1
|
Huang J, You Y, Ma Y, He X, Li Y, Kesavan A, Jin C, Shen C, Zhang M, Yuan K. Palladium-Catalyzed Dual Csp 2─Csp 3 Bond Formation: A Versatile Platform for the Synthesis of Benzo-Fused Heterocycles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500897. [PMID: 40289651 DOI: 10.1002/advs.202500897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/10/2025] [Indexed: 04/30/2025]
Abstract
Transition-metal-catalyzed transformations offer a powerful approach to rapidly synthesize complex benzo-fused heterocycles, crucial for drug and material development. However, existing synthetic strategies face challenges such as limited functional group compatibility, reliance on complex ligands, and difficulties in controlling chemoselectivity with prefunctionalized substrates. Herein, a ligand-free Pd(II)/Cu(I) catalytic system is presented that facilitates reactions between arylsulfonyl chlorides and unactivated olefins under mild conditions, enabling the efficient synthesis of saturated benzo-fused six-membered heterocycles. This streamlined strategy employs dual Csp2─Csp3 bond formation, producing diverse N/O-polyheterocycles and allowing late-stage functionalization of bioactive molecules with excellent yields and high chemoselectivity. The key to the success of this reaction is the formation of high-valent Ar-Pd(III) intermediate, which drives the reaction through 1,2-Pd migration and electrophilic C─H arylation. This unique reactivity pathway facilitates the formation of benzo-fused heterocycles while effectively avoiding the β-H elimination typically associated with Heck-type reactions.
Collapse
Affiliation(s)
- Jiahui Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuantao You
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yijian Ma
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Xingying He
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yixiao Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Arunachalam Kesavan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chengzhi Jin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Kedong Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
2
|
Cao Y, Perry JSM, Zhang E, Trinh A, Kacker A, Cruz S, Ceballos H, Pan A, Huang W, Kou KGM. Synthesis of Protoberberine Alkaloids by C-H Functionalization and Anionic Aza-6π-Electrocyclization: Dual Activity as AMPK Activators and Inhibitors. JACS AU 2025; 5:1429-1438. [PMID: 40151253 PMCID: PMC11937996 DOI: 10.1021/jacsau.5c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
5'-Adenosine monophosphate-activated protein kinase (AMPK) plays a critical role in maintaining cellular energy homeostasis, and its activation has garnered attention for treating chronic metabolic diseases. Inhibitors of AMPK are underdeveloped but bear implications in treating cancers, controlling autophagy, and elderly wasting. Protoberberine alkaloids are typically regarded as AMPK activators. Herein, we report a modular synthesis strategy to access a collection of oxyberberine alkaloids, including the first synthesis of stepharotudine. In vitro assays reveal how subtle structural modifications can negate AMPK activation while conferring unprecedented inhibitory properties within the same class of compounds, which was previously unknown. Key steps in the synthesis include an oxidative Rh(III)-catalyzed C-H functionalization using electron-rich alkenes, NaH-mediated reductive N-O bond cleavage, and a rare example of an anionic aza-6π-electrocyclization. Additionally, we provide mechanistic support for nucleophilic hydride transfer reactivity with NaH in DMF.
Collapse
Affiliation(s)
- Yujie Cao
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Justin S. M. Perry
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Eryun Zhang
- Department
of Diabetes Complications and Metabolism Research, City of Hope National Medical Center, Duarte, California 91010, United States
| | - Andy Trinh
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Arnav Kacker
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Shayne Cruz
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Hannah Ceballos
- Department
of Diabetes Complications and Metabolism Research, City of Hope National Medical Center, Duarte, California 91010, United States
| | - Aaron Pan
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Wendong Huang
- Department
of Diabetes Complications and Metabolism Research, City of Hope National Medical Center, Duarte, California 91010, United States
| | - Kevin G. M. Kou
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| |
Collapse
|
3
|
Li WD, Fan J, Li CJ, Shi XY. Recent advances in carboxyl-directed dimerizations and cascade annulations via C-H activations. Chem Commun (Camb) 2025; 61:3967-3985. [PMID: 39945206 DOI: 10.1039/d4cc06722c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
C-H functionalization provides an efficient route to construct complex organic molecules. The introduction of directing groups enhances the site-selectivity of the reaction. Carboxyl as a directing group can be easily transformed into other functional groups afterwards. Due to its good reactivity, it can undergo cascade annulation reactions to build valuable heterocycle skeletons in one pot. Moreover, carboxyl can easily be removed via decarboxylation, which allows it to serve as a unique traceless directing group in C-H functionalization. These characteristics make carboxyl a promising directing group, which is superior to nitrogen-containing compounds with strong coordination ability to a certain extent. This feature article reviews the applications of carboxyl as a classical directing group and a unique traceless-directing group in cascade annulation reactions to access diverse carbocycles and heterocycles.
Collapse
Affiliation(s)
- Wan-Di Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Juan Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Chao-Jun Li
- Department of Chemistry, and FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada.
| | - Xian-Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
4
|
Yang F, Dong Y, Wang J, Zhang N, Guo H, Zhang C. Enantioselective Copper-Catalyzed Three-Component Cascade Boronation-Dearomatization Reaction: Synthesis of Chiral Boron-Containing 1,4-Dihydropyridines. Org Lett 2025; 27:857-862. [PMID: 39791468 DOI: 10.1021/acs.orglett.4c04541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A three-component cascade boronation-dearomatization reaction of alkenes, a diboron compound, and a pyridinium salt is diclosed, affording chiral boron-containing 1,4-dihyropyridines in high yields (≤98%) and diastereoselectivity (≤10:1 dr), along with excellent enantioselectivity (typically >99% ee). The catalytic system performs efficiently at low catalyst loadings (1 mol %) and was tested with >50 examples, including some biologically active molecules.
