1
|
Pattathil V, Pranckevicius C. CO and CS bond activation by an annulated 1,4,2-diazaborole. Dalton Trans 2025; 54:8169-8173. [PMID: 40266586 DOI: 10.1039/d5dt00642b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The reaction of an ambiphilic 1,4,2-diazaborole with CO and CS bonds results in formal (3 + 2) cycloaddition and has allowed the synthesis of a family of 1,3,2-oxazaborole and 1,3,2-thiazaborole derivatives. Computational calculations have indicated a dipolar mechanism where the π bond is concertedly activated via the Lewis acidic boron centre and the nucleophilic C5 position of the 1,4,2-diazaborole. In the case of methylisothiocyanate, preference for CS over CN addition is observed, and has been rationalized according to mechanistic calculations. A spirocyclic bis(1,3,2-thiazaborole) has been observed from the double activation of CS2.
Collapse
Affiliation(s)
- Vignesh Pattathil
- Department of Chemistry, Charles E. Fipke Centre for Innovative Research, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, Canada.
| | - Conor Pranckevicius
- Department of Chemistry, Charles E. Fipke Centre for Innovative Research, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC, Canada.
| |
Collapse
|
2
|
Wang C. Harnessing Halide Ligands and External Electric Fields in Cobalt-Catalyzed Oxidative Cyclometalation: Mechanistic Insights and Reactivity Modulation. J Org Chem 2025; 90:3974-3980. [PMID: 40071524 DOI: 10.1021/acs.joc.4c03058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
This study explores the roles of halide ligands and external electric fields (EEFs) in tuning the reactivity of cobalt-catalyzed oxidative cyclometalation (OCM) of 1,6-enynes, focusing on the concerted mechanism. Using density functional theory (DFT), we investigate how these factors influence key processes in the OCM step, particularly the cleavage of π bonds, the formation of M-C bonds, and the creation of a new C-C bond. Our findings show that polar solvents lower activation barriers, while halide ligands increase them, inhibiting the reaction by weakening π back-donation and reducing orbital overlap. However, strategic application of EEFs counteracts this inhibition, enhancing electron back-donation, stabilizing the transition state, and facilitating bond formation. The Dewar-Chatt-Duncanson (DCD) model, distortion/interaction analysis, and quantum theory of atoms in molecules (QTAIM) delocalization index (DI) calculation reveal that halide ligands reduce electron density on the cobalt center, weakening π-back-donation and raising energy barriers. This work provides key insights into how electronic and geometric factors can be manipulated to optimize the catalytic performance in cobalt-catalyzed synthetic transformations.
Collapse
Affiliation(s)
- Chao Wang
- Lab of Computational Chemistry and Drug Design, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| |
Collapse
|
3
|
Wu Q, Zhang Z, Chong Q, Meng F. Photoredox/Cobalt-Catalyzed Chemo-, Regio-, Diastereo- and Enantioselective Reductive Coupling of 1,1-Disubstituted Allenes and Cyclobutenes. Angew Chem Int Ed Engl 2025; 64:e202416524. [PMID: 39715712 DOI: 10.1002/anie.202416524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
A dual photoredox/cobalt-catalyzed protocol for chemo-, regio-, diastereo- and enantioselective reductive coupling of 1,1-disubstituted allenes and cyclobutenes through chemo-, regio-, diastereo- and enantioselective oxidative cyclization followed by stereoselective protonation promoted by a chiral phosphine-cobalt complex is presented. Such process represents an unprecedented reaction pathway for cobalt catalysis that enables selective transformation of the less sterically congested alkenes of 1,1-disubstituted allenes with cyclobutenes, incorporating a broad scope of tetrasubstituted alkenes into the cyclobutane scaffolds in up to 86 % yield, >98 : 2 chemo- and regioselectivity, >98 : 2 dr and >99.5:0.5 er. Functionalization delivered a variety of enantioenriched cyclobutanes that are otherwise difficult to access. Preliminary mechanistic studies revealed that the reactions proceeded through oxidative cyclization followed by protonation and protonation might be the rate-determining step.
Collapse
Affiliation(s)
- Qianghui Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 152 Louyu Road, Wuhan, Hubei, 430079, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| |
Collapse
|
4
|
Zhu F, He H, Wen W, Guan HL, Wu ZL, Cai T, Ni SF, Guo QX. Chiral Aldehyde/Palladium Catalysis Enables Asymmetric Branched-Selective Ring-Opening Functionalization of Methylenecyclopropanes with Amino Acid Esters. J Am Chem Soc 2025; 147:2315-2322. [PMID: 39791232 DOI: 10.1021/jacs.4c16934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Achieving catalytic asymmetric functionalization of methylenecyclopropanes (MCPs) by selective C-C bond cleavage is a notable challenge due to the intricate reaction partners involved. In this work, we report that chiral aldehyde/palladium combined catalysis enables the asymmetric functionalization of MCPs with NH2-unprotected amino acid esters. This reaction proceeds through a regiospecific branched ring-opening mechanism, resulting in optically active α,α-disubstituted α-amino acid esters bearing nonconjugated terminal alkene units. Mechanism studies indicate that the ring-opening pathways are irreversible and the ultimate regioselectivity is governed by palladium catalysis. The products can be utilized in the construction of chiral dihydropyrazoles, α-methyl aspartic acid derivatives, and analogues of VPC01091 and BMS-986104.
Collapse
Affiliation(s)
- Fang Zhu
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hui He
- College of Chemistry & Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hong-Lin Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shao-Fei Ni
- College of Chemistry & Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Qi X, Yuan F, Yan X, Xia Y. Fluoro-Promoted Thermal Ring Expansion of Cyclopropyl Carbenes to gem-Difluorinated Cyclobutenes. Org Lett 2024; 26:10317-10321. [PMID: 39570103 DOI: 10.1021/acs.orglett.4c03920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Synthesis of gem-difluorinated cyclobutenes presents certain challenges for considering the compatibility of the fluorine atom introduction with four-membered ring retention. Herein, we develop a transition-metal-free synthetic strategy toward gem-difluorinated cyclobutenes from gem-difluorinated cyclopropyl N-tosylhydrazons via ring expansion reaction. The gem-difluoro substitution alters the properties of the cyclopropane, facilitating the thermal rearrangement of cyclopropyl carbenes into cyclobutenes. This reaction can be easily handled free from inert gas protection, thus offering an efficient route to synthesize gem-difluorinated cyclobutenes.
