, versatile platform, owing to its tunable properties with tailored functional sites for achieving precise spatial location of metal nanoparticles, internally encapsulated (Pd@HoMS-C) or externally supported (Pd/HoMS-C). Impressively, the combination of the delicate nanoarchitecture and spatially loaded metal nanoparticles endow the pair of nanoreactors with size-shape-selective molecular recognition properties in catalytic semihydrogenation, including high activity and selectivity of Pd@HoMS-C for small aliphatic substrates and Pd/HoMS-C for large aromatic substrates. Theoretical calculations provide insight into the pair of nanoreactors with distinct behaviors due to the differences in energy barrier of substrate adsorption. This work provides guidance on the rational design and accurate construction of hollow nanoreactors with precisely located active sites and a finely modulated microenvironment by mimicking the functions of cells.
Collapse
Affiliation(s)
- Yutong Pi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Linxia Cui
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, 010021, Hohhot, China
| | - Wenhao Luo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, 010021, Hohhot, China
| | - Haitao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
| | - Yanfu Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
| | - Na Ta
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
| | - Xinyao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rui Gao
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, 010021, Hohhot, China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Science and Technology on Particle Materials, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- China University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qihua Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, 010021, Hohhot, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, GU2 7XH, Guildford, Surrey, UK
| |
Collapse
|
9
|
Liu Z, Lu Z, Guo S, Yang QH, Zhou H. Toward High Performance Anodes for Sodium-Ion Batteries: From Hard Carbons to Anode-Free Systems. ACS CENTRAL SCIENCE 2023; 9:1076-1087. [PMID: 37396865 PMCID: PMC10311662 DOI: 10.1021/acscentsci.3c00301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Indexed: 07/04/2023]
Abstract
Sodium-ion batteries (SIBs) have been deemed to be a promising energy storage technology in terms of cost-effectiveness and sustainability. However, the electrodes often operate at potentials beyond their thermodynamic equilibrium, thus requiring the formation of interphases for kinetic stabilization. The interfaces of the anode such as typical hard carbons and sodium metals are particularly unstable because of its much lower chemical potential than the electrolyte. This creates more severe challenges for both anode and cathode interfaces when building anode-free cells to achieve higher energy densities. Manipulating the desolvation process through the nanoconfining strategy has been emphasized as an effective strategy to stabilize the interface and has attracted widespread attention. This Outlook provides a comprehensive understanding about the nanopore-based solvation structure regulation strategy and its role in building practical SIBs and anode-free batteries. Finally, guidelines for the design of better electrolytes and suggestions for constructing stable interphases are proposed from the perspective of desolvation or predesolvation.
Collapse
Affiliation(s)
- Zhaoguo Liu
- College
of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial
Functional Materials, National Laboratory of Solid State Microstructures,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
- Shenzhen
Research Institute of Nanjing University, Shenzhen, Guangdong 518000, China
| | - Ziyang Lu
- Graduate
School of System and Information Engineering University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
- Energy
Technology Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), Central2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Shaohua Guo
- College
of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial
Functional Materials, National Laboratory of Solid State Microstructures,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
- Shenzhen
Research Institute of Nanjing University, Shenzhen, Guangdong 518000, China
| | - Quan-Hong Yang
- Nanoyang
Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical
Energy Storage, and Collaborative Innovation Center of Chemical Science
and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Haoshen Zhou
- College
of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial
Functional Materials, National Laboratory of Solid State Microstructures,
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| |
Collapse
|
10
|
Li Z, Li B, Yu C, Wang H, Li Q. Recent Progress of Hollow Carbon Nanocages: General Design Fundamentals and Diversified Electrochemical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206605. [PMID: 36587986 PMCID: PMC9982577 DOI: 10.1002/advs.202206605] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Indexed: 05/23/2023]
Abstract
Hollow carbon nanocages (HCNCs) consisting of sp2 carbon shells featured by a hollow interior cavity with defective microchannels (or customized mesopores) across the carbon shells, high specific surface area, and tunable electronic structure, are quilt different from the other nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make HCNCs a new platform for advanced electrochemical energy storage and conversion. This review focuses on the controllable preparation, structural regulation, and modification of HCNCs, as well as their electrochemical functions and applications as energy storage materials and electrocatalytic conversion materials. The metal single atoms-functionalized structures and electrochemical properties of HCNCs are summarized systematically and deeply. The research challenges and trends are also envisaged for deepening and extending the study and application of this hollow carbon material. The development of multifunctional carbon-based composite nanocages provides a new idea and method for improving the energy density, power density, and volume performance of electrochemical energy storage and conversion devices.
