1
|
Liu Y, Lin D, Yu Y, Wang F, Yin W, Liu Y, Ye P, Gong Y. Synergistic adsorption and photocatalytic degradation of perfluorooctanoic acid in aqueous solution by a regenerable biochar-titania nanotube composite. RSC Adv 2025; 15:14917-14928. [PMID: 40337240 PMCID: PMC12057621 DOI: 10.1039/d5ra01700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025] Open
Abstract
Perfluorooctanoic acid (PFOA), a recalcitrant perfluoroalkyl substance, presents escalating challenges for aquatic decontamination due to its extreme persistence and bioaccumulation. A biochar-titania nanotube (TNTs@biochar) combining the advantages of biochar and TNTs was synthesized for the first time via an alkaline hydrothermal approach and explored for the adsorption and photodegradation of PFOA in aqueous solution. Titania nanotubes interacted with biochar to form TNTs@biochar. The optimal composite was obtained at a biochar : TiO2 mass ratio of 1 : 1 and a calcination temperature of 550 °C. The composite efficiently adsorbed ∼99% of PFOA through hydrophobic and anion-π interactions and hydrogen bonding, concentrating PFOA on photoactive sites. The incorporation of biochar with TNTs enhanced light absorption in the 200-700 nm range, lowered the band gap energy to 3.10 eV, improved the formation rate and separation efficiency of e--h+ pairs, and enhanced interfacial charge transfer, resulting in promoted photocatalytic activity. The degradation of pre-concentrated PFOA on TNTs@biochar reached up to 99%. The photodegradation also regenerated the composite, allowing for four successive adsorption-photodegradation cycles. Hydroxyl radical and h+-driven oxidation played a paramount part, leading to decarboxylation and C-F bond cleavage. The byproducts of the photodegradation demonstrated lower acute and chronic toxicity compared with PFOA. The composite exhibits synergistic adsorption and photocatalytic activity as well as offers efficiently and economically scalable solutions for PFOA-laden water remediation.
Collapse
Affiliation(s)
- Yingjie Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University Guangzhou 511443 China
| | - Dongjiao Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University Guangzhou 511443 China
| | - Yang Yu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University Guangzhou 511443 China
| | - Fei Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University Guangzhou 511443 China
| | - Weizhao Yin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University Guangzhou 511443 China
| | - Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University Guangzhou 511443 China
| | - Peilin Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University Guangzhou 511443 China
| | - Yanyan Gong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University Guangzhou 511443 China
| |
Collapse
|
2
|
Sawunyama L, Oyewo OA, Makgato SS, Bopape MF, Onwudiwe DC. TiO 2-ZnO functionalized low-cost ceramic membranes from coal fly ash for the removal of tetracycline from water under visible light. DISCOVER NANO 2025; 20:1. [PMID: 39751693 PMCID: PMC11698709 DOI: 10.1186/s11671-024-04178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Hybrid wastewater treatment systems offer viable solutions to enhance the removal of complicated contaminants from aqueous system. This innovation has opened new avenues for advanced wastewater treatment processes. Herein, a novel TiO2-ZnO functionalized coal fly ash-based ceramic membrane was fabricated by utilizing a combined pressing and sintering method. The intrinsic properties of the functionalized membranes were characterized and their chemical and physical properties such as chemical stability, mechanical stability, water absorption, and porosity were established. The shape, crystallinity, thermal characteristics, and functional groups present were also determined using SEM, XRD, TGA, and FTIR studies, respectively. The results showed that the ceramic membrane functionalized with 0.5 g of TiO2-ZnO and sintered at 850 °C exhibited the best thermal, and chemical stability, and possessed the required porosity for ultrafiltration applications. Photocatalytic degradation of tetracycline (TC) as a model pollutant was examined and the optimum efficiency of 77% was achieved within 100 min of visible irradiation using the functionalized membrane. Moreso, the functionalized membrane was found to be stable with 73% degradation efficiency after 5 consecutive cycles of reusability study, showing negligible loss of efficiency. The scale-up of photocatalytic ceramic membranes and their utilization in real industrial applications will confirm their robustness.
