1
|
Smith JT, Baixeras Buye J, Iddon B, Soloviev DO, Hunter CA. Template-Directed Synthesis of Recognition-Encoded Melamine Oligomers Using a Base-Filling Strategy. J Am Chem Soc 2025. [PMID: 40372043 DOI: 10.1021/jacs.5c05681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Replication of molecular information in nature is based on the synthesis of the backbone of the copy strand by polymerization of monomers bound to a template. An alternative strategy is to use a preassembled polymer backbone devoid of sequence information as the copy strand and to attach side chains in a sequence determined by binding to a template, i.e., base-filling. Base-filling strategies were investigated for template-directed synthesis of recognition-encoded melamine oligomers (REMO) using H-bond base-pairing interactions between 4-nitrophenol and phosphine oxide side chains. A template with three 4-nitrophenol H-bond donor recognition units was used with a blank copy strand equipped with three aldehyde groups for the reversible attachment of amine recognition units via dynamic imine chemistry. Equilibration of the template and blank strands in dichloromethane in the presence of benzylamine and a phosphine oxide recognition unit equipped with an amine resulted in selective incorporation (79%) of the phosphine oxide recognition unit into the resulting copy strand. Covalent attachment of the blank strand to the template with a diester linker increased the selectivity of the base-filling process to 85%, and carrying out the experiment in toluene further increased the selectivity to 92%. The imines in the copy strand were trapped by reduction, and cleavage of the ester linkages allowed recovery of the template strand along with the kinetically stable tris-phosphine oxide copy. Fidelity of templating is determined by the concentration of the template strand, the association constant for the base-pairing interaction, and the effective molarities of the intramolecular interactions in the duplex.
Collapse
Affiliation(s)
- Joseph T Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Joaquin Baixeras Buye
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Ben Iddon
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Daniil O Soloviev
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
2
|
Dhiman M, Escobar L, Smith JT, Hunter CA. Cooperativity in the assembly of H-bonded duplexes of synthetic recognition-encoded melamine oligomers. Chem Sci 2025; 16:5995-6002. [PMID: 40060096 PMCID: PMC11886990 DOI: 10.1039/d4sc08591d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/02/2025] [Indexed: 04/04/2025] Open
Abstract
Recognition-encoded melamine oligomers (REMO) are synthetic polymers composed of repeating triazine-piperazine units and equipped with phenol and phosphine oxide side-chains. Short oligomers have previously been shown to form length- and sequence-selective H-bonded duplexes in non-polar solvents. Here, automated solid phase synthesis was used to prepare homo-sequence REMO with either twelve phenol recognition units or twelve phosphine oxide recognition units. The ends of the oligomers were functionalised with an azide and an alkyne group to allow investigation of duplex formation by covalent trapping with copper-catalysed azide-alkyne cycloaddition (CuAAC) reactions. The oligomers were also functionalised with a dansyl fluorophore or a dabcyl quencher dye to allow investigation of duplex formation by Förster resonance energy transfer (FRET). Covalent trapping showed that the duplex is the major species present in a 1 : 1 mixture of the phenol 12-mer and phosphine oxide 12-mer at micromolar concentrations in dichloromethane. FRET titration experiments showed that the association constant for duplex formation is greater than 108 M-1 in chloroform, and DMSO denaturation experiments showed that duplex formation is highly cooperative. The Hill coefficient for denaturation of the 12-mer duplex was 4.6, which is significantly higher than the value measured for the corresponding 6-mer duplex (1.9). This behaviour mirrors that observed for nucleic acid duplexes, where denaturation becomes increasingly cooperative as more base-pairs are added to the duplex.