Collapse
Affiliation(s)
- Zesheng Li
- College of ChemistryGuangdong University of Petrochemical TechnologyMaoming525000China
| | - Bolin Li
- College of ChemistryGuangdong University of Petrochemical TechnologyMaoming525000China
| | - Changlin Yu
- College of ChemistryGuangdong University of Petrochemical TechnologyMaoming525000China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy MaterialsGuangxi Normal UniversityGuilin541004China
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy MaterialsGuangxi Normal UniversityGuilin541004China
| |
Collapse
|
11
|
Wang Y, Qian Y, Zhang L, Zhang Z, Chen S, Liu J, He X, Tian Y. Conductive Metal-Organic Framework Microelectrodes Regulated by Conjugated Molecular Wires for Monitoring of Dopamine in the Mouse Brain. J Am Chem Soc 2023; 145:2118-2126. [PMID: 36650713 DOI: 10.1021/jacs.2c07053] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Herein, we demonstrated a strategy to regulate the conductive metal-organic framework (MOF) surface, by the conjugated molecule wires for selective and sensitive determination of dopamine (DA) in the live brain. The MOFs were decorated at the carbon fiber electrode deposited by Au nanoleaves as the upper electric transducer to provide rich electrocatalytic sites for electron transfer of neurochemicals at the electrode surface, leading to greatly enhanced sensitivity for detection of neurochemicals. On the other hand, the conjugated molecular wire, 4-(thiophen-3-ylethynyl)-benzaldehyde (RP1), was synthesized and assembled as an underlying bridge to regulate the electrochemical processes at the MOF-based electrode, specifically decreasing the reaction Gibbs free energy of DA oxidation, thus selectively promoting the heterogeneous electron transfer of DA from the MOF layer to the electrode surface. Owing to the electrocatalytic activity for DA oxidation, the present microsensor exhibited high selectivity for real-time tracking of DA in a good linear relationship in the range of 0.004-0.4 μM with a detection limit of 1 nM. Eventually, this functionalized electrode was successfully applied for in vivo monitoring of DA in mouse brains with Parkinson's disease (PD) model. The results indicated that the levels of DA were obviously decreased in both acute and subacute PD models. Moreover, the level of DA strongly depended on the amount of uric acid (UA), a physiological antioxidant, which rose as the UA amount was lower than 200 mg kg-1 but was downregulated again after treatment by a higher amount of UA.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yinjie Qian
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Limin Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Zhihui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Shiwei Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jinfeng Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
12
|
Xu H, Yuan J, He G, Chen H. Current and future trends for spinel-type electrocatalysts in electrocatalytic oxygen evolution reaction. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Bin DS, Zheng ZL, Cao AM, Wan LJ. Template-free synthesis of hollow carbon-based nanostructures from MOFs for rechargeable battery applications. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Pi Y, Ma Y, Wang X, Price CAH, Li H, Liu Q, Wang L, Chen H, Hou G, Su BL, Liu J. Multilevel Hollow Phenolic Resin Nanoreactors with Precise Metal Nanoparticles Spatial Location toward Promising Heterogeneous Hydrogenations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205153. [PMID: 35999183 DOI: 10.1002/adma.202205153] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Hollow nanostructures with fascinating properties have inspired numerous interests in broad research fields. Cell-mimicking complex hollow architectures with precise active components distributions are particularly important, while their synthesis remains highly challenging. Herein, a "top-down" chemical surgery strategy is introduced to engrave the 3-aminophenol formaldehyde resin (APF) spheres at nanoscale. Undergoing the cleavage of (Ar)CN bonds with ethanol as chemical scissors and subsequent repolymerization process, the Solid APF transform to multilevel hollow architecture with precise nanospatial distribution of organic functional groups (e.g., hydroxymethyl and amine). The transformation is tracked by electron microscopy and solid-state nuclear magnetic resonance techniques, the category and dosage of alcohol are pivotal for constructing multilevel hollow structures. Moreover, it is demonstrated the evolution of nanostructures accompanied with unique organic microenvironments is able to accurately confine multiple gold (Au) nanoparticles, leading to the formation of pomegranate-like particles. Through selectively depositing palladium (Pd) nanoparticles onto the outer shell, bimetallic Au@APF@Pd catalysts are formed, which exhibit excellent hydrogenation performance with turnover frequency (TOF) value up to 11257 h-1 . This work provides an effective method for precisely manipulating the nanostructure and composition of polymers at nanoscale and sheds light on the design of catalysts with precise spatial active components.