Collapse
Affiliation(s)
- Xingyu Qi
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Fushan Yuan
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xufei Yan
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Lin Y, Wen W, Liu JH, Zhu F, Li CX, Wu ZL, Cai T, Liu CJ, Guo QX. Asymmetric α-Allylation of Amino Acid Esters with Alkynes Enabled by Chiral Aldehyde/Palladium Combined Catalysis. Org Lett 2024; 26:7908-7913. [PMID: 39254672 DOI: 10.1021/acs.orglett.4c02840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A highly efficient, atom-economical α-allylation reaction of NH2-unprotected amino acid esters and alkynes is achieved by chiral aldehyde/palladium combined catalysis. A diverse range of α,α-disubstituted nonproteinogenic α-amino acid esters are produced in 31-92% yields and 84-97% ee values. The allylation products are utilized for the synthesis of drug molecule BMS561392 and other chiral molecules possessing complex structures. Mechanistic investigations reveal that this reaction proceeds via a chiral aldehyde-/palladium-mediated triple cascade catalytic cycle.
Collapse
Affiliation(s)
- Yao Lin
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jian-Hua Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fang Zhu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chao-Xing Li
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chen-Jiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Joseph E, Tunge JA. Cobalt-Catalyzed Allylic Alkylation at sp 3-Carbon Centers. Chemistry 2024; 30:e202401707. [PMID: 38869446 DOI: 10.1002/chem.202401707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
The rising demand and financial costs of noble transition metal catalysts have emphasized the need for sustainable catalytic approaches. Over the past few years, base-metal catalysts have emerged as ideal candidates to replace their noble-metal counterparts because of their abundance and easiness of handling. Despite the significant advancements achieved with precious transition metals, earth-abundant cobalt catalysts have emerged as efficient alternatives for allylic substitution reactions. In this review, allylic alkylations at sp3-carbon centers mediated by cobalt will be discussed, with a special focus on the mechanistic features, scope, and limitations.
Collapse
Affiliation(s)
- Ebbin Joseph
- Department of Chemistry, The University of Kansas, 1567 Irving Rd., Lawrence, KS 66045, USA
| | - Jon A Tunge
- Department of Chemistry, The University of Kansas, 1567 Irving Rd., Lawrence, KS 66045, USA
| |
Collapse
|
8
|
Zhang H, Wen W, Wang YY, Lu ZX, Liu JL, Wu ZL, Cai T, Guo QX. Asymmetric bifunctionalization of allenes with aryl iodides and amino acids enabled by chiral aldehyde/palladium combined catalysis. Chem Sci 2024; 15:12983-12988. [PMID: 39148795 PMCID: PMC11322975 DOI: 10.1039/d4sc03398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Even though catalytic asymmetric bifunctionalization of allenes has been extensively studied, almost all of the reported examples have been achieved in a two-component manner. In this study, we report a highly efficient asymmetric bifunctionalization of allenes with iodohydrocarbons and NH2-unprotected amino acid esters. The adopted chiral aldehyde/palladium combined catalytic system precisely governs the chemoselectivity, regioselectivity, and stereoselectivity of this three-component reaction. A wide range of substituted aryl iodides, allenes and amino acid esters can well participate in this reaction and deliver structurally diverse α,α-disubstituted α-amino acid esters with excellent experimental outcomes. One of the resulting products is utilized for the total synthesis of the molecule (S,R)-VPC01091.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Yu-Yang Wang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Ze-Xi Lu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Jin-Long Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| |
Collapse
|
9
|
He XK, Lu LQ, Yuan BR, Luo JL, Cheng Y, Xiao WJ. Desymmetrization-Addition Reaction of Cyclopropenes to Imines via Synergistic Photoredox and Cobalt Catalysis. J Am Chem Soc 2024; 146:18892-18898. [PMID: 38968086 DOI: 10.1021/jacs.4c07096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Herein, we designed a reaction for the desymmetrization-addition of cyclopropenes to imines by leveraging the synergy between photoredox and asymmetric cobalt catalysis. This protocol facilitated the synthesis of a series of chiral functionalized cyclopropanes with high yield, enantioselectivity, and diastereoselectivity (44 examples, up to 93% yield and >99% ee). A possible reaction mechanism involving cyclopropene desymmetrization by Co-H species and imine addition by Co-alkyl species was proposed. This study provides a novel route to important chiral cyclopropanes and extends the frontier of asymmetric metallaphotoredox catalysis.