Collapse
Affiliation(s)
- Mohit Dhiman
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Luis Escobar
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Joseph T Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
3
|
Balduzzi F, Munasinghe V, Evans ON, Lorusso Notaro Francesco A, Anderson CJ, Nigrelli S, Escobar L, Cabot R, Smith JT, Hunter CA. Length and Sequence-Selective Polymer Synthesis Templated by a Combination of Covalent and Noncovalent Base-Pairing Interactions. J Am Chem Soc 2024; 146:32837-32847. [PMID: 39549037 PMCID: PMC11613443 DOI: 10.1021/jacs.4c13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Information can be encoded and stored in sequences of monomer units organized in linear synthetic polymers. Replication of sequence information is of fundamental importance in biology; however, it represents a challenge for synthetic polymer chemistry. A combination of covalent and noncovalent base pairs has been used to achieve high-fidelity templated synthesis of synthetic polymers that encode information as a sequence of different side-chain recognition units. Dialkyne building blocks were attached to the template by using ester base pairs, and diazide building blocks were attached to the template by using H-bond base pairs. Copper-catalyzed azide-alkyne cycloaddition reactions were used to zip up the copy strand on the template, and the resulting duplex was cleaved by hydrolyzing the covalent ester base pairs. By using recognition-encoded melamine oligomers with either three phosphine oxide or three 4-nitrophenol recognition units to form the noncovalent base pairs, exceptionally high affinities of the diazides for the template were achieved, allowing the templated polymerization step to be carried out at low concentrations, which promoted on-template intramolecular reactions relative to competing intermolecular processes. Two different templates, a 7-mer and an 11-mer, were used in the three-step reaction sequence to obtain the sequence-complementary copy strands with minimal amounts of side reaction.
Collapse
Affiliation(s)
- Federica Balduzzi
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Vihanga Munasinghe
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Oliver N. Evans
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | | | - Cecilia J. Anderson
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Salvatore Nigrelli
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Luis Escobar
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Rafel Cabot
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Joseph T. Smith
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Christopher A. Hunter
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
4
|
Lee S, Song G, Jeong KS. Stimuli-Responsive Molecular Duplexes Displaying Duplex-to-Duplex Switching. Angew Chem Int Ed Engl 2024; 63:e202410884. [PMID: 38937392 DOI: 10.1002/anie.202410884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Synthetic duplexes with high stabilities have promising potential for mimicking biomolecular functions and developing supramolecular smart materials. Herein, we describe the synthesis and stimuli-responsive properties of molecular duplexes derived from indolocarbazole-pyridine (I-P) oligomers. These duplexes adopt nonclassical helical structures, stabilized by I-P hydrogen-bonding pairs in anhydrous chlorinated solvents. Notably, the longest duplex 62 (11-mer)2 displays remarkable stability, forming twenty hydrogen bonds; its exchange energy barrier was determined to be ΔG≠=22.0 kcal ⋅ mol-1 at 75 °C in anhydrous (CDCl2)2. Upon the addition of water, a hydrated duplex 62 (11-mer)2⊃10H2O was formed, with one water molecule inserted between each I-P hydrogen-bonding pair. The Hill coefficient (n) for this process is 6.1, demonstrating extremely positive cooperativity. Conversely, the hydrated duplex 62 (11-mer)2⊃10H2O was completely converted into the original anhydrous duplex 62 (11-mer)2 when the temperature was increased. Interconversion between these two distinct duplexes can be repeatedly carried out by varying the temperature. Furthermore, reversible switching between hetero-duplexes and homo-duplexes was also demonstrated by controlling the temperature, with concomitant changes in the characteristic emission signals.
Collapse
Affiliation(s)
- Seungwon Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Geunmoo Song
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
Dhiman M, Cons R, Evans ON, Smith JT, Anderson CJ, Cabot R, Soloviev DO, Hunter CA. Selective Duplex Formation in Mixed Sequence Libraries of Synthetic Polymers. J Am Chem Soc 2024; 146:9326-9334. [PMID: 38529806 PMCID: PMC10995991 DOI: 10.1021/jacs.4c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
Recognition-encoded melamine oligomers (REMO) are synthetic polymers that feature an alternating 1,3,5-triazine-piperazine backbone and side-chains equipped with either a phenol or phosphine oxide recognition unit. An automated method for the solid-phase synthesis (SPS) of REMO of any specified sequence has been developed starting from dichlorotriazine monomer building blocks. Complementary homo-oligomers with either six phenols or six phosphine oxides were synthesized and shown to form a stable duplex in nonpolar solvents by NMR denaturation experiments. The duplex was covalently trapped by equipping the ends of the oligomers with an azide and an alkyne group and using a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. The SPS methodology was adapted to synthesize mixed sequence libraries by using a mixture of two different dichlorotriazine building blocks in each coupling cycle of an oligomer synthesis. The resulting libraries contain statistical mixtures of all possible sequences. The self-assembly properties of these libraries were screened by using the CuAAC reaction to trap any duplexes present. In mixed sequence libraries of 6-mers, the trapping experiments showed that only sequence-complementary oligomers formed duplexes at micromolar concentrations in dichloromethane. The automated synthesis approach developed here provides access to large libraries of mixed sequence synthetic polymers, and the covalent trapping experiment provides a convenient tool for screening functional properties of mixtures. The results suggest high-fidelity sequence-selective duplex formation in mixtures of 6-mer sequences of the REMO architecture.