Collapse
Affiliation(s)
- Fazhou Yang
- Department of Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yujie Dong
- Department of Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - JinBao Wang
- Department of Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Nianci Zhang
- Department of Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Cheng Zhang
- Department of Chemistry, College of Science, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
5
|
Vigneron SF, Ohno S, Braz J, Kim JY, Kweon OS, Webb C, Billesbølle C, Bhardwaj K, Irwin J, Manglik A, Basbaum AI, Ellman JA, Shoichet BK. Docking 14 million virtual isoquinuclidines against the mu and kappa opioid receptors reveals dual antagonists-inverse agonists with reduced withdrawal effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632033. [PMID: 39868130 PMCID: PMC11760775 DOI: 10.1101/2025.01.09.632033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Large library docking of tangible molecules has revealed potent ligands across many targets. While make-on-demand libraries now exceed 75 billion enumerated molecules, their synthetic routes are dominated by a few reaction types, reducing diversity and inevitably leaving many interesting bioactive-like chemotypes unexplored. Here, we investigate the large-scale enumeration and targeted docking of isoquinuclidines. These "natural-product-like" molecules are rare in the current libraries and are functionally congested, making them interesting as receptor probes. Using a modular, four-component reaction scheme, we built and docked a virtual library of over 14.6 million isoquinuclidines against both the μ- and κ-opioid receptors (MOR and KOR, respectively). Synthesis and experimental testing of 18 prioritized compounds found nine ligands with low μM affinities. Structure-based optimization revealed low- and sub-nM antagonists and inverse agonists targeting both receptors. Cryo-electron microscopy (cryoEM) structures illuminate the origins of activity on each target. In mouse behavioral studies, a potent member of the series with joint MOR-antagonist and KOR-inverse-agonist activity reversed morphine-induced analgesia, phenocopying the MOR-selective anti-overdose agent naloxone. Encouragingly, the new molecule induced less severe opioid-induced withdrawal symptoms compared to naloxone during withdrawal precipitation, and did not induce conditioned-place aversion, likely reflecting a reduction of dysphoria due to the compound's KOR-inverse agonism. The strengths and weaknesses of bespoke library docking, and of docking for opioid receptor polypharmacology, will be considered.
Collapse
Affiliation(s)
- Seth F. Vigneron
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | | | - Joao Braz
- Department of Anatomy, University of California, San Francisco
| | - Joseph Y. Kim
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | | | - Chase Webb
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | | | | | - John Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | | | | | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| |
Collapse
|
6
|
Huang JZ, Ying VY, Seyedsayamdost MR. Synthesis of Non-canonical Tryptophan Variants via Rh-catalyzed C-H Functionalization of Anilines. Angew Chem Int Ed Engl 2025; 64:e202414998. [PMID: 39263721 DOI: 10.1002/anie.202414998] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Tryptophan and its non-canonical variants play critical roles in pharmaceutical molecules and various enzymes. Facile access to this privileged class of amino acids from readily available building blocks remains a long-standing challenge. Here, we report a regioselective synthesis of non-canonical tryptophans bearing C4-C7 substituents via Rh-catalyzed annulation between structurally diverse tert-butyloxycarbonyl (Boc)-protected anilines and alkynyl chlorides readily prepared from amino acid building blocks. This transformation harnesses Boc-directed C-H metalation and demetalation to afford a wide range of C2-unsubstituted indole products in a redox-neutral fashion. This umpolung approach compared to the classic Larock indole synthesis offers a novel mechanism for heteroarene annulation and will be useful for the synthesis of natural products and drug molecules containing non-canonical tryptophan residues in a highly regioselective manner.
Collapse
Affiliation(s)
- Jonathan Z Huang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Vanessa Y Ying
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
7
|
Tandi M, Sharma V, Gopal B, Sundriyal S. Multicomponent reactions (MCRs) yielding medicinally relevant rings: a recent update and chemical space analysis of the scaffolds. RSC Adv 2025; 15:1447-1489. [PMID: 39822567 PMCID: PMC11736855 DOI: 10.1039/d4ra06681b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025] Open
Abstract
In this review we have compiled multicomponent reactions (MCRs) that produce cyclic structures. We have covered articles reported since 2019 to showcase the recent advances in this area. In contrast to other available reviews on this topic, we focus specifically on MCRs with strong prospects in medicinal chemistry. Consequently, the reactions operating in a single-pot and yielding novel rings or new substitution patterns under mild conditions are highlighted. Moreover, MCRs that do not require special reagents or catalysts and yield diverse products from commercially available building blocks are reviewed. The synthetic schemes, substrate scope, and other key aspects such as regio- and stereoselectivity are discussed for each MCR. Using cheminformatic tools, we have also attempted to characterize the chemical space of the scaffolds obtained from these MCRs. We show that the MCR scaffolds are novel, more complex, and globular in shape compared to the approved drugs and clinical candidates. Thus, our review represents a step towards identifying and characterizing the novel ring space that can be accessed efficiently through MCRs in a short timeframe.
Collapse
Affiliation(s)
- Mukesh Tandi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | - Vaibhav Sharma
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | | | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| |
Collapse
|
8
|
Liu WD, Gao J, Mo JN, Zhou Y, Zhao J. Cooperative NHC and Photoredox Catalyzed Radical Aminoacylation of Alkenes to Tetrahydropyridazines. Chemistry 2024; 30:e202402288. [PMID: 39072808 DOI: 10.1002/chem.202402288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Tetrahydropyridazines constitute an important structural motif found in numerous natural products and pharmaceutical compounds. Herein, we report an aminoacylation reaction of alkenes that enables the synthesis of 1,4,5,6-tetrahydropyridazines through cooperative N-heterocyclic carbene (NHC) and photoredox catalysis. This approach involves the 6-endo-trig cyclization of N-centered hydrazonyl radicals, generated via single-electron oxidation of hydrazones, followed by a radical-radical coupling step. The mild process tolerates a wide range of common functional groups and affords a variety of tetrahydropyridazines in moderate to high yields. Preliminary investigations using chiral NHC catalysts demonstrate the potential of this protocol for asymmetric radical reactions.
Collapse
Affiliation(s)
- Wen-Deng Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiyuan Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jia-Nan Mo
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
9
|
Li WD, Wang X, Ma HY, Jia JW, Xiao YY, Shi XY. Additive-Controlled Divergent Synthesis of Fluorenone-4-carboxylic Acids and Diphenic Anhydrides via Rhodium-Catalyzed Oxidative Dimeric Cyclization of Aromatic Acids. Org Lett 2024; 26:7607-7613. [PMID: 39231445 DOI: 10.1021/acs.orglett.4c02714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
A rhodium-catalyzed one-pot access to valuable polycyclic frameworks of fluorenone-4-carboxylic acids and diphenic anhydrides via the oxidative dimeric cyclization of aromatic acids has been developed. This transformation proceeded via carboxyl-assisted 2-fold C-H activation followed by intramolecular Friedel-Crafts or dehydration reactions. The silver salt additive plays a vital role in the chemoselectivity of the products. Diphenic anhydride 3l exhibits a maximum fluorescence quantum yield of up to 59%.