Collapse
Affiliation(s)
- Lawrence Sawunyama
- Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Opeyemi A Oyewo
- Department of Chemical & Materials Engineering, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| | - Seshibe S Makgato
- Department of Chemical & Materials Engineering, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| | - Mokgadi F Bopape
- Department of Chemical, Metallurgical and Material Engineering, Tshwane University of Technology, Private Bag x680, Pretoria, 0001, South Africa
| | - Damian C Onwudiwe
- Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
3
|
Su Y, Zheng JJ, Otake KI, Hosono N, Kitagawa S, Gu C. Controlling Guest Diffusion by Local Dynamic Motion in Soft Porous Crystals to Separate Water Isotopologues and Similar Gases. Acc Chem Res 2024; 57:3455-3464. [PMID: 39471061 DOI: 10.1021/acs.accounts.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
ConspectusThe precise and effective separation of similar mixtures is one of the fundamental issues and essential tasks in chemical research. In the field of gas/vapor separation, the size difference among the molecular pairs/isomers of light hydrocarbons and aromatic compounds is generally 0.3-0.5 Å, and the boiling-point difference is generally 6-15 K. These are necessary industrial raw materials and have great separation demands. Still, their separation mainly relies on energy-intensive distillation technology. On the other hand, remarkably similar substances such as oxygen/argon and isotopologues usually exhibit size differences of only 0-0.07 Å and boiling-point differences of only 1-3 K. Although their industrial separation can be realized, their efficiency is considerably low. Therefore, effectively separating remarkably similar mixtures is crucial in fundamental chemistry and industry, but it remains a significant challenge. Porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) are emerging materials platforms for designing adsorbents for separating similar mixtures. However, the reported PCPs did not work well for separating remarkably similar substances. The framework structures of the mainstream PCPs remain unchanged (rigid) or significantly change (globally flexible) upon adsorption. However, rigid and globally flexible PCPs find controlling the pore aperture in subangstrom precision challenging, a prerequisite for distinguishing remarkably similar substances. Thus, novel mechanisms and materials design principles are urgently needed to realize PCPs-based adsorptive separation of remarkably similar mixtures.To confront the obstacles in separating remarkably similar mixtures, our group started contributing to this field in 2017. We employed locally flexible PCPs as the materials designing platform, whose local motions of the side substituent groups potentially regulate the pore apertures to design and control the gas/vapor diffusion in PCPs. Specifically, we encoded dynamic flipping molecular motions into the diffusion-regulatory gate functionality. The ligands were designed by integrating carboxylic coordination groups with nonplanar fused-ring moieties, with the latter moieties exhibiting flipping motion around their equilibrium positions with small energy increases. Such local motions of ligands lead to the dynamic opening and blocking of PCP channels, thus termed flipping dynamic crystals (FDCs). FDCs feature distinctive temperature-responsive adsorption behaviors due to the competition of thermodynamics and kinetics under diffusion regulation, enabling differentiation of remarkably similar mixtures by each gate-admission temperature much higher than the boiling-point temperature of each component. Even when the molecular sizes are the same in the water isotopologue mixtures, FDCs can separate each isotopologue by amplifying their diffusion-rate differences. Finally, by combining the thermodynamic and kinetic factors, FDCs achieve temperature-switched recognition of CO2/C2H2 and diffusion-rate sieving of C3H6/C3H8. Therefore, our work provides a platform for designing locally flexible PCPs by introducing subangstrom precision in flexibility. This opens up the feasibility of separating remarkably similar mixtures on scientific principles. In this Account, we summarize our above ongoing research contributions, including (i) the design of flipping ligands and FDCs, (ii) the characterization of flipping motions, (iii) the gas/isotopologue sorption behaviors, and (iv) the separation of gases and isotopologues. Overall, our studies offer a new aspect of soft porous crystals and provide future opportunities for relevant researchers in this field.