Collapse
Affiliation(s)
- Mohit Dhiman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Ronan Cons
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Oliver N. Evans
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Joseph T. Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Cecilia J. Anderson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Rafel Cabot
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Daniil O. Soloviev
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Christopher A. Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
6
|
Núñez-Villanueva D, Hunter CA. Replication of synthetic recognition-encoded oligomers by ligation of trimer building blocks. Org Chem Front 2023; 10:5950-5957. [PMID: 38022796 PMCID: PMC10661083 DOI: 10.1039/d3qo01717f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
The development of methods for replication of synthetic information oligomers will underpin the use of directed evolution to search new chemical space. Template-directed replication of triazole oligomers has been achieved using a covalent primer in conjunction with non-covalent binding of complementary building blocks. A phenol primer equipped with an alkyne was first attached to a benzoic recognition unit on a mixed sequence template via selective covalent ester base-pair formation. The remaining phenol recognition units on the template were then used for non-covalent binding of phosphine oxide oligomers equipped with an azide. The efficiency of the templated CuAAC reaction between the primer and phosphine oxide building blocks was investigated as a function of the number of H-bonds formed with the template. Increasing the strength of the non-covalent interaction between the template and the azide lead to a significant acceleration of the templated reaction. For shorter phosphine oxide oligomers intermolecular reactions compete with the templated process, but quantitative templated primer elongation was achieved with a phosphine oxide 3-mer building block that was able to form three H-bonds with the template. NMR spectroscopy and molecular models suggest that the template can fold, but addition of the phosphine oxide 3-mer leads to a complex with three H-bonds between phosphine oxide and phenol groups, aligning the azide and alkyne groups in a favourable geometry for the CuAAC reaction. In the product duplex, 1H and 31P NMR data confirm the presence of the three H-bonded base-pairs, demonstrating that the covalent and non-covalent base-pairs are geometrically compatible. A complete replication cycle was carried out starting from the oligotriazole template by covalent attachment of the primer, followed by template-directed elongation, and hydrolysis of the the ester base-pair in the resulting duplex to regenerate the template and liberate the copy strand. We have previously demonstrated sequence-selective oligomer replication using covalent base-pairing, but the trimer building block approach described here is suitable for replication of sequence information using non-covalent binding of the monomer building blocks to a template.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
7
|
Waliczek M, Gancarz W, Pochwała P, Pehlivan Ö, Stefanowicz P. Visible Light-Induced Templated Metathesis of Peptide-Nucleic Acid Conjugates with a Diselenide Bridge. Biomolecules 2023; 13:1676. [PMID: 38002358 PMCID: PMC10669671 DOI: 10.3390/biom13111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The use of template molecules as chemical scaffolds that significantly influence the course of the reaction has recently been intensively studied. Peptide nucleic acids (PNA) are molecules that mimic natural nucleic acids. They are a promising matrix in such reactions because they possess high affinity and specificity in their interactions. The manner of PNA interaction is predictable based on sequence complementarity. Recently, we report the visible light-induced metathesis reaction in peptides containing a diselenide bond. Herein, we present an efficient and straightforward method of the visible light-driven diselenide-based metathesis of peptide-nucleic acid conjugates. Compared to a similar photochemical transformation in peptides, a significant increase in the metathesis efficiency was obtained due to the template effect.