Collapse
Affiliation(s)
- Xiang-Kui He
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, 7 Bingang North Road, Wuhan 430080, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Bao-Ru Yuan
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Jia-Long Luo
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Ying Cheng
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, 7 Bingang North Road, Wuhan 430080, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
10
|
Ghosh KK, RajanBabu TV. Ligand Effects in Carboxylic Ester- and Aldehyde-Assisted β-C-H Activation in Regiodivergent and Enantioselective Cycloisomerization-Hydroalkenylation and Cycloisomerization-Hydroarylation, and [2 + 2 + 2]-Cycloadditions of 1,6-Enynes. J Am Chem Soc 2024; 146:18753-18770. [PMID: 38935521 PMCID: PMC11415009 DOI: 10.1021/jacs.4c06796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Herein, we report room temperature, atom-economic protocols for high regio- and enantioselective tandem cycloisomerization-hydroarylation and cycloisomerization-hydroalkenylation of 1,6-enynes leading to vicinal carba-functionalized pyrrolidines, tetrahydrofurans, and cyclopentanes. The latter steps in these processes involve carbonyl-coordination-assisted ortho-C-H activation of aromatic aldehydes and esters, and, a similar, yet rarely seen, β-C-H activation in the case of the acrylates. Synthetically useful enantioselective versions of such reactions are rare and are limited to the C2-H activation of indoles and pyrroles. A similar reaction is also observed with N-vinylphthalimide, which also has a carbonyl group suitable for C-H activation. A dibenzooxaphosphole ligand, (2S,2S',3S,3S')-MeO-BIBOP was uniquely identified as crucial to achieving the challenging regio- and enantioselectivity. This methodology gives access to substituted five-membered carbo- and heterocyclic compounds in good yields and excellent enantioselectivities under a low catalyst loading. A primary KIE of 3.5 is observed in an intermolecular competition experiment with methyl benzoate and d5-methyl benzoate, which indicates that the C-H cleavage is the turnover-limiting step of this process. Unlike the acrylates, which undergoes exclusive hydroalkenylation, a β, γ-unsaturated ester, methyl but-3-enoate, undergoes the highly enantioselective cycloisomerization-coupling sequence with a 1,6-enyne giving either a [2 + 2 + 2]-cycloaddition with (S, S)-BDPP or hydroalkenylation with (2S,2'S,3S,3'S)-MeO-BIBOP depending on the ligand employed. The (E)-configuration of the newly formed double bond at the terminal alkynyl carbon (of the starting enyne) in the hydroalkenylation product of β,γ-unsaturated ester suggests a more classical migratory insertion-β-hydride elimination route for the formation of this product.
Collapse
Affiliation(s)
- Kiron K Ghosh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
11
|
Wang H, Jie X, Chong Q, Meng F. Pathway-divergent coupling of 1,3-enynes with acrylates through cascade cobalt catalysis. Nat Commun 2024; 15:3427. [PMID: 38654019 DOI: 10.1038/s41467-024-47719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Catalytic cascade transformations of simple starting materials into highly functionalized molecules bearing a stereochemically defined multisubstituted alkene, which are important in medicinal chemistry, natural product synthesis, and material science, are in high demand for organic synthesis. The development of multiple reaction pathways accurately controlled by catalysts derived from different ligands is a critical goal in the field of catalysis. Here we report a cobalt-catalyzed strategy for the direct coupling of inexpensive 1,3-enynes with two molecules of acrylates to construct a high diversity of functionalized 1,3-dienes containing a trisubstituted or tetrasubstituted olefin. Such cascade reactions can proceed through three different pathways initiated by oxidative cyclization to achieve multiple bond formation in high chemo-, regio- and stereoselectivity precisely controlled by ligands, providing a platform for the development of tandem carbon-carbon bond-forming reactions.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiaofeng Jie
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300074, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100086, China.
| |
Collapse
|
12
|
Chi Z, Liao JB, Cheng X, Ye Z, Yuan W, Lin YM, Gong L. Asymmetric Cross-Coupling of Aldehydes with Diverse Carbonyl or Iminyl Compounds by Photoredox-Mediated Cobalt Catalysis. J Am Chem Soc 2024; 146:10857-10867. [PMID: 38587540 DOI: 10.1021/jacs.4c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The asymmetric cross-coupling of unsaturated bonds, hampered by their comparable polarity and reactivity, as well as the scarcity of efficient catalytic systems capable of diastereo- and enantiocontrol, presents a significant hurdle in organic synthesis. In this study, we introduce a highly adaptable photochemical cobalt catalysis framework that facilitates chemo- and stereoselective reductive cross-couplings between common aldehydes with a broad array of carbonyl and iminyl compounds, including N-acylhydrazones, aryl ketones, aldehydes, and α-keto esters. Our methodology hinges on a synergistic mechanism driven by photoredox-induced single-electron reduction and subsequent radical-radical coupling, all precisely guided by a chiral cobalt catalyst. Various optically enriched β-amino alcohols and unsymmetrical 1,2-diol derivatives (80 examples) have been synthesized with good yields (up to 90% yield) and high stereoselectivities (up to >20:1 dr, 99% ee). Of particular note, this approach accomplishes unattainable photochemical asymmetric transformations of aldehydes with disparate carbonyl partners without reliance on any external photosensitizer, thereby further emphasizing its versatility and cost-efficiency.
Collapse
Affiliation(s)
- Zhiyong Chi
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jia-Bin Liao
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiuliang Cheng
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ziqi Ye
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Yuan
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
13
|
Garai B, Das A, Kumar DV, Sundararaju B. Enantioselective C-H bond functionalization under Co(III)-catalysis. Chem Commun (Camb) 2024; 60:3354-3369. [PMID: 38441168 DOI: 10.1039/d3cc05329f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
While progress in enantioselective C-H functionalization has been accomplished by employing 4d and 5d transition metal-based catalysts, the rapid depletion of these metals in the earth's crust poses a serious threat to making these protocols sustainable. On the other hand, because of their unique reactivity, low toxicity, and high earth abundance, newer strategies utilizing affordable 3d transition metals have come to the forefront. Among the first-row transition metals, high-valent cobalt has recently attracted a lot of attention for catalytic C-H functionalization with mono and bidentate directing groups. This approach was extended for asymmetric catalysis due to a fairly thorough knowledge of its catalytic cycles. Four major themes have been investigated as a result of this insight: (1) rational design of a chiral Cp#Co(III)-catalyst, (2) chiral carboxylic acid with achiral Cp*Co(III)-catalysts using monodentate directing groups, (3) cobalt/salox-based systems, and (4) cobalt/chiral phosphoric acid-based hybrid systems with bidentate directing groups. Herein, we highlight the recent developments in high-valent cobalt-catalyzed enantioselective C-H functionalization up to October 2023, with the strong belief that the current state-of-the-art can attract considerable interest in the synthetic community, encouraging discoveries in the evolving landscape of asymmetric catalysis.