Collapse
Affiliation(s)
- Wan-Di Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Xue Wang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Hong-Yu Ma
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Jing-Wen Jia
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Yu-Yao Xiao
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Xian-Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| |
Collapse
|
10
|
Zhao C, Gao R, Ma W, Li M, Li Y, Zhang Q, Guan W, Fu J. A facile synthesis of α,β-unsaturated imines via palladium-catalyzed dehydrogenation. Nat Commun 2024; 15:4329. [PMID: 38773128 PMCID: PMC11109338 DOI: 10.1038/s41467-024-48737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
The dehydrogenation adjacent to an electron-withdrawing group provides an efficient access to α,β-unsaturated compounds that serving as versatile synthons in organic chemistry. However, the α,β-desaturation of aliphatic imines has hitherto proven to be challenging due to easy hydrolysis and preferential dimerization. Herein, by employing a pre-fluorination and palladium-catalyzed dehydrogenation reaction sequence, the abundant simple aliphatic amides are amendable to the rapid construction of complex molecular architectures to produce α,β-unsaturated imines. Mechanistic investigations reveal a Pd(0)/Pd(II) catalytic cycle involving oxidative H-F elimination of N-fluoroamide followed by a smooth α,β-desaturation of the in-situ generated aliphatic imine intermediate. This protocol exhibits excellent functional group tolerance, and even the carbonyl groups are compatible without any competing dehydrogenation, allowing for late-stage functionalization of complex bioactive molecules. The synthetic utility of this transformation has been further demonstrated by a diversity-oriented derivatization and a concise formal synthesis of (±)-alloyohimbane.
Collapse
Affiliation(s)
- Chunyang Zhao
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Rongwan Gao
- Department of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wenxuan Ma
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Miao Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yifei Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Guan
- Department of Chemistry, Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China.
| | - Junkai Fu
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis and Institute of Functional Material Chemistry, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
11
|
Nasibullina ER, Mendogralo EY, Merkushev AA, Makarov AS, Uchuskin MG. Oxidative Transformation of 2-Furylanilines into Indolin-3-ones. J Org Chem 2024; 89:6602-6606. [PMID: 38635314 DOI: 10.1021/acs.joc.4c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Oxidation of 2-furylaninlies with m-CPBA followed by treatment with a base provides access to functionalized indolin-3-ones. The designed oxidative transformation utilizes an underassessed chemical behavior of furyl-containing amines to form a C-N bond via engaging a β-carbon atom of the furan core upon a ring-forming step, thereby providing an alternative disconnection toward nitrogen-containing heterocycles.
Collapse
Affiliation(s)
- Ekaterina R Nasibullina
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| | - Elena Y Mendogralo
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| | - Anton A Merkushev
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| | - Anton S Makarov
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva 15, 614990 Perm, Russian Federation
| |
Collapse
|
12
|
Cong X, Hao N, Mishra A, Zhuo Q, An K, Nishiura M, Hou Z. Regio- and Diastereoselective Annulation of α,β-Unsaturated Aldimines with Alkenes via Allylic C(sp 3)-H Activation by Rare-Earth Catalysts. J Am Chem Soc 2024; 146:10187-10198. [PMID: 38545960 DOI: 10.1021/jacs.4c02144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The [3 + 2] or [4 + 2] annulation of α,β-unsaturated aldimines with alkenes via β'- or γ-allylic C(sp3)-H activation is, in principle, an atom-efficient route for the synthesis of five- or six-membered-ring cycloalkylamines, which are important structural motifs in numerous natural products, bioactive molecules, and pharmaceuticals. However, such a transformation has remained undeveloped to date probably due to the lack of suitable catalysts. We report herein for the first time the regio- and diastereoselective [3 + 2] and [4 + 2] annulations of α,β-unsaturated imines with alkenes via allylic C(sp3)-H activation by half-sandwich rare-earth catalysts having different metal ion sizes. The reaction of α-methyl-substituted α,β-unsaturated aldimines with alkenes by a C5Me4SiMe3-ligated scandium catalyst took place in a trans-diastereoselective [3 + 2] annulation fashion via C(sp3)-H activation at the α-methyl group (β'-position), exclusively affording alkylidene-functionalized cyclopentylamines with excellent trans-diastereoselectivity. In contrast, the reaction of β-methyl-substituted α,β-unsaturated aldimines with alkenes by a C5Me5-ligated cerium catalyst proceeded in a cis-diastereoselective [4 + 2] annulation fashion via γ-allylic C(sp3)-H activation, selectively yielding multisubstituted 2-cyclohexenylamines with excellent cis-diastereoselectivity. The mechanistic details of these transformations have been elucidated by deuterium-labeling experiments, kinetic isotope effect studies, and the isolation and transformations of key reaction intermediates. This work offers an efficient and selective protocol for the synthesis of a new family of cycloalkylamine derivatives, featuring 100% atom efficiency, high regio- and diastereoselectivity, broad substrate scope, and an unprecedented reaction mechanism.
Collapse
Affiliation(s)
- Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Na Hao
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kun An
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
13
|
Zhang Q, Li Y, Chen Y, Jiang J, Liu Y, Luo J, Gao Y, Huo Y, Chen Q, Li X. Ru(II)-Catalyzed Divergent C-H Alkynylation Cascade with Bifunctional α-Alcohol Haloalkynes. Org Lett 2024; 26:2186-2191. [PMID: 38452270 DOI: 10.1021/acs.orglett.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Native functionality directed the C-H activation cascade to enable rapid construction of molecular complexity, featuring step-economy and synthetic efficiency. Herein, by exploiting bifunctional α-alcohol haloalkynes, we developed Ru(II)-catalyzed carboxylic acid, amine, and amide assisted divergent C-H alkynylation and annulation cascade, affording polyfunctional heterocycles. Significantly, a bilateral aryl C-H polycyclization cascade of azobenzenes was achieved using the versatile haloalkynes.
Collapse
Affiliation(s)
- Qiaoya Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yinling Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yabo Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiahua Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiye Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
14
|
Yang Z, Wang J, Li A, Wang C, Ji W, Pires E, Yang W, Jing S. Ferrocenylselenoether and its cuprous cluster modified TiO 2 as visible-light photocatalyst for the synergistic transformation of N-cyclic organics and Cr(vi). RSC Adv 2024; 14:1488-1500. [PMID: 38174284 PMCID: PMC10763662 DOI: 10.1039/d3ra07390d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
In this study, fcSe@TiO2 and [Cu2I2(fcSe)2]n@TiO2 nanosystems based on ferrocenylselenoether and its cuprous cluster were developed and characterized by X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray spectroscopy (EDX), and electron paramagnetic resonance (EPR). Under optimized conditions, 0.2 g L-1 catalyst, 20 mM H2O2, and initial pH 7, good synergistic visible light photocatalytic tetracycline degradation and Cr(vi) reduction were achieved, with 92.1% of tetracycline and 64.5% of Cr(vi) removal efficiency within 30 minutes. Mechanistic studies revealed that the reactive species ˙OH, ˙O2-, and h+ were produced in both systems through the mutual promotion of Fenton reactions and photogenerated charge separation. The [Cu2I2(fcSe)2]n@TiO2 system additionally produced 1O2 from Cu+ and ˙O2-. The advantages of the developed nanosystems include an acidic surface microenvironment provided by Se⋯H+, resourceful product formation, tolerance of complex environments, and excellent adaptability in refractory N-cyclic organics.