Collapse
Affiliation(s)
- Mateusz Waliczek
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | | | | | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
8
|
Maier JM, Valenzuela SA, van der Stok A, Menta AK, Shimizu Y, Ngo PH, Ellington AD, Anslyn EV. Peptide Macrocyclization Guided by Reversible Covalent Templating. Chemistry 2023; 29:e202301949. [PMID: 37475574 PMCID: PMC10592230 DOI: 10.1002/chem.202301949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
The creation of complementary products via templating is a hallmark feature of nucleic acid replication. Outside of nucleic acid-like molecules, the templated synthesis of a hetero-complementary copy is still rare. Herein we describe one cycle of templated synthesis that creates homomeric macrocyclic peptides guided by linear instructing strands. This strategy utilizes hydrazone formation to pre-organize peptide oligomeric monomers along the template on a solid support resin, and microwave-assisted peptide synthesis to couple monomers and cyclize the strands. With a flexible templating strand, we can alter the size of the complementary macrocycle products by increasing the length and number of the binding peptide oligomers, showing the potential to precisely tune the size of macrocyclic products. For the smaller macrocyclic peptides, the products can be released via hydrolysis and characterized by ESI-MS.
Collapse
Affiliation(s)
- Josef M Maier
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Aevi van der Stok
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Arjun K Menta
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuka Shimizu
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Phuoc H Ngo
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew D Ellington
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
9
|
García Coll J, Ulrich S. Nucleic-Acid-Templated Synthesis of Smart Polymer Vectors for Gene Delivery. Chembiochem 2023; 24:e202300333. [PMID: 37401911 DOI: 10.1002/cbic.202300333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 07/04/2023] [Indexed: 07/05/2023]
Abstract
Nucleic acids are information-rich and readily available biomolecules, which can be used to template the polymerization of synthetic macromolecules. Here, we highlight the control over the size, composition, and sequence one can nowadays obtain by using this methodology. We also highlight how templated processes exploiting dynamic covalent polymerization can, in return, result in therapeutic nucleic acids fabricating their own dynamic delivery vector - a biomimicking concept that can provide original solutions for gene therapies.
Collapse
Affiliation(s)
- José García Coll
- IBMM, Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| | - Sébastien Ulrich
- IBMM, Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 34095, Montpellier, France
| |
Collapse
|
10
|
Qureshi B, Juritz J, Poulton JM, Beersing-Vasquez A, Ouldridge TE. A universal method for analyzing copolymer growth. J Chem Phys 2023; 158:104906. [PMID: 36922142 DOI: 10.1063/5.0133489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Polymers consisting of more than one type of monomer, known as copolymers, are vital to both living and synthetic systems. Copolymerization has been studied theoretically in a number of contexts, often by considering a Markov process in which monomers are added or removed from the growing tip of a long copolymer. To date, the analysis of the most general models of this class has necessitated simulation. We present a general method for analyzing such processes without resorting to simulation. Our method can be applied to models with an arbitrary network of sub-steps prior to addition or removal of a monomer, including non-equilibrium kinetic proofreading cycles. Moreover, the approach allows for a dependency of addition and removal reactions on the neighboring site in the copolymer and thermodynamically self-consistent models in which all steps are assumed to be microscopically reversible. Using our approach, thermodynamic quantities such as chemical work; kinetic quantities such as time taken to grow; and statistical quantities such as the distribution of monomer types in the growing copolymer can be directly derived either analytically or numerically from the model definition.