Collapse
Affiliation(s)
- Yan Su
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nobuhiko Hosono
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-8656, Tokyo Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Cheng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
4
|
Shi S, Ma ZD, Li YX, Qi SC, Sun LB. Spiropyran-Incorporated Y Zeolite: A Visible-Light-Responsive System for Controllable CO adsorption. CHEM & BIO ENGINEERING 2024; 1:783-789. [PMID: 39974184 PMCID: PMC11792910 DOI: 10.1021/cbe.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 02/21/2025]
Abstract
The development of high-performance adsorbents is vital for adsorptive separation. Conventional adsorbents have limitations in combining selective adsorption and efficient desorption due to their fixed surface properties. In this work, we have constructed spiropyran (SP)-based visible-light-responsive adsorbents for controllable CO adsorption by synthesizing SP in situ in Y zeolite via the ship-in-the-bottle method. This avoids the drawbacks associated with the vast majority of systems that modulate adsorption capacity by UV light. SP molecules can undergo reversible isomerization within the Y zeolite, which exhibit the merocyanine (MC) state in the dark and revert to the SP form upon visible light stimulation. The results show that the isomerization of MC to SP leads to a tunable CO adsorption capacity of up to 34%. Simulations performed by density functional theory reveal that MC is more likely to trap CO molecules than SP due to its higher binding energy with CO. We further demonstrate that the isomerization-induced tunable adsorption capacity can be maintained during cycles without degradation.
Collapse
Affiliation(s)
- Shu Shi
- State Key Laboratory of Materials-Oriented
Chemical Engineering, Jiangsu National Synergetic Innovation Center
for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zi-Da Ma
- State Key Laboratory of Materials-Oriented
Chemical Engineering, Jiangsu National Synergetic Innovation Center
for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yu-Xia Li
- State Key Laboratory of Materials-Oriented
Chemical Engineering, Jiangsu National Synergetic Innovation Center
for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Shi-Chao Qi
- State Key Laboratory of Materials-Oriented
Chemical Engineering, Jiangsu National Synergetic Innovation Center
for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented
Chemical Engineering, Jiangsu National Synergetic Innovation Center
for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
5
|
Deng J, Han J, Hou C, Zhang Y, Fang Y, Du W, Li M, Yuan Y, Tang C, Hu X. Efficient removal of per- and polyfluoroalkyl substances from biochar composites: Cyclic adsorption and spent regenerant degradation. CHEMOSPHERE 2023; 341:140051. [PMID: 37660789 DOI: 10.1016/j.chemosphere.2023.140051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
In order to solve the problem of efficient desorption of per- and polyfluoroalkyl substances (PFAS) and regeneration of adsorbents, a novel biochar composite was prepared based on the quaternary ammonium groups and hydrophobicity of sulfobetaine polymer, which can be used for the efficient removal of various PFASs and has great regeneration ability. Through adsorption, regeneration and degradation experiment, the comprehensive effect of the novel biochar composite on the whole process of removal of PFAS was systematically investigated. The results showed that the maximum adsorption capacity of PFOS, PFOA, PFBS, and PFBA reached 634 mg/g, 536 mg/g, 301 mg/g and 264 mg/g, respectively. The adsorption process involved hydrophobicity, electrostatic, pore diffusion and complexation. The NaI + NaOH solution was used at 50 °C to achieve efficient regeneration of the adsorbent, which can be recycled more than 4 times. When the vacuum-ultraviolet (VUV)/sulfite reduction system was used for deep degradation of the regenerated solution, the effect of hydrated electrons on PFAS was enhanced due to the inclusion of NaI and NaOH in the regeneration reagent, resulting in an increase in the degradation efficiency (89.1%-99.9%) and defluorination efficiency (63.3%-84.1%). Based on the performance of BC-P(SB-co-AM) and the treatment efficiency of PFAS, the design idea of the whole process treatment technology of PFAS proposed in this work is expected to hold great promise in environmental applications. This work provides a novel idea and system for the efficient adsorption removal and desorption of PFAS, and subsequent deep degradation.