Collapse
Affiliation(s)
- Zhuo Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Jinshan Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
| | - Chao Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
- Instituto de Síntesis Química y Catálisis Homogénea, CSIC-Universidad de Zaragoza Pedro Cerbuna 12 E-50009 Zaragoza Spain
| | - Wei Ji
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Elísabet Pires
- Instituto de Síntesis Química y Catálisis Homogénea, CSIC-Universidad de Zaragoza Pedro Cerbuna 12 E-50009 Zaragoza Spain
| | - Wenzhong Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
15
|
Rizzo C, Pace A, Pibiri I, Buscemi S, Palumbo Piccionello A. From Conventional to Sustainable Catalytic Approaches for Heterocycles Synthesis. CHEMSUSCHEM 2023:e202301604. [PMID: 38140917 DOI: 10.1002/cssc.202301604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/24/2023]
Abstract
Synthesis of heterocyclic compounds is fundamental for all the research area in chemistry, from drug synthesis to material science. In this framework, catalysed synthetic methods are of great interest to effective reach such important building blocks. In this review, we will report on some selected examples from the last five years, of the major improvement in the field, focusing on the most important conventional catalytic systems, such as transition metals, organocatalysts, to more sustainable ones such as photocatalysts, iodine-catalysed reaction, electrochemical reactions and green innovative methods.
Collapse
Affiliation(s)
- Carla Rizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Ivana Pibiri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Silvestre Buscemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Italy, University of Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo
| |
Collapse
|
16
|
Liu CX, Zhao F, Gu Q, You SL. Enantioselective Rh(I)-Catalyzed C-H Arylation of Ferroceneformaldehydes. ACS CENTRAL SCIENCE 2023; 9:2036-2043. [PMID: 38033798 PMCID: PMC10683487 DOI: 10.1021/acscentsci.3c00748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 12/02/2023]
Abstract
As an important class of platform molecules, planar chiral ferrocene carbonyl compounds could be transformed into various functional groups offering facile synthesis of chiral ligands and catalysts. However, developing efficient and straightforward methods for accessing enantiopure planar chiral ferrocene carbonyl compounds, especially ferroceneformaldehydes, remains highly challenging. Herein, we report a rhodium(I)/phosphoramidite-catalyzed enantioselective C-H bond arylation of ferroceneformaldehydes. Readily available aryl halides such as aryl iodides, aryl bromides, and even aryl chlorides are suitable coupling partners in this transformation, leading to a series of planar chiral ferroceneformaldehydes in good yields and excellent enantioselectivity (up to 83% yield and >99% ee). The aldehyde group could be transformed into diverse functional groups smoothly, and enantiopure Ugi's amine and PPFA analogues could be synthesized efficiently. The latter was found to be a highly efficient ligand in Pd-catalyzed asymmetric allylic alkylation reactions. Mechanistic experiments supported the formation of imine intermediates as the key step during the reaction.
Collapse
Affiliation(s)
| | | | - Qing Gu
- New Cornerstone Science Laboratory,
State Key Laboratory of Organometallic Chemistry, Shanghai Institute
of Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| | - Shu-Li You
- New Cornerstone Science Laboratory,
State Key Laboratory of Organometallic Chemistry, Shanghai Institute
of Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| |
Collapse
|
17
|
Ortiz KG, Dotson JJ, Robinson DJ, Sigman MS, Karimov RR. Catalyst-Controlled Enantioselective and Regiodivergent Addition of Aryl Boron Nucleophiles to N-Alkyl Nicotinate Salts. J Am Chem Soc 2023; 145:11781-11788. [PMID: 37205733 PMCID: PMC10363019 DOI: 10.1021/jacs.3c03048] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dihydropyridines are versatile building blocks for the synthesis of pyridines, tetrahydropyridines, and piperidines. Addition of nucleophiles to activated pyridinium salts allows synthesis of 1,2-, 1,4-, or 1,6-dihydropyridines; however, this process often leads to a mixture of constitutional isomers. Catalyst-controlled regioselective addition of nucleophiles to pyridiniums has the potential to solve this problem. Herein, we report that the regioselective addition of boron-based nucleophiles to pyridinium salts can be accomplished by the choice of a Rh catalyst.
Collapse
Affiliation(s)
- Kacey G Ortiz
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Jordan J Dotson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Donovan J Robinson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Rashad R Karimov
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
18
|
Peng H, Zhang Y, Deng G. Silver(I)-Catalyzed Tandem Reaction of Enynones and 4-Alkenyl Isoxazoles: Synthesis of 2-(Furan-2-yl)-1,2-dihydropyridines. J Org Chem 2023. [PMID: 37183921 DOI: 10.1021/acs.joc.3c00312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Silver(I)-catalyzed tandem reaction of enynones with 4-alkenyl isoxazoles provides access to 2-(furan-2-yl)-1,2-dihydropyridines. No competitive cyclopropanation of alkenes and O-H insertion via (2-furyl)carbene complexes were observed. The cascade reaction proceeds via the formation of (2-furyl)metal carbene intermediate, the N-O bond cleavage of 4-alkenyl isoxazoles/rearrangement, subsequent 6π electrocyclic reaction, and [1,5] H-shift. The successive construction of both 1,2-dihydropyridine skeleton and furan frame has been achieved in the one-pot reaction. A broad range of readily available enynones and 4-alkenyl isoxazoles are suitable to this protocol; however, when R3 is the alkyl group such as n-Bu and Me, a complicated mixture was generated without the desired products. In addition, in the case of R4 = bulky group such as R3'SiOCH2, the reaction gave an in situ oxo-product of (2-furyl)silver carbene. An atom-economic strategy for the synthesis of 2-(furan-2-yl)-1,2-dihydropyridines has been established.
Collapse
Affiliation(s)
- Haiyun Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yangyi Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
19
|
Wei S, Zhang G, Wang Y, You M, Wang Y, Zhou L, Zhang Z. Modular synthesis of unsaturated aza-heterocycles via copper catalyzed multicomponent cascade reaction. iScience 2023; 26:106137. [PMID: 36895640 PMCID: PMC9988680 DOI: 10.1016/j.isci.2023.106137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
The unsaturated aza-heterocycles such as tetrahydropyridines pose significant applications in both drug discovery and development. However, the methods to construct polyfunctionalized tetrahydropyridines are still limited. Herein, we report a modular synthesis of tetrahydropyridines via copper catalyzed multicomponent radical cascade reaction. The reaction features mild conditions and broad substrate scope. In addition, the reaction could scale up to gram scale with similar yield. A variety of 1,2,5,6-tetrahydropyridines with C3 and C5 substituents could be assembled from simple starting materials. More importantly, the products could serve as versatile intermediate to access various functionalized aza-heterocycles which further demonstrates its utility.