Collapse
Affiliation(s)
- Benjamin Qureshi
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jordan Juritz
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jenny M Poulton
- Foundation for Fundamental Research on Matter (FOM), Institute for Atomic and Molecular Physics (AMOLF), 1098 XE Amsterdam, The Netherlands
| | | | - Thomas E Ouldridge
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
11
|
Samokhvalova S, Lutz JF. Macromolecular Information Transfer. Angew Chem Int Ed Engl 2023; 62:e202300014. [PMID: 36696359 DOI: 10.1002/anie.202300014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
Macromolecular information transfer can be defined as the process by which a coded monomer sequence is communicated from one macromolecule to another. In such a transfer process, the information sequence can be kept identical, transformed into a complementary sequence or even translated into a different molecular language. Such mechanisms are crucial in biology and take place in DNA→DNA replication, DNA→RNA transcription and RNA→protein translation. In fact, there would be no life on Earth without macromolecular information transfer. Mimicking such processes with synthetic macromolecules would also be of major scientific relevance because it would open up new avenues for technological applications (e.g. data storage and processing) but also for the creation of artificial life. In this important context, this minireview summarizes recent research about information transfer in synthetic oligomers and polymers. Medium- and long-term perspectives are also discussed.
Collapse
Affiliation(s)
- Svetlana Samokhvalova
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
12
|
Núñez-Villanueva D, Hunter CA. Effect of backbone flexibility on covalent template-directed synthesis of linear oligomers. Org Biomol Chem 2022; 20:8285-8292. [PMID: 36226964 PMCID: PMC9629452 DOI: 10.1039/d2ob01627c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Covalent template-directed synthesis can be used to replicate synthetic oligomers, but success depends critically on the conformational properties of the backbone. Here we investigate how the choice of monomer building block affects the flexibility of the backbone and in turn the efficiency of the replication process for a series of different triazole oligomers. Two competing reaction pathways were identified for monomers attached to a template, resulting in the formation of either macrocyclic or linear products. For flexible backbones, macrocycles and linear oligomers are formed at similar rates, but a more rigid backbone gave exclusively the linear product. The experimental results are consistent with ring strain calculations using molecular mechanics: products with low ring strain (20-30 kJ mol-1) formed rapidly, and products with high ring strain (>100 kJ mol-1) were not observed. Template-directed replication of linear oligomers requires monomers that rigid enough to prevent the formation of undesired macrocycles, but not so rigid that the linear templating pathway leading to the duplex is inhibited. Molecular mechanics calculations of ring strain provide a straightforward tool for assessing the flexibility of potential backbones and the viability different monomer designs before embarking on synthesis.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
13
|
Núñez-Villanueva D, Hunter CA. Replication of a synthetic oligomer using chameleon base-pairs. Chem Commun (Camb) 2022; 58:11005-11008. [PMID: 36094173 DOI: 10.1039/d2cc04580j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Salt bridges were used to attach polymerisable amidine monomers to an oligomeric benzoic acid template. CuAAC oligomerisation reactions in the presence of a benzoic acid 3-mer template gave the amidine 3-mer copy as the major product. Cleavage of ester linkers was used to hydrolyse off the amidine recognition units and convert the product into a benzoic acid 3-mer copy of the original template.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
14
|
Strom KR, Szostak JW. Folding and Duplex Formation in Sequence-Defined Aniline Benzaldehyde Oligoarylacetylenes. J Am Chem Soc 2022; 144:18350-18358. [PMID: 36174969 PMCID: PMC9562438 DOI: 10.1021/jacs.2c06268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In all known genetic
polymers, molecular recognition
via hydrogen
bonding between complementary subunits underpins their ability to
encode and transmit information, to form sequence-defined duplexes,
and to fold into catalytically active forms. Reversible covalent interactions
between complementary subunits provide a different way to encode information,
and potentially function, in sequence-defined oligomers. Here, we
examine six oligoarylacetylene trimers composed of aniline and benzaldehyde
subunits. Four of these trimers self-pair to form two-rung duplex
structures, and two form macrocyclic 1,3-folded structures. The equilibrium
proportions of these structures can be driven to favor each of the
observed structures almost entirely depending upon the concentration
of trimers and an acid catalyst. Quenching the acidic trimer solutions
with an organic base kinetically traps all species such that they
can be isolated and characterized. Mixtures of complementary trimers
form exclusively sequence-specific 3-rung duplexes. Our results suggest
that reversible covalent bonds could in principle guide the formation
of more complex folded conformations of longer oligomers.