Collapse
Affiliation(s)
- Jiaqin Deng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, China.
| | - Jianing Han
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Changlan Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yanru Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, 410004, China
| | - Ying Fang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - WanXuan Du
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Meifang Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yuan Yuan
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chunfang Tang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
6
|
Yan M, Wang Y, Chen J, Zhou J. Potential of nonporous adaptive crystals for hydrocarbon separation. Chem Soc Rev 2023; 52:6075-6119. [PMID: 37539712 DOI: 10.1039/d2cs00856d] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Hydrocarbon separation is an important process in the field of petrochemical industry, which provides a variety of raw materials for industrial production and a strong support for the development of national economy. However, traditional separation processes involve huge energy consumption. Adsorptive separation based on nonporous adaptive crystal (NAC) materials is considered as an attractive green alternative to traditional energy-intensive separation technologies due to its advantages of low energy consumption, high chemical and thermal stability, excellent selective adsorption and separation performance, and outstanding recyclability. Considering the exceptional potential of NAC materials for hydrocarbon separation, this review comprehensively summarizes recent advances in various supramolecular host-based NACs. Moreover, the current challenges and future directions are illustrated in detail. It is expected that this review will provide useful and timely references for researchers in this area. Based on a large number of state-of-the-art studies, the review will definitely advance the development of NAC materials for hydrocarbon separation and stimulate more interesting studies in related fields.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
7
|
Fan J, Duan L, Zhang X, Li Z, Qiu P, He Y, Shang P. Selective Adsorption and Recovery of Silver from Acidic Solution Using Biomass-Derived Sulfur-Doped Porous Carbon. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40088-40099. [PMID: 37556855 DOI: 10.1021/acsami.3c07887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
It is vital to recycle precious metals effectively such as silver from waste sources because of limited natural reserves. Herein, passion fruit (Passiflora edulis Sims) shell-derived S-doped porous carbons (SPCs) were newly synthesized by hydrothermal carbonization and following with activation by KOH/(NH4)2SO4, and the adsorption of Ag+ on SPC under acidic solutions was investigated. It was found that the activator of (NH4)2SO4 can not only introduce the doping of S elements but also increase the proportion of mesopores in the as-prepared SPC. As the active site, the increasing S doping can improve the adsorption of Ag+ on SPC. The kinetic data of Ag+ adsorption by SPC was consistent with the pseudo-second-order kinetic model. The Langmuir isothermal model was used to well fit the Ag+ adsorption isotherms of SPC, and the maximum adsorption capacity of the optimized SPC-3 for Ag+ is up to 115 mg/g in 0.5 mol/L HNO3 solution. SPC-3 showed good selectivity toward Ag+ over diverse competing cations, which is mainly attributed to the strong bonding between Ag+ ions and the sulfur-containing functional groups on the surface of SPC-3 resulting in the formation of Ag2S nanoparticles. The adsorbed Ag could be recovered as an elemental form by a simple calcination. This study provides a new insight into the design of an environmentally friendly and efficient adsorbent for the selective recovery of silver from acidic aqueous media.