Collapse
Affiliation(s)
- Siqi Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Guocong Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Yahui Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Mengwei You
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| |
Collapse
|
20
|
Li J, Liu C, Zhao Z, Wang X, Chen D, Yue K, Chen S, Jin M, Shan Y. Halogen cation-promoted and solvent-regulated electrophilic cyclization for the regioselective synthesis of 3-haloquinolines and 3-halospirocyclohexadienones. Org Biomol Chem 2023; 21:2440-2446. [PMID: 36876461 DOI: 10.1039/d3ob00168g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
A novel approach for the production of halogen cations through the reaction of halogens with silver ions is described in this paper. On this basis, the regioselective synthesis of 3-haloquinolines and 3-halospirocyclohexadienones is realized through solvent regulation. The gram-scale reaction and the compatibility of complex substrates demonstrate the synthetic potential of this protocol, which will be an appealing strategy in organic synthesis.
Collapse
Affiliation(s)
- Jianming Li
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Chengxiao Liu
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Zihan Zhao
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xin Wang
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Dianpeng Chen
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Kaiyuan Yue
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Sihan Chen
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Ming Jin
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yingying Shan
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
21
|
Yang J, Liu B, Chang J. Ru(II)-Catalyzed One-Pot Synthesis of 1,2-Hydropyridines via a Three-Component Reaction. Org Lett 2023; 25:1476-1480. [PMID: 36856311 DOI: 10.1021/acs.orglett.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
A ruthenium(II)-catalyzed one-pot synthesis of highly substituted 1,2-dihydropyridines (DHPs) via a three-component reaction system has been realized. The reaction is conducted using a simple Ru(II) catalyst without the addition of specific ligands. The catalytic system exhibits good functionality tolerance with a wide range of starting materials. The DHPs obtained can be easily converted into tetrahydropyridines and azabicyclo[4.2.0]octa-4,7-dienes by subsequent reduction or [2 + 2] cycloaddition reaction.
Collapse
Affiliation(s)
- Juntao Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, China
| | - Bingxian Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Pingyuan Laboratory, Xinxiang, Henan 453007, China
| |
Collapse
|
22
|
Meenatchi CS, Vishnupriya R, Suresh J, Rubina SR, Selvanayagam S, Bhandari SR. Crystal structures of (12 E)-12-(4-benzyl-idene)-7,7,16-trimethyl-3-(4-methyl-phen-yl)-1-oxa-16-aza-tetra-cyclo-[11.2.1.0 2,11.0 4,9]hexa-deca-2(11),4(9)-dien-5-one and (12 E)-12-(4-bromo-benzyl-idene)-73-(4-bromo-phen-yl)-,7,16-trimethyl-10-oxa-16-aza-tetra-cyclo-[11.2.1.0 2,11.0 4,9]hexa-deca-2(11),4(9)-dien-5-one. Acta Crystallogr E Crystallogr Commun 2023; 79:392-396. [PMID: 37057019 PMCID: PMC10088327 DOI: 10.1107/s205698902300275x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
The title compounds, C32H35NO2, (I), and C30H29Br2NO2, (II), differ by the presence of a bromine atom instead of a methyl atom in the para position of two benzene rings of compound (II). The two compounds have a structural overlap r.m.s. deviation of 0.27 Å. The pyran and seven-membered cyclo-heptene rings in both structures adopt boat and boat-sofa conformations, respectively. Intra- and inter-molecular C-H⋯O hydrogen bonds are responsible for the consolidation of the crystal packing of both mol-ecules. In addition to this, weak C-H⋯π inter-actions are also observed. The inter-molecular inter-actions were qu-anti-fied and analysed using Hirshfeld surface analysis.
Collapse
Affiliation(s)
| | - R. Vishnupriya
- Department of Physics, The Madura College, Madurai 625 011, India
| | - J. Suresh
- Department of Physics, The Madura College, Madurai 625 011, India
| | - S. Raja Rubina
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
| | - S. Selvanayagam
- PG & Research Department of Physics, Government Arts College, Melur 625 106, India
| | - S. R. Bhandari
- Department of Physics, Bhairahawa M. Campus, Tribhuvan University, Nepal
| |
Collapse
|
23
|
Aleksić J, Stojanović M, Bošković J, Baranac-Stojanović M. Solid-state silica gel-catalyzed synthesis of fluorescent polysubstituted 1,4- and 1,2-dihydropyridines. Org Biomol Chem 2023; 21:1187-1205. [PMID: 36648494 DOI: 10.1039/d2ob02119f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We present the green, highly atom-economical, solid-state silica gel-catalyzed synthesis of polysubstituted 1,4- and 1,2-dihydropyridines (DHPs) from commercially available materials, amines and ethyl propiolate. The DHP skeleton was assembled by heating the reactants and silica gel in a closed vessel. Aliphatic amines provided 1,4-isomers as the main or only DHP products, but the reactions of aromatic amines yielded a mixture of 1,4- and 1,2-isomers. To the best of our knowledge, this is the first example of the formation of a 1,2-DHP structure by the reaction of an amine with propiolic ester. Addition of 1 mass percent of H2SO4 to silica gel shifted the product distribution to 1,4-DHP as the main or the only isomer obtained. Experimental and theoretical analyses led to the identification of two key intermediates en route to DHPs and the explanation of the observed regioisomeric ratios. 1,2-DHPs show blue-cyan fluorescence in MeOH with the quantum yield Φ = 0.10-0.22 relative to quinine sulfate Φ = 0.58 and 1,4-DHPs show blue-violet fluorescence with Φ = 0.09-0.81.
Collapse
Affiliation(s)
- Jovana Aleksić
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - Center for Chemistry, Njegoševa 12, P.O.Box 473, 11000 Belgrade, Serbia.
| | - Milovan Stojanović
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - Center for Chemistry, Njegoševa 12, P.O.Box 473, 11000 Belgrade, Serbia.
| | - Jakša Bošković
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, P.O.Box 158, 11000 Belgrade, Serbia.
| | - Marija Baranac-Stojanović
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, P.O.Box 158, 11000 Belgrade, Serbia.