Collapse
Affiliation(s)
- Yutong Pi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yanfu Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xinyao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Cameron-Alexander Hurd Price
- Department of Chemical Engineering and Analytical Science, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
- The University of Manchester at Harwell, Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, UK
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Labs, Harwell campus, Didcot, Oxfordshire, OX11 0FA, UK
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Haitao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Qinglong Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Liwei Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Hongyu Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry, University of Namur, 61, rue de Bruxelles, Namur, 5000, Belgium
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| |
Collapse
|
15
|
Li W, Wang J, Chen J, Chen K, Wen Z, Huang A. Core-Shell Carbon-Based Bifunctional Electrocatalysts Derived from COF@MOF Hybrid for Advanced Rechargeable Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202018. [PMID: 35808960 DOI: 10.1002/smll.202202018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The development of highly active carbon-based bifunctional electrocatalysts for both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is highly desired, but still full of challenges in rechargeable Zn-air batteries. Metal organic frameworks (MOFs) and covalent organic frameworks (COFs) have gained great attention for various applications due to their attractive features of structural tunability, high surface area and high porosity. Herein, a core-shell structured carbon-based hybrid electrocatalyst (H-NSC@Co/NSC), which contains high density active sites of MOF-derived shell (Co/NSC) and COF-derived hollow core (H-NSC), is successfully fabricated by direct pyrolysis of covalently-connected COF@ZIF-67 hybrid. The core-shell H-NSC@Co/NSC hybrid manifests excellent catalytic properties toward both OER and ORR with a small potential gap (∆E = 0.75 V). The H-NSC@Co/NSC assembled Zn-air battery exhibits a high power-density of 204.3 mW cm-2 and stable rechargeability, outperforming that of Pt/C+RuO2 assembled Zn-air battery. Density functional theory calculations reveal that the electronic structure of the carbon frameworks on the Co/NSC shell can be effectively modulated by the embedded Co nanoparticles (NPs), facilitating the adsorption of oxygen intermediates and leading to enhanced catalytic activity. This work will provide a strategy to design highly-efficient electrocatalysts for application in energy conversion and storage.
Collapse
Affiliation(s)
- Wei Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Jingyun Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Junxiang Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Kai Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Aisheng Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
16
|
Advances in Anion Vacancy for Electrocatalytic Oxygen Evolution Reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Yu H, Xu Y, Havener K, Zhang M, Zhang L, Wu W, Huang K. Temperature-Controlled Selectivity of Hydrogenation and Hydrodeoxygenation of Biomass by Superhydrophilic Nitrogen/Oxygen Co-Doped Porous Carbon Nanosphere Supported Pd Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106893. [PMID: 35254000 DOI: 10.1002/smll.202106893] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Selective hydrogenation and hydrodeoxygenation (HDO) of biomass to value-added products play a crucial role in the development of renewable energy resources. However, achieving a temperature-controlled selectivity within one catalytic system while retaining excellent hydrogenation and HDO performance remains a great challenge. Here, nitrogen/oxygen (N/O) co-doped porous carbon nanosphere derived from resin polymer spheres is synthesized as the host matrix to in situ encapsulate highly dispersed Pd nanoparticles (NPs). Through N/O co-doping, the defects on the surface of carbon structure can serve as active sites to promote substrate adsorption. After a facile H2 O2 post-treatment process, the presence of abundant carboxyl groups on the porous carbon nanospheres can act as acidic sites to replace the use of acidic additives in the HDO process. Additionally, the increased surface oxygen-containing groups improve hydrophilicity to disperse catalysts in aqueous solutions. Owing to the unique highly dispersed Pd NPs and abundant surface defects, the Pd@APF-H2 O2 (2.3 nm) catalysts exhibit excellent catalytic activity and temperature-controlled selectivity for hydrogenation and HDO products of biomass-derived vanillin.