Collapse
Affiliation(s)
- Jinlong Fan
- Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024, China
| | - Li Duan
- Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024, China
| | - Xiangbo Zhang
- Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024, China
| | - Zhiming Li
- Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024, China
| | - Pengju Qiu
- Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024, China
| | - Yajiao He
- Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024, China
| | - Pei Shang
- Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024, China
| |
Collapse
|
8
|
Zheng F, Chen R, Liu Y, Yang Q, Zhang Z, Yang Y, Ren Q, Bao Z. Strengthening Intraframework Interaction within Flexible MOFs Demonstrates Simultaneous Sieving Acetylene from Ethylene and Carbon Dioxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207127. [PMID: 36703621 PMCID: PMC10037686 DOI: 10.1002/advs.202207127] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Efficient separation of acetylene (C2 H2 )/ethylene (C2 H4 ) and acetylene/carbon dioxide (CO2 ) by adsorption is an industrially promising process, but adsorbents capable of simultaneously capturing trace acetylene from ethylene and carbon dioxide are scarce. Herein, a gate-opening effect on three isomorphous flexible metal-organic frameworks (MOFs) named Co(4-DPDS)2 MO4 (M = Cr, Mo, W; 4-DPDS = 4,4-dipyridyldisulfide) is modulated by anion pillars substitution. The shortest CrO4 2- strengthens intraframework hydrogen bonding and thus blocks structural transformation after activation, striking a good balance among working capacity, separation selectivity, and trace impurity removal of flexible MOFs out of nearly C2 H2 /C2 H4 and C2 H2 /CO2 molecular sieving. The exceptional separation performance of Co(4-DPDS)2 CrO4 is confirmed by dynamic breakthrough experiments. It reveals the specific threshold pressures control in anion-pillared flexible materials enabled elimination of the impurity leakage to realize high purity products through precise control of the intraframework interaction. The adsorption mechanism and multimode structural transformation property are revealed by both calculations and crystallography studies. This work demonstrates the feasibility of modulating flexibility for controlling gate-opening effect, especially for some cases of significant aperture shrinkage after activation.
Collapse
Affiliation(s)
- Fang Zheng
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Rundao Chen
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
| | - Ying Liu
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| |
Collapse
|
9
|
Habila MA, Moshab MS, El-Toni AM, Al-Awadi AS, ALOthman ZA. Facile Strategy for Fabricating an Organosilica-Modified Fe 3O 4 (OS/Fe 3O 4) Hetero-nanocore and OS/Fe 3O 4@SiO 2 Core-Shell Structure for Wastewater Treatment with Promising Recyclable Efficiency. ACS OMEGA 2023; 8:7626-7638. [PMID: 36872962 PMCID: PMC9979343 DOI: 10.1021/acsomega.2c07214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/31/2023] [Indexed: 05/03/2023]
Abstract
The development of a sustainable process for heavy metal ion remediation has become a point of interest in various fields of research, including wastewater treatment, industrial development, and health and environmental safety. In the present study, a promising sustainable adsorbent was fabricated through continuous controlled adsorption/desorption processes for heavy metal uptake. The fabrication strategy is based on a simple modification of Fe3O4 magnetic nanoparticles with organosilica in a one-pot solvothermal process, carried out in order to insert the organosilica moieties into the Fe3O4 nanocore during their formation. The developed organosilica-modified Fe3O4 hetero-nanocores had hydrophilic citrate moieties, together with hydrophobic organosilica ones, on their surfaces, which facilitated the further surface coating procedures. To prevent the formed nanoparticles from leaching into the acidic medium, a dense silica layer was coated on the fabricated organosilica/Fe3O4 (OS/Fe3O4). In addition, the prepared OS/Fe3O4@SiO2 was utilized for the adsorption of cobalt(II), lead(II), and manganese(II) from the solutions. The data for the adsorption processes of cobalt(II), lead(II), and manganese(II) on OS/(Fe3O4)@SiO2 were found to follow the pseudo-second-order kinetic model, indicating the fast uptake of heavy metals. The Freundlich isotherm was found to be more suitable for describing the uptake of heavy metals by OS/Fe3O4@SiO2 nanoparticles. The negative values of the ΔG° showed a spontaneous adsorption process of a physical nature. The super-regeneration and recycling capacities of the OS/Fe3O4@SiO2 were achieved, comparing the results to those of previous adsorbents, with a recyclable efficiency of 91% up to the seventh cycle, which is promising for environmental sustainability.