| |
Collapse
|
24
|
Desai B, Uppuluru A, Dey A, Deshpande N, Dholakiya BZ, Sivaramakrishna A, Naveen T, Padala K. The recent advances in cobalt-catalyzed C(sp 3)-H functionalization reactions. Org Biomol Chem 2023; 21:673-699. [PMID: 36602117 DOI: 10.1039/d2ob01936a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the past decades, reactions involving C-H functionalization have become a hot theme in organic transformations because they have a lot of potential for the streamlined synthesis of complex molecules. C(sp3)-H bonds are present in most organic species. Since organic molecules have massive significance in various aspects of life, the exploitation and functionalization of C(sp3)-H bonds hold enormous importance. In recent years, the first-row transition metal-catalyzed direct and selective functionalization of C-H bonds has emerged as a simple and environmentally friendly synthetic method due to its low cost, unique reactivity profiles and easy availability. Therefore, research advancements are being made to conceive catalytic systems that foster direct C(sp3)-H functionalization under benign reaction conditions. Cobalt-based catalysts offer mild and convenient reaction conditions at a reasonable expense compared to conventional 2nd and 3rd-row transition metal catalysts. Consequently, the probing of Co-based catalysts for C(sp3)-H functionalization is one of the hot topics from the outlook of an organic chemist. This review primarily focuses on the literature from 2018 to 2022 and sheds light on the substrate scope, selectivity, benefits and limitations of cobalt catalysts for organic transformations.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Ajay Uppuluru
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Ashutosh Dey
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Neha Deshpande
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Bharatkumar Z Dholakiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Kishor Padala
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India. .,Central Tribal University of Andhra Pradesh, Kondakarakam Village, Cantonment, Vizianagaram, Andhra Pradesh, 535003, India
| |
Collapse
|
25
|
Maayuri R, Gandeepan P. Manganese-catalyzed hydroarylation of multiple bonds. Org Biomol Chem 2023; 21:441-464. [PMID: 36541044 DOI: 10.1039/d2ob01674e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transition metal-catalyzed C-H activation has become a promising strategy in organic synthesis due to its improved atom-, step- and resource economy. Considering the Earth's abundance, economic benefits, and low toxicity, 3d metal catalysts for C-H activation have received a significant focus. In particular, organometallic manganese-catalyzed C-H activation has proven to be versatile and suitable for a wide range of transformations such as C-H addition to π-components, arylation, alkylation, alkynylation, amination, and many more. Among them, manganese-catalyzed C-H addition to C-C and C-heteroatom multiple bonds exhibited unique and promising reactivity to construct a wide range of complex organic molecules. In this review, we highlight the developments in the field of manganese-catalyzed hydroarylation of multiple bonds via C-H activation with a range of applications until August 2022.
Collapse
Affiliation(s)
- Rajaram Maayuri
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh 517619, India.
| | - Parthasarathy Gandeepan
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh 517619, India.
| |
Collapse
|
26
|
Lu M, Xu W, Ye M. Phosphine Oxide-Promoted Rh(I)-Catalyzed C-H Cyclization of Benzimidazoles with Alkenes. Molecules 2023; 28:736. [PMID: 36677791 PMCID: PMC9864171 DOI: 10.3390/molecules28020736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Ligands play a critical role in promoting transition-metal-catalyzed C-H activation reactions. However, owing to high sensitivity of the reactivity of C-H activation to metal catalysts, the development of effective ligands has been a formidable challenge in the field. Rh(I)-catalyzed C-H cyclization of benzimidazoles with alkenes has been faced with low reactivity, often requiring very harsh conditions. To address this challenge, a phosphine oxide-enabled Rh(I)-Al bimetallic catalyst was developed for the reaction, significantly promoting the reactivity and allowing the reaction to run at 120 °C with up to 97% yield.
Collapse
Affiliation(s)
- Mingzhen Lu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
| | - Weiwei Xu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
| | - Mengchun Ye
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
27
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
28
|
Rubina SR, Stalin PR, Meenatchi CS, Murugesan S, Kumar RR. Synthesis of epiminocyclohepta[b]pyrazolo[4,3-e]pyridines from tropinone: Fluorescent “Turn on–off” chemosensors for the sequential detection of Al3+, Cd2+ and Pb2+ in nanomolar concentration. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Yang C, Shi L, Wang F, Su Y, Xia JB, Li F. Rhodium-Catalyzed Asymmetric (3 + 2 + 2) Annulation via N–H/C–H Dual Activation and Internal Alkyne Insertion toward N-Fused 5/7 Bicycles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Yang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lijun Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yijin Su
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
30
|
Chen J, Ming W, Fan DH, Gu SX. Synthesis and Characterization of Related Substances of Torasemide. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1749327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
AbstractTorasemide, a pyridine-3-sulfonylurea derivative, is a high-efficiency loop diuretic. During the process development of torasemide, five process-related substances, which have been specified in the pharmacopeia, would be produced. In this study, all these related substances, including compounds A–E, were synthesized via simple procedures and subsequently characterized by 1H nuclear magnetic resonance (NMR), 13C NMR, and mass spectrometry. Particularly, a simple synthetic method for compound A has not been found in previous literature. It is worth noting that other related substances could be prepared from compound B in one or two steps. The availability of these related substances could allow for quality control in the process of torasemide.
Collapse
Affiliation(s)
- Jiong Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Wei Ming
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - De-Hua Fan
- Wuhan Jianuokang Pharmaceutical Technology Co., Ltd., Wuhan, People's Republic of China
| | - Shuang-Xi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, People's Republic of China
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, People's Republic of China
| |
Collapse
|
31
|
Pu WY, Chen XY, Dong L. Rh(III)-catalyzed [5+1] spirocyclization to produce novel benzimidazole-incorporated spirosuccinimides. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
32
|
Regiocontrolled Rh(III)-catalyzed C-C coupling/C-N cyclization mediated by distinctive 1,2-migratory insertion of gem-difluoromethylene allenes: reaction development and mechanistic insight. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Karjee P, Mishra M, Debnath B, Punniyamurthy T. Expedient Ni(OTf) 2/visible light photoredox-catalyzed annulation of donor-acceptor cyclopropanes with cyclic secondary amines. Chem Commun (Camb) 2022; 58:8670-8673. [PMID: 35822543 DOI: 10.1039/d2cc02941c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The annulative coupling of donor-acceptor cyclopropanes with cyclic secondary amines is reported using the combination of Ni(OTf)2 and visible light assisted eosin Y catalysis for tandem C-N and C-C bond formation. The reaction sequence provides a potential synthetic tool for the construction of pyrrolotetrahydroisoquinolines.
Collapse
Affiliation(s)
- Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
34
|
Mishra M, Maharana PK, Karjee P, Punniyamurthy T. Expedient cobalt-catalyzed stereospecific cascade C-N and C-O bond formation of styrene oxides with hydrazones. Chem Commun (Camb) 2022; 58:7090-7093. [PMID: 35661177 DOI: 10.1039/d2cc01926d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt-catalyzed cascade C-N and C-O bond formation of epoxides with hydrazones is described to furnish oxadiazines using air as an oxidant. The catalyst plays a dual role as a Lewis acid followed by a redox catalyst to accomplish the C-H/O-H cyclization. Optically active styrene oxide can be reacted enantiospecifically (>99% ee).