Collapse
Affiliation(s)
- Bholanath Garai
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Abir Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Doppalapudi Vineet Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh - 208016, India.
| |
Collapse
|
14
|
Patil MD, Ghosh KK, RajanBabu TV. Cobalt-Catalyzed Enantioselective Hydroboration of α-Substituted Acrylates. J Am Chem Soc 2024; 146:6604-6617. [PMID: 38431968 PMCID: PMC11407689 DOI: 10.1021/jacs.3c12020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Even though metal-catalyzed enantioselective hydroborations of alkenes have attracted enormous attention, few preparatively useful reactions of α-alkyl acrylic acid derivatives are known, and most use rhodium catalysts. No examples of asymmetric hydroboration of the corresponding α-arylacrylic acid esters are known. In our continuing efforts to search for new applications of earth-abundant cobalt catalysts for broadly applicable organic transformations, we have identified 2-(2-diarylphosphinophenyl)oxazoline ligands and mild reaction conditions for efficient and highly regio- and enantioselective hydroboration of α-alkyl- and α-aryl- acrylates, giving β-borylated propionates. Since the C-B bonds in these compounds can be readily replaced by C-O, C-N, and C-C bonds, these intermediates could serve as valuable chiral synthons, some from feedstock carbon sources, for the synthesis of propionate-bearing motifs including polyketides and related molecules. Two-step syntheses of "Roche" ester from methyl methacrylate (79%; er 99:1), arguably the most widely used chiral fragment in polyketide synthesis, and tropic acid esters (∼80% yield; er ∼93:7), which are potential intermediates for several medicinally important classes of compounds, illustrate the power of the new methods. Mechanistic studies confirm the requirement of a cationic Co(I) species [(L)Co]+as the viable catalyst in these reactions and rule out the possibility of a [L]Co-H-initiated route, which has been well-established in related hydroborations of other classes of alkenes. A mechanism involving an oxidative migration of a boryl group to the β-carbon of an η4-coordinated acrylate-cobalt complex is proposed as a plausible route.
Collapse
Affiliation(s)
- Manoj D Patil
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Kiron Kumar Ghosh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
15
|
Kanale VV, Uyeda C. Catalytic Asymmetric Ring-Opening Reactions of Unstrained Heterocycles Using Cobalt Vinylidenes. Angew Chem Int Ed Engl 2023; 62:e202309681. [PMID: 37656431 PMCID: PMC10591978 DOI: 10.1002/anie.202309681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/02/2023]
Abstract
Cobalt catalysts promote highly enantioselective ring-opening reactions of 2,5-dihydrofurans using vinylidenes. The products are acyclic organozinc compounds that can be functionalized with an electrophile. The proposed mechanism involves the generation of a cobalt vinylidene species that adds to the alkene by a [2+2]-cycloaddition pathway. Ring-opening then occurs via outer-sphere β-O elimination assisted by coordination of a ZnX2 Lewis acid to the alkoxide leaving group. DFT models reveal that competing inner-sphere syn β-H and β-O elimination pathways are suppressed by the geometric constraints of the metallacycle intermediate. These models rationalize the observed stereochemical outcome of the reaction.
Collapse
Affiliation(s)
- Vibha V Kanale
- Chemistry Department, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Christopher Uyeda
- Chemistry Department, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
16
|
Tang MQ, Yang ZJ, He ZT. Asymmetric formal sp 2-hydrocarbonations of dienes and alkynes via palladium hydride catalysis. Nat Commun 2023; 14:6303. [PMID: 37813855 PMCID: PMC10562392 DOI: 10.1038/s41467-023-42160-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023] Open
Abstract
Transition metal-catalyzed asymmetric hydrofunctionalizations of unsaturated bonds via π-ƞ3 substitution have emerged as a reliable method to construct stereogenic centers, and mainly rely on the use of heteroatom-based or carbon nucleophiles bearing acidic C-H bonds. In comparison, sp2 carbon nucleophiles are generally not under consideration because of enormous challenges in cleaving corresponding inert sp2 C-H bonds. Here, we report a protocol to achieve asymmetric formal sp2 hydrocarbonations, including hydroalkenylation, hydroallenylation and hydroketenimination of both 1,3-dienes and alkynes via hydroalkylation and Wittig reaction cascade. A series of unachievable motifs via hydrofunctionalizations, such as di-, tri- and tetra-substituted alkenes, di-, tri- and tetra-substituted allenes, and tri-substituted ketenimines in allyl skeletons are all facilely constructed in high regio-, diastereo- and enantioselectivities with this cascade design. Stereodivergent synthesis of all four stereoisomers of 1,4-diene bearing a stereocenter and Z/E-controllable olefin unit highlights the power of present protocol. An interesting mechanistic feature is revealed that alkyne actually undergoes hydrocarbonation via the formation of conjugated diene intermediate, different from conventional viewpoint that the hydrofunctionalization of alkynes only involves allene species.
Collapse
Affiliation(s)
- Ming-Qiao Tang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zi-Jiang Yang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
17
|
Bishop HD, Zhao Q, Uyeda C. Catalytic Asymmetric Synthesis of Zinc Metallacycles. J Am Chem Soc 2023; 145:20152-20157. [PMID: 37695207 DOI: 10.1021/jacs.3c05885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Transition-metal-catalyzed reductive coupling reactions of alkynes and imines are attractive methods for the synthesis of chiral allylic amines. Mechanistically, these reactions involve oxidative cyclization of the alkyne and the imine to generate a metallacyclic intermediate, which then reacts with H2 or a H2 surrogate to form the product. As an alternative to this hydrogenolysis pathway, here we show that transmetalation to zinc can occur, forming a zinc metallacycle product. This organozinc product serves as a versatile nucleophile for carbon-carbon and carbon-heteroatom coupling reactions. Mechanistic studies based on isotopic labeling experiments and DFT calculations suggest that the key transmetalation step occurs between a Co(II) species and ZnCl2.
Collapse
Affiliation(s)
- Hayden D Bishop
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Qiang Zhao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
Wang T, Guan JX, Tan YX, Tian P. Cobalt-Catalyzed Chemo- and Stereoselective Arylative Carbocyclization of 1,6-Allenynes. Org Lett 2023; 25:5935-5940. [PMID: 37539986 DOI: 10.1021/acs.orglett.3c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Different from the well-investigated enynes, transition-metal-catalyzed carbocyclization reactions of allenynes are more attractive as a result of the unique structure and versatile reactivity of allenes. Herein, we report the first cobalt-catalyzed highly chemo- and stereoselective arylative carbocyclization of 1,6-allenynes with arylboronic acids, affording five-membered carbocycles and heterocycles with moderate to high yields, broad substrate scope, and wide functional group compatibility. Moreover, several mechanistic experiments were conducted to gain insight into the reaction process.