Collapse
Affiliation(s)
- Haitao Yu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 N, Dongchuan Road, Shanghai, 200241, P. R. China
| | - Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Kaden Havener
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Meng Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Li Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 N, Dongchuan Road, Shanghai, 200241, P. R. China
| | - Wenjin Wu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 N, Dongchuan Road, Shanghai, 200241, P. R. China
| | - Kun Huang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 N, Dongchuan Road, Shanghai, 200241, P. R. China
| |
Collapse
|
18
|
Xu H, Zhao Y, Wang Q, He G, Chen H. Supports promote single-atom catalysts toward advanced electrocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214261] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Liu T, Huang Y, Zhou S, Wang R, Lei J, Xu P, Yuan R, Dong Q, Chen J. Revealing the Effect of Nickel Nanoparticles for Li Plating and Stripping Processes on Ni−N
x
Doped Hollow Carbon Sphere. ChemElectroChem 2021. [DOI: 10.1002/celc.202100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ting Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Collaborative Innovation Centre of Chemistry for Energy Materials Tan Kah Kee Innovation Laboratory Xiamen University Xiamen Fujian 361005 China
| | - Ying Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Collaborative Innovation Centre of Chemistry for Energy Materials Tan Kah Kee Innovation Laboratory Xiamen University Xiamen Fujian 361005 China
| | - Shengqi Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Collaborative Innovation Centre of Chemistry for Energy Materials Tan Kah Kee Innovation Laboratory Xiamen University Xiamen Fujian 361005 China
| | - Runtong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Collaborative Innovation Centre of Chemistry for Energy Materials Tan Kah Kee Innovation Laboratory Xiamen University Xiamen Fujian 361005 China
| | - Jie Lei
- State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Collaborative Innovation Centre of Chemistry for Energy Materials Tan Kah Kee Innovation Laboratory Xiamen University Xiamen Fujian 361005 China
| | - Pan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Collaborative Innovation Centre of Chemistry for Energy Materials Tan Kah Kee Innovation Laboratory Xiamen University Xiamen Fujian 361005 China
| | - Ruming Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Collaborative Innovation Centre of Chemistry for Energy Materials Tan Kah Kee Innovation Laboratory Xiamen University Xiamen Fujian 361005 China
| | - Quanfeng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Collaborative Innovation Centre of Chemistry for Energy Materials Tan Kah Kee Innovation Laboratory Xiamen University Xiamen Fujian 361005 China
| | - Jiajia Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemistry College of Chemistry and Chemical Engineering Collaborative Innovation Centre of Chemistry for Energy Materials Tan Kah Kee Innovation Laboratory Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
20
|
Luo JM, Sun TQ, Sun YG, Lv RW, Cao AM, Wan LJ. A General Synthesis Strategy for Hollow Metal Oxide Microspheres Enabled by Gel-Assisted Precipitation. Angew Chem Int Ed Engl 2021; 60:21377-21383. [PMID: 34409712 DOI: 10.1002/anie.202106481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Indexed: 11/08/2022]
Abstract
Hollow metal oxide microspheres (HMMs) have drawn enormous attention in different research fields. Reliable and scalable synthetic protocols applicable for a large variety of metal oxides are in emergent demand. Here we demonstrated that polymer hydrogel, such as the resorcinol formaldehyde (RF) one, existed as an efficient synthetic platform to build HMMs. Specifically, the RF gel forms stacked RF microspheres enlaced with its aqueous phase, where the following evaporation of the highly dispersed water leads to a gel-assisted precipitation (GAP) of the dissolved metal precursor onto the embedded polymeric solids suited for the creation of HMMs. By taking advantage of the structural features of hydrogel, this synthesis design avoids the delicate control on the usually necessitated coating process and provides a simple and effective synthetic process versatile for functional HMMs, particularly Nb2 O5 as a high-performance electrode material in Li-ion intercalation pseudocapacitor.