Collapse
Affiliation(s)
- Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | | |
Collapse
|
35
|
Robinson DJ, Ortiz KG, O’Hare NP, Karimov RR. Dearomatization of Heteroarenium Salts with ArBpin Reagents. Application to the Total Synthesis of a Nuphar Alkaloid. Org Lett 2022; 24:3445-3449. [DOI: 10.1021/acs.orglett.2c00976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Donovan J. Robinson
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Kacey G. Ortiz
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Nathan P. O’Hare
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Rashad R. Karimov
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| |
Collapse
|
36
|
Wayama T, Arai Y, Oguri H. Regiocontrolled Dimerization of Densely Functionalized 1,6-Dihydropyridines for the Biomimetic Synthesis of a Halicyclamine-type Scaffold by Preventing Disproportionation. J Org Chem 2022; 87:5938-5951. [PMID: 35420034 DOI: 10.1021/acs.joc.2c00212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The biomimetic dimerization of 1,6-dihydropyridines (DHPs) remains a daunting challenge due to competitive disproportionation pathways. Herein we report the regioselective dimerization of densely functionalized 1,6-DHPs that allow direct access to the bis-nitrogen bicyclic scaffold of halicyclamines. Disproportionation triggered by the hydride shift of 1,6-DHP was suppressed by the use of geminal disubstituted substrates. Installation of an electron-withdrawing substituent at the C3 position was demonstrated to be crucial for facilitating biomimetic dimerization under metal-free conditions, with exquisite control of regioselectivity at ambient temperature. Our approach, featuring an appropriately functionalized and substantially stabilized substrate rather than merely adopting the highly reactive and labile hypothetical biosynthetic intermediate, allowed gram-scale and atom-economical synthesis of the bis-nitrogen bicyclic scaffold. Furthermore, conversion of a series of 1,6-DHPs provided mechanistic insights by circumventing the competitive disproportionation reaction. This revealed not only the innate reactivity of the conjugate diene system for [4 + 2] cycloaddition but also the reversibility of the dimerization reaction with multiple cationic intermediates in equilibrium.
Collapse
Affiliation(s)
- Toshiaki Wayama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuta Arai
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Hiroki Oguri
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
37
|
Zou N, Liu Z, Yan G, Wang Y, Liang C, Mo D. DBU‐Promoted 6π‐Azaelectrocyclization and Hydrogen‐Migration to Prepare 6‐Alkyl Pyridine
N
‐Oxides from
N
‐Vinyl‐
α
,
β
‐Unsaturated Nitrones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ning Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Zhang‐Wei Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Gong‐Gui Yan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Ying‐Chun Wang
- College of Chemistry and Chemical Engineering Jishou University Jishou 416000, People's Republic of China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| | - Dong‐Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 15 Yu Cai Road Guilin 541004, People's Republic of China
| |
Collapse
|
38
|
Pang M, Shi LL, Xie Y, Geng T, Liu L, Liao RZ, Tung CH, Wang W. Cobalt-Catalyzed Selective Dearomatization of Pyridines to N–H 1,4-Dihydropyridines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maofu Pang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Le-Le Shi
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yufang Xie
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tianyi Geng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lan Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
39
|
Goulart TAC, Back DF, Moura E Silva S, Zeni G. Palladium-Catalyzed Cascade 5- endo-dig Cyclization of Ynamides to Form 4-Alkynyloxazolones. J Org Chem 2022; 87:3341-3351. [PMID: 35167299 DOI: 10.1021/acs.joc.1c02978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The selective synthesis of 4-alkynyloxazolones and their further applications as substrates to electrophile-promoted nucleophilic cyclization have been developed. The reaction of ynamides with terminal alkynes proceeded smoothly to give 4-alkynyloxazolones in the presence of a catalytic amount of palladium(II) acetate. The products were obtained with the sequential formation of new C-C and C-O bonds via a cascade procedure. The first step involved a carbon-oxygen bond formation, via a 5-endo-dig closure, which was confirmed by X-ray analyses of the crystalline sample. Subsequently, the reaction of 4-alkynyloxazolones with an electrophilic selenium source gave 3-phenylselanyl benzofuran derivatives via an electrophile-promoted nucleophilic cyclization.
Collapse
Affiliation(s)
- Tales A C Goulart
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Davi Fernando Back
- Laboratório de Materiais Inorgânicos, Departamento de Química, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Sidnei Moura E Silva
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| |
Collapse
|
40
|
Nallagonda R, Musaev DG, Karimov RR. Light-Promoted Dearomative Cross-Coupling of Heteroarenium Salts and Aryl Iodides via Nickel Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajender Nallagonda
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Rashad R. Karimov
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
41
|
Nie XD, Mao ZY, Guo JM, Si CM, Wei BG, Lin GQ. AgNTf 2-Catalyzed Regioselective C-H Alkenylation of N,N-Dialkylanilines with Ynamides. J Org Chem 2022; 87:2380-2392. [PMID: 35041783 DOI: 10.1021/acs.joc.1c02263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regioselective C-H alkenylation of N,N-dialkylanilines with ynamides was developed using AgNTf2 as a catalyst. This approach represents a facile hydroarylation of ynamides, allowing for the introduction of an alkenyl group exclusively at the para position of aniline derivatives. As a result, a series of 4-alkenyl N,N-dialkylanilines were synthesized with excellent regioselectivities.
Collapse
Affiliation(s)
- Xiao-Di Nie
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhuo-Ya Mao
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jia-Ming Guo
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chang-Mei Si
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Bang-Guo Wei
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
42
|
Liu J, Xiao X, Lai Y, Zhang Z. Recent advances in transition metal-catalyzed heteroannulative difunctionalization of alkenes via C-H activation for the synthesis of heterocycles. Org Chem Front 2022. [DOI: 10.1039/d2qo00081d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterocyclic compounds are the fundamental structural motifs distributed in natural products, pharmaceuticals and biologically active compounds. Thus, there is increasing interest in the development of novel synthetic strategies for the...
Collapse
|
43
|
Chen YJ, Xu HB, Liu H, Dong L. Highly-selective synthesis of functionalized spirobenzofuranones and diketones. Org Chem Front 2022. [DOI: 10.1039/d2qo00677d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient and atom-economical rhodium(iii)-catalyzed highly-selective hydroacylation for the synthesis of spirobenzofuranones and diketones has been successfully developed.