Collapse
Affiliation(s)
- Tao Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Ji-Xun Guan
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Yun-Xuan Tan
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
19
|
Duchemin C, Kim J, Chirik PJ. CS-Symmetric Pyridine(diimine) Iron Methyl Complexes for Catalytic [2+2] Cycloaddition and Hydrovinylation: Metallacycle Geometry Determines Selectivity. JACS AU 2023; 3:2007-2024. [PMID: 37502155 PMCID: PMC10369671 DOI: 10.1021/jacsau.3c00229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
A series of CS-symmetric (aryl,alkyl)-substituted pyridine(dimine) iron methyl (CyARPDI)FeCH3 complexes have been prepared, characterized, and evaluated as precatalysts for the [2+2]-cycloaddition of butadiene and ethylene. Mixtures of vinylcyclobutane and (Z)-hexa-1,4-diene were observed in each case. By comparison, C2v-symmetric, arylated (PDI) iron catalysts are exclusively selective for reversible [2+2]-cycloaddition to yield vinylcyclobutane. The alteration in the chemoselectivity of the catalytic reaction was investigated through a combination of precatalyst stability studies, identification of catalytic resting state(s), and 2H and 13C isotopic labeling experiments. While replacement of an aryl-imine substituent with an N-alkyl group decreases the stability of the formally iron(0) dinitrogen and butadiene complexes, two diamagnetic metallacycles were identified as catalyst resting states. Deuterium labeling and NOESY/EXSY NMR experiments support 1,4-hexadiene arising from catalytic hydrovinylation involving reversible oxidative cyclization leading to accessible cis-metallacycle. Cyclobutane formation proceeds by irreversible C(sp3)-C(sp3) bond-forming reductive elimination from a trans-metallacycle. These studies provide key mechanistic understanding into the high selectivity of bis(arylated) pyridine(diimine) iron catalysts for [2+2]-cycloaddition, unique, thus far, to this class of iron catalysts.
Collapse
|
20
|
Zhang Z, Chen Y, Gu X, Ho CY. (NHC)Ni(II)-Directed Insertions and Higher Substituted Olefin Synthesis from Simple Olefins. Acc Chem Res 2023; 56:1070-1086. [PMID: 37036948 DOI: 10.1021/acs.accounts.3c00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
ConspectusWell-controlled olefin insertion is critical for achieving catalytic and productive bulk and fine-chemical synthesis. Developing efficient and selective methods for meeting diverse insertion demands is extremely noteworthy, as it supports numerous transformations. The challenges are related to improving catalyst performance and selectivity control and uniting previously unreactive substrate pairs to achieve higher molecular structural complexity and utility. Nickel catalysts have received persistent attention in higher substituted olefin synthesis and polymerization, and numerous new strategies have been established to fulfill the ever-changing demands. This Account focuses on the recent progress based on N-heterocyclic carbene (NHC) ligands and nickel catalysts in our laboratory in using simple terminal olefins as olefin donors or acceptors.It begins with a brief history of olefin codimerization and the major advances in hydrovinylation achieved by other research groups using ethylene as an olefin donor. It then describes problems related to the reductive elimination that can occur when both the hydrometalated alkene and NHC are on the catalyst. It emphasizes the impact of NHC catalyst generation methods on the competing reactivity. Next, it explains the principal challenges and great opportunities in using our method (with α-olefins as olefin donors and alkenyl sources) to replace intermolecular reductive hydroalkenylation reactions (which require rare and more expensive alkenyl halides and boronic acids as reactants, alongside a stoichiometric amount of metallic reagents). The Account then illustrates the potential uses of our method for solving challenging organic synthesis problems using tailor-made (NHC)Ni(II) catalysts to allow redox-neutral catalytic cycles based on high chemo- and regioselective cross-insertion controls. It shows that upon optimal steric and electronic cooperation between the NHC, olefin donor, and olefin acceptor, regiodivergent insertion and convergent synthesis can be achieved easily.In the course of our work, we uncovered several unique insights into regulating (anti-)Markovnikov hydronickelation, carbonickelation, hydrocarbonation, ring closure, 1,3-allyl shift, isomerization, and catalyst regeneration under green, neutral, and mild-temperature conditions. These insights are also outlined here, along with theoretical calculations that offer additional understandings of the insertion reactivity and selectivity differences observed between the NHC and the highly related phosphorus-based Ni(II) hydride-catalyzed cross-hydroalkenylation and cycloisomerization systems.Compared to traditional olefin and cyclic structure synthesis technology, such as olefin cross-metathesis, enyne cyclization, and cross-coupling reactions, the new catalyst systems often offer previously inaccessible product structural characteristics, substrate scope, and outcomes. In particular, the method is effective for the catalytic synthesis of unsymmetrical and functionalized 1,1-disubstituted olefins (a.k.a. gem-olefins), 1,4-dienes (a.k.a. skipped dienes), conjugated dienes, endo- and exocyclic olefins, fused and spiro rings, and aromatic products. These syntheses are variously achieved by cross-hydroalkenylation, insertion-induced rearrangement, cycloadditions, and other approaches inspired by our investigations and detailed in this Account. Cross-hydroalkenylation can be achieved with high enantioselectivity by application of carefully designed and structurally flexible C1 and C2 chiral NHC ligands, yielding a pool of chiral branched alkenes and 1,4-dienes directly from simple chemical feedstocks used in industry. This Account will draw further attention to green alkenylation and the related development of redox-neutral catalytic cycles.
