1
|
Pan J, Zhou X, Gong H, Lin Z, Xiang H, Liu X, Chen X, Li H, Liu T, Liu S. Covalently Functionalized MoS 2 Initiated Gelation of Hydrogels for Flexible Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466084 DOI: 10.1021/acsami.3c03234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Transition metal dichalcogenides (TMDs), with superior mechanical and electrical conductivity, are one of the most promising two-dimensional materials for creating a generation of intelligent and flexible electronic devices. However, due to the high van der Waals and electrostatic attraction, TMD nanomaterials tend to aggregate in dispersants to achieve a stable state, thus severely limiting their further applications. Surface chemical modification is a common strategy for improving the dispersity of TMD nanomaterials; however, there are still constraints such as limited functionalization methods, low grafting rate, and difficult practice application. Thus, it is challenging to develop innovative surface modification systems. Herein, we covalently modify an olefin molecule on surface-inert MoS2, and the modified MoS2 can be used as not only a catalyst for hydrogel polymerization, but also a cross-linker in the hydrogel network. Specifically, allyl is covalently grafted onto chemically exfoliated MoS2, and this modified MoS2 can be uniformly dispersed in polar solvents (such as acetone, N,N-dimethylformamide, and ethanol), remaining stable for more than 2 weeks. The allyl-modified MoS2 can catalyze the polymerization of polyacrylamide hydrogel and then integrate in the network, which increases the tensile strength of the composite hydrogel. The flexible sensor based on the composite hydrogel exhibits an ideal operating range of 600% and a quick response time of 150 ms. At the same time, the flexible device can also track the massive axial stretching movements of human joints, making it a reliable option for the next wave of wearable sensing technology.
Collapse
Affiliation(s)
- Jia Pan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Xionglin Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Huimin Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, P. R. China
| | - Haiyan Xiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Xiao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Xuli Chen
- College of Materials Science and Engineering, Hunan University, South Lushan Road, Changsha 410082, Hunan, P. R. China
| | - Huimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, P. R. China
| | - Song Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| |
Collapse
|
2
|
Li B, Guo L, Ge L, Kwok HF. Pearson's principle-inspired hollow metal sulfide for amplified photoelectrochemical immunoassay for disease-related protein. Biosens Bioelectron 2022; 221:114210. [DOI: 10.1016/j.bios.2022.114210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
|
3
|
Deng Y, Xi X, Xia Y, Cao Y, Xue S, Wan S, Dong A, Yang D. 2D FeP Nanoframe Superlattices via Space-Confined Topochemical Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109145. [PMID: 34982834 DOI: 10.1002/adma.202109145] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Self-assembled nanocrystal superlattices represent an emergent class of designer materials with potentially programmable functionalities. The ability to construct hierarchically structured nanocrystal superlattices with tailored geometry and porosity is critical for extending their applications. Here, 2D superlattices comprising monolayer FeP nanoframes are synthesized through a space-confined topochemical transformation approach induced by the Kirkendall effect, using carbon-coated Fe3 O4 nanocube superlattices as a precursor. The particle shape and the close-packed nature of Fe3 O4 nanocubes as well as the interconnected carbon layer network contribute to the topochemical transformation process. The resulting 2D FeP nanoframe superlattices possess several unique and advantageous structural features that are unavailable in conventional 3D nanocrystal superlattices, which make them particularly attractive for catalytic applications. As a proof of concept, such 2D FeP nanoframe superlattices are harnessed as highly efficient and durable electrocatalysts for the hydrogen evolution reaction, the performance of which is superior to that of most FeP-based catalysts reported previously. This topochemical transformation approach is scalable and general, representing a new route of designing hierarchical superlattices with highly open features that cannot be accessible by traditional self-assembly methods.
Collapse
Affiliation(s)
- Yuwei Deng
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiangyun Xi
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular science, Fudan University, Shanghai, 200433, China
| | - Yan Xia
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular science, Fudan University, Shanghai, 200433, China
| | - Yangfei Cao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Shuqing Xue
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular science, Fudan University, Shanghai, 200433, China
| | - Siyu Wan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Angang Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Dong Yang
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular science, Fudan University, Shanghai, 200433, China
| |
Collapse
|