Collapse
Affiliation(s)
- Yin-Jun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hui-Bei Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
44
|
Yang Z, Zhou Y, Li H, Lei J, Bing P, He B, Li Y. A Facile Route to Pyrazolo[1,2‐a]cinnoline via Rhodium(III)‐catalyzed Annulation of Pyrazolidinoes and Iodonium Ylides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zi Yang
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| | - Yi Zhou
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| | - Haigang Li
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations Changsha Medical University Changsha 410219 P. R. China
| | - Jieni Lei
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| | - Pingping Bing
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| | - Binsheng He
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| | - Yaqian Li
- Academician Workstation Changsha Medical University Changsha 410219 P. R. China
| |
Collapse
|
45
|
Xu H, Chen W, Bian M, Xu H, Gao H, Wang T, Zhou Z, Yi W. Gem-Difluorocyclopropenes as Versatile β-Monofluorinated Three-sp 2 Carbon Sources for Cp*Rh(III)-Catalyzed [4 + 3] Annulation: Experimental Development and Mechanistic Insight. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Huiying Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Weijie Chen
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Mengyao Bian
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hui Gao
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Ting Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
46
|
Rhodium-Catalyzed Oxidative Annulation of 2- or 7-Arylindoles with Alkenes/Alkynes Using Molecular Oxygen as the Sole Oxidant Enabled by Quaternary Ammonium Salt. Molecules 2021; 26:molecules26175329. [PMID: 34500762 PMCID: PMC8433977 DOI: 10.3390/molecules26175329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022] Open
Abstract
Developing an efficient catalytic system using molecular oxygen as the oxidant for rhodium-catalyzed cross-dehydrogenative coupling remains highly desirable. Herein, rhodium-catalyzed oxidative annulation of 2- or 7-phenyl-1H-indoles with alkenes or alkynes to assemble valuable 6H-isoindolo[2,1-a]indoles, pyrrolo[3,2,1-de]phenanthridines, or indolo[2,1-a]isoquinolines using the atmospheric pressure of air as the sole oxidant enabled by quaternary ammonium salt has been accomplished. Mechanistic studies provided evidence for the fast intramolecular aza-Michael reaction and aerobic reoxidation of Rh(I)/Rh(III), facilitated by the addition of quaternary ammonium salt.
Collapse
|
47
|
Sengupta P, Das R, Dhibar P, Paul P, Bhattacharya S. Rhodium and Iridium Mediated C-H and O-H Bond Activation of Two Schiff Base Ligands: Synthesis, Characterization and Catalytic Properties of the Organometallic Complexes. Front Chem 2021; 9:696460. [PMID: 34434917 PMCID: PMC8380818 DOI: 10.3389/fchem.2021.696460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Reaction of [Rh(PPh3)3Cl] with two Schiff base ligands, viz. N-(2′-hydroxyphenyl)furan-2-aldimine (H2L1) and N-(2′-hydroxyphenyl)thiophene-2-aldimine (H2L2), in refluxing toluene affords organorhodium complexes of type [Rh(PPh3)2(L)Cl] (L = L1 and L2). Similar reaction with [Ir(PPh3)3Cl] yields organoiridium complexes of type [Ir(PPh3)2(L) (H)] (L = L1 and L2). Crystal structures of [Rh(PPh3)2(L1)Cl] and [Ir(PPh3)2(L2) (H)] have been determined, where the imine ligands are found to bind to the metal centers as CNO-donors. Structures of [Rh(PPh3)2(L2)Cl] and [Ir(PPh3)2(L1) (H)] have been optimized by density functional theory method. Formation of the organometallic complexes is believed to proceed via C-H and O-H bond activation of the imine ligands. All four complexes show intense absorptions in the visible and ultraviolet regions. Cyclic voltammetry on the complexes shows an oxidation on the positive side of SCE and a reduction on the negative side. The organoiridium complexes are found to efficiently catalyze Suzuki-type C-C cross coupling reactions.
Collapse
Affiliation(s)
- Poulami Sengupta
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata, India.,Henkel Limited, Hemel Hempstead, United Kingdom
| | - Rituparna Das
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata, India
| | - Papu Dhibar
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata, India
| | - Piyali Paul
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata, India.,Department of Chemistry and Environment, Heritage Institute of Technology, Kolkata, India
| | - Samaresh Bhattacharya
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata, India
| |
Collapse
|
48
|
Ledovskaya MS, Polynski MV, Ananikov VP. One-Pot and Two-Chamber Methodologies for Using Acetylene Surrogates in the Synthesis of Pyridazines and Their D-Labeled Derivatives. Chem Asian J 2021; 16:2286-2297. [PMID: 34152671 DOI: 10.1002/asia.202100562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Indexed: 01/03/2023]
Abstract
Acetylene surrogates are efficient tools in modern organic chemistry with largely unexplored potential in the construction of heterocyclic cores. Two novel synthetic paths to 3,6-disubstituted pyridazines were proposed using readily available acetylene surrogates through flexible C2 unit installation procedures in a common reaction space mode (one-pot) and distributed reaction space mode (two-chamber): (1) an interaction of 1,2,4,5-tetrazine and its acceptor-functionalized derivatives with a CaC2 -H2 O mixture performed in a two-chamber reactor led to the corresponding pyridazines in quantitative yields; (2) [4+2] cycloaddition of 1,2,4,5-tetrazines to benzyl vinyl ether can be considered a universal synthetic path to a wide range of pyridazines. Replacing water with D2 O and vinyl ether with its trideuterated analog in the developed procedures, a range of 4,5-dideuteropyridazines of 95-99% deuteration degree was synthesized for the first time. Quantum chemical modeling allowed to quantify the substituent effect in both synthetic pathways.
Collapse
Affiliation(s)
- Maria S Ledovskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia
| | - Mikhail V Polynski
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia.,N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia.,N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia
| |
Collapse
|
49
|
Heusler A, Fliege J, Wagener T, Glorius F. Substituted Dihydropyridine Synthesis by Dearomatization of Pyridines. Angew Chem Int Ed Engl 2021; 60:13793-13797. [PMID: 33830616 PMCID: PMC8252501 DOI: 10.1002/anie.202104115] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 01/18/2023]
Abstract
Dearomatization is an effective method to transform readily available N-heterocycles into partially saturated motifs. Manipulation of dihydro-derivatives holds great potential and provides access to a variety of semi-saturated N-heterocyclic building blocks. However, current strategies are limited in scope and the use of sensitive reagents restricts the applicability in synthetic laboratories. Herein, we report the synthesis of a broad variety of N-substituted 1,4- and 1,2-dihydropyridines by very mild and selective reduction with amine borane for the first time.
Collapse
Affiliation(s)
- Arne Heusler
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Julian Fliege
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Tobias Wagener
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Frank Glorius
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
50
|
Heusler A, Fliege J, Wagener T, Glorius F. Synthese substituierter Dihydropyridine durch Dearomatisierung von Pyridinen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arne Heusler
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Julian Fliege
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Tobias Wagener
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|