Collapse
Affiliation(s)
- Kyle R Strom
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| |
Collapse
|
15
|
Núñez-Villanueva D, Hunter CA. H-Bond Templated Oligomer Synthesis Using a Covalent Primer. J Am Chem Soc 2022; 144:17307-17316. [PMID: 36082527 PMCID: PMC9501907 DOI: 10.1021/jacs.2c08119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Template-directed synthesis of nucleic acids in the polymerase chain reaction is based on the use of a primer, which is elongated in the replication process. The attachment of a high affinity primer to the end of a template chain has been implemented for templating the synthesis of triazole oligomers. A covalent ester base-pair was used to attach a primer to a mixed sequence template. The resulting primed template has phenol recognition units on the template, which can form noncovalent base-pairs with phosphine oxide monomers via H-bonding, and an alkyne group on the primer, which can react with the azide group on a phosphine oxide monomer. Competition reactions between azides bearing phosphine oxide and phenol recognition groups were used to demonstrate a substantial template effect, due to H-bonding interactions between the phenols on the template and phosphine oxides on the azide. The largest rate acceleration was observed when a phosphine oxide 2-mer was used, because this compound binds to the template with a higher affinity than compounds that can only make one H-bond. The 31P NMR spectrum of the product duplex shows that the H-bonds responsible for the template effect are present in the product, and this result indicates that the covalent ester base-pairs and noncovalent H-bonded base-pairs developed here are geometrically compatible. Following the templated reaction, it is possible to regenerate the template and liberate the copy strand by hydrolysis of the ester base-pair used to attach the primer, thus completing a formal replication cycle.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Christopher A. Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
16
|
Luh T, Cheng Y. Hydrosilylation for the synthesis of sequence‐controlled periodic copolymers. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tien‐Yau Luh
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Yen‐Ju Cheng
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu Taiwan
| |
Collapse
|
17
|
Laurent Q, Sakai N, Matile S. An Orthogonal Dynamic Covalent Chemistry Tool for Ring-Opening Polymerization of Cyclic Oligochalcogenides on Detachable Helical Peptide Templates. Chemistry 2022; 28:e202200785. [PMID: 35416345 PMCID: PMC9324982 DOI: 10.1002/chem.202200785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 12/13/2022]
Abstract
A model system is introduced as a general tool to elaborate on orthogonal templation of dynamic covalent ring-opening polymerization (ODC-TROP). The tool consists of 310 helical peptides as unprecedented templates and semicarbazones as orthogonal dynamic covalent linkers. With difficult-to-control 1,2-dithiolanes, ODC-TROP on the level of short model oligomers occurs with high templation efficiency, increasing and diminishing upon helix stabilization and denaturation, respectively. Further, an anti-templated conjugate with mispositioned monomers gave reduced templation upon helix twisting. Even with the "unpolymerizable" 1,2-diselenolanes, initial studies already afford mild templation efficiency. These proof-of-principle results promise that the here introduced tool, recyclable and enabling late-stage side chain modification, will be useful to realize ODC-TROP of intractable or unknown cyclic dynamic covalent monomers for dynamer materials as well as cellular uptake and signaling applications.
Collapse
Affiliation(s)
- Quentin Laurent
- Department of Organic ChemistryUniversity of Geneva1211GenevaSwitzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of Geneva1211GenevaSwitzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of Geneva1211GenevaSwitzerland
| |
Collapse
|
18
|
Juritz J, Poulton JM, Ouldridge TE. Minimal mechanism for cyclic templating of length-controlled copolymers under isothermal conditions. J Chem Phys 2022; 156:074103. [DOI: 10.1063/5.0077865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jordan Juritz
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jenny M. Poulton
- Foundation for Fundamental Research on Matter (FOM), Institute for Atomic and Molecular Physics (AMOLF), 1098 XE Amsterdam, The Netherlands
| | - Thomas E. Ouldridge
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
19
|
Hakobyan K, Xu J, Müllner M. The challenges of controlling polymer synthesis at the molecular and macromolecular level. Polym Chem 2022. [DOI: 10.1039/d1py01581h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this Perspective, we outline advances and challenges in controlling the structure of polymers at various size regimes in the context of structural features such as molecular weight distribution, end groups, architecture, composition and sequence.