Collapse
Affiliation(s)
- Mohamed A. Habila
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Mohamed Sheikh Moshab
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Ahmed Mohamed El-Toni
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
- Nanomaterials
and Nanotechnology Department, Central Metallurgical
Research and Development Institute (CMRDI), P.O. 87 Helwan, Cairo 11421, Egypt
| | - Abdulrhman S. Al-Awadi
- Chemical
Engineering Department, King Saud University, Riyadh 11451, Saudi Arabia
- King
Abdullah City for Atomic and Renewable Energy (K.A. CARE), Energy
Research and Innovation Center at Riyadh, Riyadh 12244, Saudi Arabia
| | - Zeid A. ALOthman
- Chemistry
Department, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Lee G, Park G, Kim S, Jhung SH. Adsorptive removal of aromatic diamines from water using metal-organic frameworks functionalized with a nitro group. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130133. [PMID: 36274546 DOI: 10.1016/j.jhazmat.2022.130133] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Adsorptive removal of aromatic diamines such as methylenedianiline (MDA) and p-phenylenediamine (PPD) was firstly investigated with nitro-functionalized metal-organic frameworks (MOFs, MIL-101(Cr)-NO2). The MIL-101(Cr)-NO2 showed much better performances in the removal of MDA and PPD, in both adsorption capacity and kinetics, than any other adsorbents. For example, MIL-101(Cr)-NO2 had a much higher maximum adsorption capacity for MDA (1111 mg·g-1) than activated carbon (208 mg·g-1) or a reported adsorbent (391 mg·g-1). Based on experimental results, hydrogen bonding (especially, via the formation of a 6-membered ring (6-MR) between -NO2 of the adsorbent and -NH2 of the adsorbates) could be suggested as the main mechanism to interpret the noticeable adsorption of the diamines. Importantly, this is the first example to confirm that MOFs with nitro group can be a competitive adsorbent to remove organics composed of amino group, especially via making 6-MR through hydrogen bonding. Higher adsorption of MDA than that of PPD over MIL-101(Cr)-NO2 might be explained with π-π interaction between aromatic rings (π-lean aromatics of MOF and π-rich aromatics of the adsorbates). Moreover, MIL-101(Cr)-NO2 could be recycled after simple washing, suggesting the potential use of the MOF in adsorptive purification of contaminated water with organics with amino groups.
Collapse
Affiliation(s)
- Gyudong Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
| | - Geondo Park
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
| | - Sunghwan Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea.
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
11
|
Mohan B, Kamboj A, Virender, Singh K, Priyanka, Singh G, JL Pombeiro A, Ren P. Metal-organic frameworks (MOFs) materials for pesticides, heavy metals, and drugs removal: Environmental Safetyaj. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Li X, Bian H, Huang W, Yan B, Wang X, Zhu B. A review on anion-pillared metal–organic frameworks (APMOFs) and their composites with the balance of adsorption capacity and separation selectivity for efficient gas separation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Zhang X, Liu F, Du B, Huang R, Zhang S, He Y, Wang H, Cui J, Zhang B, Yu T, Huang W. Construction of Photoresponsive 3D Structures Based on Triphenylethylene Photochromic Building Blocks. Research (Wash D C) 2022; 2022:9834140. [PMID: 36157512 PMCID: PMC9484832 DOI: 10.34133/2022/9834140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
Photoresponsive materials have been widely used in sensing, bioimaging, molecular switches, information storage, and encryption nowadays. Although a large amount of photoresponsive materials have been reported, the construction of these smart materials into precisely prescribed complex 3D geometries is rarely studied. Here we designed a novel photoresponsive material methyl methacrylate containing triphenylethylene (TrPEF2-MA) that can be directly used for digital light processing (DLP) 3D printing. Based on TrPEF2-MA, a series of photoresponsive 3D structures with reversible color switching under ultraviolet/visible light irradiations were fabricated. These complex photoresponsive 3D structures show high resolutions (50 μm), excellent repeatability (25 cycles without fatigue), and tunable saturate color degrees. Multicomponent DLP 3D printing processes were also carried out to demonstrate their great properties in information hiding and information-carrying properties. This design strategy for constructing photoresponsive 3D structures is attractive in the area of adaptive camouflage, information hiding, information storage, and flexible electronics.