Collapse
Affiliation(s)
- Zhifeng Zhang
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xiao Gu
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chun-Yu Ho
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Shenzhen Grubbs Institute, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
21
|
Isoda K, Sato Y. Cobalt(I)-Catalyzed Reductive Cyclization of Enynes and Diynes Using Hydrogen Gas as a Reductant. Org Lett 2023; 25:2103-2107. [PMID: 36943924 DOI: 10.1021/acs.orglett.3c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Reductive cyclization of enynes and diynes by using H2 gas as a reductant was realized, and the corresponding cyclized products were obtained in good yields without olefin isomerization and over-reduction of the products. By an experiment using D2 instead of H2, it was confirmed that H2 unambiguously operates as a reductant in this reaction. The protocol of the reaction is very economical and user-friendly, using air- and moisture-stable CoBr2·6H2O and 1 atm of pressure of H2.
Collapse
Affiliation(s)
- Kaho Isoda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yoshihiro Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
22
|
Jiang H, He XK, Jiang X, Zhao W, Lu LQ, Cheng Y, Xiao WJ. Photoinduced Cobalt-Catalyzed Desymmetrization of Dialdehydes to Access Axial Chirality. J Am Chem Soc 2023; 145:6944-6952. [PMID: 36920031 DOI: 10.1021/jacs.3c00462] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Enantioselective metallaphotoredox catalysis, which combines photoredox catalysis and asymmetric transition-metal catalysis, has become an effective approach to achieve stereoconvergence under mild conditions. Although many impressive synthetic approaches have been developed to access central chirality, the construction of axial chirality by metallaphotoredox catalysis still remains underexplored. Herein, we report two visible light-induced cobalt-catalyzed asymmetric reductive couplings of biaryl dialdehydes to synthesize axially chiral aldehydes (60 examples, up to 98% yield, >19:1 dr, and >99% ee). This protocol shows good functional group tolerance, broad substrate scope, and excellent diastereo- and enantioselectivity.
Collapse
Affiliation(s)
- Hao Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Xiang-Kui He
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Xuan Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Wei Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.,Wuhan Institute of Photochemistry and Technology, 7 Bingang North Road, Wuhan 430083, P. R. China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.,Wuhan Institute of Photochemistry and Technology, 7 Bingang North Road, Wuhan 430083, P. R. China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.,Wuhan Institute of Photochemistry and Technology, 7 Bingang North Road, Wuhan 430083, P. R. China
| |
Collapse
|
23
|
Wu KQ, Li H, Zhou A, Yang WR, Yin Q. Palladium-Catalyzed Chemo- and Regioselective C-H Bond Functionalization of Phenols with 1,3-Dienes. J Org Chem 2023; 88:2599-2604. [PMID: 36701645 DOI: 10.1021/acs.joc.2c02697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chemo- and site-selective functionalization of phenols offers a rapid strategy for the synthesis of phenol derivatives with diverse structures. Herein, we report a Pd-catalyzed regioselective C-H bond allylic alkylation of phenols with 1,3-dienes, which has precision reactivity at the ortho C-H bond of 2-naphthols, 1-naphthols, and electron-rich phenols. The reaction is accelerated by a diphosphine ligand, does not need any other additive, and features broad substrate scope and good chemo- and regioselectivity. In addition, we have also investigated the asymmetric variant, and the product could be achieved in up to 55% ee.
Collapse
Affiliation(s)
- Ke-Qin Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ao Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei-Ran Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
24
|
Singh D, RajanBabu TV. Chemodivergent, Regio- and Enantioselective Cycloaddition Reactions between 1,3-Dienes and Alkynes. Angew Chem Int Ed Engl 2023; 62:e202216000. [PMID: 36520619 PMCID: PMC9908849 DOI: 10.1002/anie.202216000] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/16/2022]
Abstract
Alkynes and 1,3-dienes are among the most readily available precursors for organic synthesis. We report two distinctly different, catalyst-dependent, modes of regio- and enantioselective cycloaddition reactions between these classes of compounds providing rapid access to highly functionalized 1,4-cyclohexadienes or cyclobutenes from the same precursors. Complexes of an earth abundant metal, cobalt, with several commercially available chiral bisphosphine ligands with narrow bite angles catalyze [4+2]-cycloadditions between a 1,3-diene and an alkyne giving a cyclohexa-1,4-diene in excellent chemo-, regio- and enantioselectivities. In sharp contrast, complex of a finely tuned phosphino-oxazoline ligand promotes unique [2+2]-cycloaddition between the alkyne and the terminal double bond of the diene giving a highly functionalized cyclobutene in excellent regio- and enantioselectivities.
Collapse
Affiliation(s)
- Dipshi Singh
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - T. V. RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
25
|
Yang SQ, Han AJ, Liu Y, Tang XY, Lin GQ, He ZT. Catalytic Asymmetric Hydroalkoxylation and Formal Hydration and Hydroaminoxylation of Conjugated Dienes. J Am Chem Soc 2023; 145:3915-3925. [PMID: 36763785 DOI: 10.1021/jacs.2c11843] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The straightforward construction of stereogenic centers bearing unprotected functional groups, as in nature, has been a persistent pursuit in synthetic chemistry. Abundant applications of free enantioenriched allyl alcohol and allyl hydroxylamine motifs have made the asymmetric hydration and hydroaminoxylation of conjugated dienes from water and hydroxylamine, respectively, intriguing and efficient routes that have, however, been unachievable thus far. A fundamental challenge is the failure to realize transition-metal-catalyzed enantioselective C-O bond constructions via hydrofunctionalization of conjugated dienes. Here, we perform a comprehensive study toward the stereoselective formal hydration and hydroaminoxylation of conjugated dienes by synthesizing a set of new P,N-ligands and identifying an aryl-derived oxime as a surrogate for both water and hydroxylamine. Asymmetric hydroalkoxylation with new P,N-ligands is also elucidated. Furthermore, versatile derivatizations following hydration provide indirect but concise routes to formal hydrophenoxylation, hydrofluoroalkoxylation, and hydrocarboxylation of conjugated dienes that have been unreported thus far. Finally, a ligand-to-ligand hydrogen transfer process is proposed based on the results of preliminary mechanistic experiments.