Collapse
Affiliation(s)
- Karen Hakobyan
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), Sydney, NSW 2006, Australia
| |
Collapse
|
20
|
Appukutti N, de Vries AH, Gudeangadi PG, Claringbold BR, Garrett MD, Reithofer MR, Serpell CJ. Sequence-complementarity dependent co-assembly of phosphodiester-linked aromatic donor–acceptor trimers. Chem Commun (Camb) 2022; 58:12200-12203. [DOI: 10.1039/d2cc00239f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequence-defined trimers of phosphodiester-linked aromatic donor–acceptors self-assemble according to monomer order, and co-assemble into new structures with their complementary sequence.
Collapse
Affiliation(s)
- Nadeema Appukutti
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Alex H. de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Prashant G. Gudeangadi
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Bini R. Claringbold
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Michelle D. Garrett
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Michael R. Reithofer
- Dept. of Inorganic Chemistry, University of Vienna, Wahringer Strabe. 42, 1090 Vienna, Austria
| | - Christopher J. Serpell
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, UK
| |
Collapse
|
21
|
Vonk KM, Meijer EW, Vantomme G. Depolymerization of supramolecular polymers by a covalent reaction; transforming an intercalator into a sequestrator. Chem Sci 2021; 12:13572-13579. [PMID: 34777777 PMCID: PMC8528007 DOI: 10.1039/d1sc04545h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022] Open
Abstract
Controlling the reciprocity between chemical reactivity and supramolecular structure is a topic of great interest in the emergence of molecular complexity. In this work, we investigate the effect of a covalent reaction as a trigger to depolymerize a supramolecular assembly. We focus on the impact of an in situ thiol-ene reaction on the (co)polymerization of three derivatives of benzene-1,3,5-tricarboxamide (BTA) monomers functionalized with cysteine, hexylcysteine, and alkyl side chains: Cys-BTA, HexCys-BTA, and a-BTA. Long supramolecular polymers of Cys-BTA can be depolymerized into short dimeric aggregates of HexCys-BTA via the in situ thiol-ene reaction. Analysis of the system by time-resolved spectroscopy and light scattering unravels the fast dynamicity of the structures and the mechanism of depolymerization. Moreover, by intercalating the reactive Cys-BTA monomer into an unreactive inert polymer, the in situ thiol-ene reaction transforms the intercalator into a sequestrator and induces the depolymerization of the unreactive polymer. This work shows that the implementation of reactivity into supramolecular assemblies enables temporal control of depolymerization processes, which can bring us one step closer to understanding the interplay between non-covalent and covalent chemistry.
Collapse
Affiliation(s)
- Kasper M Vonk
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
22
|
Iadevaia G, Swain JA, Núñez-Villanueva D, Bond AD, Hunter CA. Folding and duplex formation in mixed sequence recognition-encoded m-phenylene ethynylene polymers. Chem Sci 2021; 12:10218-10226. [PMID: 34377409 PMCID: PMC8336474 DOI: 10.1039/d1sc02288a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022] Open
Abstract
Oligomers equipped with complementary recognition units have the potential to encode and express chemical information in the same way as nucleic acids. The supramolecular assembly properties of m-phenylene ethynylene polymers equipped with H-bond donor (D = phenol) and H-bond acceptor (A = phosphine oxide) side chains have been investigated in chloroform solution. Polymerisation of a bifunctional monomer in the presence of a monofunctional chain stopper was used for the one pot synthesis of families of m-phenylene ethynylene polymers with sequences ADnA or DAnD (n = 1-5), which were separated by chromatography. All of the oligomers self-associate due to intermolecular H-bonding interactions, but intramolecular folding of the monomeric single strands can be studied in dilute solution. NMR and fluorescence spectroscopy show that the 3-mers ADA and DAD do not fold, but there are intramolecular H-bonding interactions for all of the longer sequences. Nevertheless, 1 : 1 mixtures of sequence complementary oligomers all form stable duplexes. Duplex stability was quantified using DMSO denaturation experiments, which show that the association constant for duplex formation increases by an order of magnitude for every base-pairing interaction added to the chain, from 103 M-1 for ADA·DAD to 105 M-1 for ADDDA·DAAAD. Intramolecular folding is the major pathway that competes with duplex formation between recognition-encoded oligomers and limits the fidelity of sequence-selective assembly. The experimental approach described here provides a practical strategy for rapid evaluation of suitability for the development of programmable synthetic polymers.