Collapse
Affiliation(s)
- Jin-Min Luo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, 100049, Beijing, P. R. China
| | - Tian-Qi Sun
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190, Beijing, P. R. China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, No.2 Linggong Road, 116024, Dalian City, Liaoning Province, P. R. China
| | - Yong-Gang Sun
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190, Beijing, P. R. China.,School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, No.1 Hope Avenue Road, 224051, Yancheng City, Jiangsu Province, P. R. China
| | - Rong-Wen Lv
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No.2 Linggong Road, 116024, Dalian City, Liaoning Province, P. R. China
| | - An-Min Cao
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, 100049, Beijing, P. R. China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), No.2 Zhongguancun North First Street, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, 100049, Beijing, P. R. China
| |
Collapse
|
21
|
Luo J, Sun T, Sun Y, Lv R, Cao A, Wan L. A General Synthesis Strategy for Hollow Metal Oxide Microspheres Enabled by Gel‐Assisted Precipitation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jin‐Min Luo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (CAS) No.2 Zhongguancun North First Street 100190 Beijing P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road 100049 Beijing P. R. China
| | - Tian‐Qi Sun
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (CAS) No.2 Zhongguancun North First Street 100190 Beijing P. R. China
- State Key Laboratory of Fine Chemicals Dalian University of Technology No.2 Linggong Road 116024 Dalian City Liaoning Province P. R. China
| | - Yong‐Gang Sun
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (CAS) No.2 Zhongguancun North First Street 100190 Beijing P. R. China
- School of Chemistry & Chemical Engineering Yancheng Institute of Technology No.1 Hope Avenue Road 224051 Yancheng City Jiangsu Province P. R. China
| | - Rong‐Wen Lv
- State Key Laboratory of Fine Chemicals Dalian University of Technology No.2 Linggong Road 116024 Dalian City Liaoning Province P. R. China
| | - An‐Min Cao
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (CAS) No.2 Zhongguancun North First Street 100190 Beijing P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road 100049 Beijing P. R. China
| | - Li‐Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (CAS) No.2 Zhongguancun North First Street 100190 Beijing P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road 100049 Beijing P. R. China
| |
Collapse
|
22
|
Chen X, Fang Y, Lu H, Li H, Feng X, Chen W, Ai X, Yang H, Cao Y. Microstructure-Dependent Charge/Discharge Behaviors of Hollow Carbon Spheres and its Implication for Sodium Storage Mechanism on Hard Carbon Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102248. [PMID: 34278719 DOI: 10.1002/smll.202102248] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Hard carbons are actively developed as a promising anode material for sodium ion batteries (SIBs). However, their sodium storage mechanism is poorly understood, leading to difficulties in design and development of high-performance hard carbon anode materials. In this work, hollow carbon spheres (HCSs) with different shell thickness as a model material to investigate the correlation between the microstructural change and resulting Na+ storage behavior during charge/discharge cycles are designed and synthesized. Ex situ X-ray diffraction and Raman evidences reveal that an interlayer spacing change of the graphitic nanodomains occurs in HCS electrode, leading to a shift of the reversible capacity from the high-potential sloping (HPS) region to the low-potential plateau (LPP) region. This unusual capacity shift suggests a microstructure-dependent Na+ storage reaction on the HCS electrode and can be well explained by "adsorption-intercalation" mechanism for these HCS materials. This work strengthens the understanding of the sodium storage behavior and provides a new perspective for the morphological and structural design of hard carbon anode materials for high-performance SIBs.
Collapse
Affiliation(s)
- Xiaoyang Chen
- Engineering Research Center of Organosilicon Compounds & Materials of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Youlong Fang
- Engineering Research Center of Organosilicon Compounds & Materials of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Haiyan Lu
- Engineering Research Center of Organosilicon Compounds & Materials of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hui Li
- Engineering Research Center of Organosilicon Compounds & Materials of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiangming Feng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Weihua Chen
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinping Ai
- Engineering Research Center of Organosilicon Compounds & Materials of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hanxi Yang
- Engineering Research Center of Organosilicon Compounds & Materials of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuliang Cao
- Engineering Research Center of Organosilicon Compounds & Materials of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
23
|
Fan H, Zhang Z, Hou M, Song J, Yang G, Han B. Fabrication of Superamphiphilic Carbon Using Lignosulfonate for Enhancing Selective Hydrogenation Reactions in Pickering Emulsions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25234-25240. [PMID: 34014069 DOI: 10.1021/acsami.1c01672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Superamphiphilic materials have great potential to enhance the mass transfer between phases in liquid-liquid catalysis due to their special affinities. Constructing superamphiphilic surfaces that possess superhydrophilic and superhydrophobic properties simultaneously has been a tough assignment. So, exploration of simple methods to prepare such materials using renewable and abundant feedstocks is highly desired. Here, we reported an effective strategy to construct superamphiphilic carbon directly from sodium lignosulfonate, which is a renewable resource from paper industry wastes. From the characterization of X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) for superamphiphilic carbon, we found that element C was responsible for the hydrophobic nature and the existence of O and S endowed the carbon with hydrophilic characteristics. Further, micro/nanohierarchical pores were found beneficial for the superamphiphilicity of carbon. Meantime, in the selective hydrogenation of styrene, phenylacetylene, and cis-stilbene in liquid-liquid systems, conversion became double using superamphiphilic carbon compared with blank results, and the yields were three times more than those in blank experiments. The reasons were that superamphiphilic carbon induced the formation of Pickering emulsions and enriched the reactants around catalysts, as concluded by the characterization of confocal laser scanning microscopy and relating contrastive experiments. This work revealed a different route to obtain superamphiphilic carbon and provided a diverse perspective to promote Pickering emulsion catalysis by the superamphiphilicity of carbon.
Collapse
Affiliation(s)
- Honglei Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhaofu Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Minqiang Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinliang Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guanying Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|