Collapse
Affiliation(s)
- Shao-Qian Yang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ai-Jun Han
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin-Yuan Tang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Qiang Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
26
|
Cui K, Li YL, Li G, Xia JB. Regio- and Stereoselective Reductive Coupling of Alkynes and Crotononitrile. J Am Chem Soc 2022; 144:23001-23009. [DOI: 10.1021/jacs.2c10021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kun Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 21181, China
| | - Yan-Lin Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gongqiang Li
- Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 21181, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Whitehurst W, Kim J, Koenig SG, Chirik PJ. C-H Activation by Isolable Cationic Bis(phosphine) Cobalt(III) Metallacycles. J Am Chem Soc 2022; 144:19186-19195. [PMID: 36194198 PMCID: PMC9585578 DOI: 10.1021/jacs.2c08865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/30/2022]
Abstract
Five- and six-coordinate cationic bis(phosphine) cobalt(III) metallacycle complexes were synthesized with the general structures, [(depe)Co(cycloneophyl)(L)(L')][BArF4] (depe = 1,2-bis(diethylphosphino)ethane; cycloneophyl = [κ-C:C-(CH2C(Me)2)C6H4]; L/L' = pyridine, pivalonitrile, or the vacant site, BAr4F = B[(3,5-(CF3)2)C6H3]4). Each of these compounds promoted facile directed C(sp2)-H activation with exclusive selectivity for ortho-alkylated products, consistent with the selectivity of reported cobalt-catalyzed arene-alkene-alkyne coupling reactions. The direct observation of C-H activation by cobalt(III) metallacycles provided experimental support for the intermediacy of these compounds in this class of catalytic C-H functionalization reaction. Deuterium labeling and kinetic studies provided insight into the nature of C-H bond cleavage and C-C bond reductive elimination from isolable cobalt(III) precursors.
Collapse
Affiliation(s)
- William
G. Whitehurst
- Department
of Chemistry, Frick Laboratory, Princeton
University, Princeton, New Jersey 08544, United States
| | - Junho Kim
- Department
of Chemistry, Frick Laboratory, Princeton
University, Princeton, New Jersey 08544, United States
| | - Stefan G. Koenig
- Small
Molecule Process Chemistry, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, United States
| | - Paul J. Chirik
- Department
of Chemistry, Frick Laboratory, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
28
|
Yang Z, Hou S, Cheng Y, Sun L, Yang CH. Co-Catalyzed Reductive Cyclization of Acrylate-Containing 1,6-Enynes. J Org Chem 2022; 87:13339-13345. [PMID: 36137272 DOI: 10.1021/acs.joc.2c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Co-catalyzed reductive cyclization of acrylate-containing 1,6-enynes is reported, providing an approach to construct five-membered carbocyclic and heterocyclic scaffolds containing enol ethers and all-carbon quaternary carbons. This novel process enables an E/Z mixture of 1,6-enynes to react with good functional group tolerance and good isolated yields, in an operationally simple manner.
Collapse
Affiliation(s)
- Zhantao Yang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, PR China
| | - Shenyin Hou
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, PR China
| | - Yunfan Cheng
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, PR China
| | - Li Sun
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, PR China
| | - Chun-Hua Yang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, PR China
| |
Collapse
|
29
|
Zhang Y, Xu W, Gao T, Guo M, Yang CH, Xie H, Kong X, Yang Z, Chang J. Pd-Catalyzed Borylsilylative Cyclization of 1,6-Allenynes. Org Lett 2022; 24:7021-7025. [PMID: 36129417 DOI: 10.1021/acs.orglett.2c02878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Pd-catalyzed borylsilylative cyclization of 1,6-allenynes with PhMe2SiBpin was developed. This method provides a practical and general method to afford the carbocycles and heterocycles bearing silyl and boryl groups with excellent regioselectivities and stereoselectivities in high to excellent yields.
Collapse
Affiliation(s)
- Yinchao Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Wenxiu Xu
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Tongtong Gao
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Mengjuan Guo
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Chun-Hua Yang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Zhantao Yang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, People's Republic of China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
30
|
Herbort JH, Bednar TN, Chen AD, RajanBabu TV, Nagib DA. γ C-H Functionalization of Amines via Triple H-Atom Transfer of a Vinyl Sulfonyl Radical Chaperone. J Am Chem Soc 2022; 144:13366-13373. [PMID: 35820104 PMCID: PMC9405708 DOI: 10.1021/jacs.2c05266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A selective, remote desaturation has been developed to rapidly access homoallyl amines from their aliphatic precursors. The strategy employs a triple H-atom transfer (HAT) cascade, entailing (i) cobalt-catalyzed metal-HAT (MHAT), (ii) carbon-to-carbon 1,6-HAT, and (iii) Co-H regeneration via MHAT. A new class of sulfonyl radical chaperone (to rapidly access and direct remote, radical reactivity) enables remote desaturation of diverse amines, amino acids, and peptides with excellent site-, chemo-, and regioselectivity. The key, enabling C-to-C HAT step in this cascade was computationally designed to satisfy both thermodynamic (bond strength) and kinetic (polarity) requirements, and it has been probed via regioselectivity, isomerization, and competition experiments. We have also interrupted this radical transfer dehydrogenation to achieve γ-selective C-Cl, C-CN, and C-N bond formations.