Collapse
Affiliation(s)
- Giulia Iadevaia
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jonathan A Swain
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Diego Núñez-Villanueva
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Andrew D Bond
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
23
|
Laurent Q, Martinent R, Lim B, Pham AT, Kato T, López-Andarias J, Sakai N, Matile S. Thiol-Mediated Uptake. JACS AU 2021; 1:710-728. [PMID: 34467328 PMCID: PMC8395643 DOI: 10.1021/jacsau.1c00128] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 05/19/2023]
Abstract
This Perspective focuses on thiol-mediated uptake, that is, the entry of substrates into cells enabled by oligochalcogenides or mimics, often disulfides, and inhibited by thiol-reactive agents. A short chronology from the initial observations in 1990 until today is followed by a summary of cell-penetrating poly(disulfide)s (CPDs) and cyclic oligochalcogenides (COCs) as privileged scaffolds in thiol-mediated uptake and inhibitors of thiol-mediated uptake as potential antivirals. In the spirit of a Perspective, the main part brings together topics that possibly could help to explain how thiol-mediated uptake really works. Extreme sulfur chemistry mostly related to COCs and their mimics, cyclic disulfides, thiosulfinates/-onates, diselenolanes, benzopolysulfanes, but also arsenics and Michael acceptors, is viewed in the context of acidity, ring tension, exchange cascades, adaptive networks, exchange affinity columns, molecular walkers, ring-opening polymerizations, and templated polymerizations. Micellar pores (or lipid ion channels) are considered, from cell-penetrating peptides and natural antibiotics to voltage sensors, and a concise gallery of membrane proteins, as possible targets of thiol-mediated uptake, is provided, including CLIC1, a thiol-reactive chloride channel; TMEM16F, a Ca-activated scramblase; EGFR, the epithelial growth factor receptor; and protein-disulfide isomerase, known from HIV entry or the transferrin receptor, a top hit in proteomics and recently identified in the cellular entry of SARS-CoV-2.
Collapse
Affiliation(s)
- Quentin Laurent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Rémi Martinent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Bumhee Lim
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Anh-Tuan Pham
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Takehiro Kato
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
24
|
Troselj P, Bolgar P, Ballester P, Hunter CA. High-Fidelity Sequence-Selective Duplex Formation by Recognition-Encoded Melamine Oligomers. J Am Chem Soc 2021; 143:8669-8678. [PMID: 34081864 PMCID: PMC8213060 DOI: 10.1021/jacs.1c02275] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Melamine oligomers composed of repeating triazine-piperidine units and equipped with phenol and phosphine oxide side-chains form H-bonded duplexes. The melamine backbone provides sufficient rigidity to prevent intramolecular folding of oligomers up to three recognition units in length, leading to reliable duplex formation between sequence complementary oligomers. NMR spectroscopy and isothermal titration calorimetry (ITC) were used to characterize the self-assembly properties of the oligomers. For length-complementary homo-oligomers, duplex formation in toluene is characterized by an increase in stability of an order of magnitude for every base-pair added to the chain. NMR spectra of dilute solutions of the AD 2-mer show that intramolecular H-bonding between neighboring recognition units on the chain (1,2-folding) does not occur. NMR spectra of dilute solutions of both the AAD and the ADD 3-mer show that 1,3-folding does not take place either. ITC was used to characterize interactions between all pairwise combinations of the six different 3-mer sequences, and the sequence complementary duplexes are approximately an order of magnitude more stable than duplexes with a single base mismatch. High-fidelity duplex formation combined with the synthetic accessibility of the monomer building blocks makes these systems attractive targets for further investigation.
Collapse
Affiliation(s)
- Pavle Troselj
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Peter Bolgar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|