Collapse
Affiliation(s)
- Xiayu Zhang
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Fukang Liu
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Beibei Du
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Rongjuan Huang
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Simin Zhang
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Yunfei He
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Hailan Wang
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Jingjing Cui
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Biao Zhang
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics & Shaanxi Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
14
|
Hossain MA, Mondol MMH, Jhung SH. Functionalized metal-organic framework-derived carbon: Effective adsorbent to eliminate methylene blue, a small cationic dye from water. CHEMOSPHERE 2022; 303:134890. [PMID: 35568216 DOI: 10.1016/j.chemosphere.2022.134890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Elimination of organic dyes from wastewater is very important for our safe environment and sound health. In this work, adsorptive removal of cationic dyes, especially small ones, was investigated with carbonaceous materials to develop a competitive adsorption technology. To improve the performance of metal-organic framework (MOF)-derived carbons (MDCs) in dye adsorption, an MDC, derived from a MOF (MAF-6), was oxidatively functionalized with ammonium persulfate solutions (APSs). Although the porosity of pristine MDC decreased with functionalization via oxidation, functionalized MDCs (FMDCs), especially FMDC(1.0) that was obtained via treating MDC with APS (1.0 M), showed remarkable performances in the adsorption of small cationic dyes like methylene blue (MB) and azure B. For example, FMDC(1.0) had the maximum adsorption capacity (Qo) of 625.0 mg/g (for MB) which is larger than any reported value with carbonaceous materials. Moreover, the obtained Qo was around 4 and 2 times that of activated carbon with Qo of 160 mg/g and MDC with Qo of 298 mg/g, respectively. On the contrary, oxidative treatment of MDC was negative in adsorption of an anionic dye such as methyl orange. Moreover, the functionalized MDC was not very effective in the adsorption of cationic dyes with large sizes (like brilliant green, crystal violet, Janus green B, and rhodamine B) because of the limited pore size of the studied adsorbent FMDC(1.0). The remarkable adsorption of MB over FMDC(1.0) could be explained by electrostatic and π-π interactions. Finally, the facile recyclability of the FMDC(1.0) in MB adsorption was confirmed via successive adsorptions, FT-IR, and nitrogen adsorption; therefore, FMDC(1.0) can be suggested as a potential adsorbent to remove cationic dyes, especially with small molecular sizes.
Collapse
Affiliation(s)
- Md Abul Hossain
- Dept. Chem, Kyungpook National University, Daegu, 41566, South Korea
| | | | - Sung Hwa Jhung
- Dept. Chem, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
15
|
Jiang Y, Jia S, Liu XQ, Cui P, Sun LB. Selective adsorption of ethane over ethylene through a metal–organic framework bearing dense alkyl groups. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Liu P, Tian Z, Chen L. Rational Design of Smart Metal-Organic Frameworks for Light-Modulated Gas Transport. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32009-32017. [PMID: 35797237 DOI: 10.1021/acsami.2c07124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Smart metal-organic frameworks (MOFs) are constructed by introducing stimuli-responsive functional groups into MOF platforms. Through membrane systems containing smart MOFs, external field-modulated gas transport can be achieved, which finds potential applications in chemical engineering. In this work, we design a series of Mg-MOF-74-III-based frameworks functionalized by arylazopyrazole groups. Methyleneamine chains with various lengths are attached to the photoresponsive azopyrazole moiety. Molecular dynamics simulations show that CO2 diffusion can be remarkably changed by controlling the cis-to-trans isomerization of the functional unit due to the tunable adsorbate-adsorbent and adsorbate-adsorbate interactions of the two states. With the optimal length of the functional chain, the spatial hindrance and adsorbate-adsorbent interaction exhibit a synergetic effect to maximize the stimuli-responsive kinetic separation of N2 over CO2. This work provides a promising strategy for elevating smart MOFs' potential in gas separation.
Collapse
Affiliation(s)
- Pingying Liu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, Jiangxi 333403, P. R. China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P. R. China
| |
Collapse
|