Collapse
Affiliation(s)
- James H Herbort
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Taylor N Bednar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew D Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
31
|
Parsutkar MM, Moore CE, RajanBabu TV. Activator-free single-component Co(I)-catalysts for regio- and enantioselective heterodimerization and hydroacylation reactions of 1,3-dienes. New reduction procedures for synthesis of [L]Co(I)-complexes and comparison to in situ generated catalysts. Dalton Trans 2022; 51:10148-10159. [PMID: 35734952 PMCID: PMC9441011 DOI: 10.1039/d2dt01484j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although cobalt(I) bis-phosphine complexes have been implicated in many selective C-C bond-forming reactions, until recently relatively few of these compounds have been fully characterized or have been shown to be intermediates in catalytic reactions. In this paper we present a new practical method for the synthesis and isolation of several cobalt(I)-bis-phosphine complexes and their use in Co(I)-catalyzed reactions. We find that easily prepared (in situ generated or isolated) bis-phosphine and (2,6-N-aryliminoethyl)pyridine (PDI) cobalt(II) halide complexes are readily reduced by 1,4-bis-trimethylsilyl-1,4-dihydropyrazine or commercially available lithium nitride (Li3N), leaving behind only innocuous volatile byproducts. Depending on the structures of the bis-phosphines, the cobalt(I) complex crystallizes as a phosphine-bridged species [(P∼P)(X)CoI[μ-(P∼P)]CoI(X)(P∼P)] or a halide-bridged species [(P∼P)CoI[μ-(X)]2CoI(P∼P)]. Because the side-products are innocuous, these methods can be used for the in situ generation of catalytically competent Co(I) complexes for a variety of low-valent cobalt-catalyzed reactions of even sensitive substrates. These complexes are also useful for the synthesis of rare cationic [(P∼P)CoI-η4-diene]+ X- or [(P∼P)CoI-η6-arene]+ X- complexes, which are shown to be excellent single-component catalysts for the following regioselective reactions of dienes: heterodimerizations with ethylene or methyl acrylate, hydroacylation and hydroboration. The reactivity of the single-component catalysts with the in situ generated species are also documented.
Collapse
Affiliation(s)
- Mahesh M Parsutkar
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | - T V RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| |
Collapse
|
32
|
Theoretical investigation on cobalt-catalyzed hydroacylation reaction: Mechanism and origin of stereoselectivity. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Jiang X, Jiang H, Yang Q, Cheng Y, Lu LQ, Tunge JA, Xiao WJ. Photoassisted Cobalt-Catalyzed Asymmetric Reductive Grignard-Type Addition of Aryl Iodides. J Am Chem Soc 2022; 144:8347-8354. [PMID: 35481388 DOI: 10.1021/jacs.2c02481] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Grignard addition is one of the most important methods used for syntheses of alcohol compounds and has been known for over a hundred years. However, research on asymmetric catalysis relies on the use of organometallic nucleophiles. Here, we report the first visible-light-induced cobalt-catalyzed asymmetric reductive Grignard-type addition for synthesizing chiral benzyl alcohols (>50 examples, up to 99% yield, and 99% ee). This methodology has the advantages of mild reaction conditions, good functionality tolerance, excellent enantiocontrol, the avoidance of mass metal wastes, and the use of precious metal catalysts. Kinetic realization studies suggested that migratory insertion of an aryl cobalt species into the aldehyde was the rate-determining step of the reductive addition reaction.
Collapse
Affiliation(s)
- Xuan Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Hao Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Qian Yang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jon A Tunge
- Department of Chemistry, The University of Kansas, 1567 Irving Hill Rd., Lawrence, Kansas 66045, United States
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.,State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
34
|
Kong D, Wu H, Ge J, Shen Z, Huang G. Mechanism and Origins of Enantioselectivity of Cobalt-Catalyzed Intermolecular Hydroarylation/Cyclization of 1,6-Enynes with N-Pyridylindoles. J Org Chem 2022; 87:6438-6443. [PMID: 35405065 DOI: 10.1021/acs.joc.2c00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Density functional theory calculations were performed to investigate the cobalt-catalyzed intermolecular hydroarylation/cyclization of 1,6-enynes with N-pyridylindoles. The computations reveal that the reaction begins with the oxidative cyclization of 1,6-enyne to afford the five-membered cobaltacycle, from which the metal-assisted σ-bond metathesis/C-C reductive elimination led to the final hydroarylation/cyclization product. The initial oxidative cyclization constitutes the rate-determining step of the overall reaction. The steric repulsion and π···π interaction were found to play a crucial role in dictating the experimentally observed enantioselectivity.
Collapse
Affiliation(s)
- Deping Kong
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P.R. China
| | - Hongli Wu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P.R. China
| | - Jiaao Ge
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P.R. China
| | - Zhen Shen
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P.R. China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
35
|
MacNeil CS, Zhong H, Pabst TP, Shevlin M, Chirik PJ. Cationic Bis(phosphine) Cobalt(I) Arene Complexes as Precatalysts for the Asymmetric Synthesis of Sitagliptin. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Connor S. MacNeil
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Hongyu Zhong
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P. Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Michael Shevlin
- Merck & Co., Inc., Kenilworth, New Jersey 07065, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
36
|
Ge J, Wu H, Kong D, Huang G. Mechanism and Origins of Enantioselectivity of Cobalt-Catalyzed Intermolecular Hydroacylation/Cyclization of 1,6-Enynes with Aldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo00179a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations were performed to investigate the cobalt-catalyzed intermolecular hydroacylation/cyclization of 1,6-enynes. The computations show that the initial oxidative cyclization constitutes the rate-determining step of the overall reaction....
Collapse
|
37
|
Pal A, Thakur A. One-pot synthesis of dimerized arenes and heteroarenes under mild conditions using Co( i) as an active catalyst. Org Biomol Chem 2022; 20:8977-8987. [DOI: 10.1039/d2ob01738e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A cheap and robust methodology for dimerization of arenes and heteroarenes with new Co(i) as an active catalyst at room temperature in a shorter time.
Collapse
Affiliation(s)
- Adwitiya Pal
- Department of Chemistry, Jadavpur University, Kolkata- 700032, India
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata- 700032, India
| |
Collapse
|
38
|
Wang Y, Gong K, Zhang H, Liu Y, Wei D. Mechanism of a cobalt-catalyzed hydroarylation reaction and origin of stereoselectivity. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00780k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the present study, the mechanism of a cobalt-catalyzed hydroarylation reaction between N-pyridylindole and 1,6-enynes and the origin of its stereoselectivity have been systematically investigated using the DFT calculation method.
Collapse
Affiliation(s)
- Yang Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, PR China
| | - Kaili Gong
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, PR China
| | - Han Zhang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, PR China
| | - Yue Liu
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, PR China
| | - Donghui Wei
- College of Chemistry (Center of Green Catalysis), Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province, 450001, PR China
| |
Collapse
|