1
|
Huang W, Zong J, Li M, Li TF, Pan S, Xiao Z. Challenges and Opportunities: Nanomaterials in Epilepsy Diagnosis. ACS NANO 2025. [PMID: 40266286 DOI: 10.1021/acsnano.5c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Epilepsy is a common neurological disorder characterized by a significant rate of disability. Accurate early diagnosis and precise localization of the epileptogenic zone are essential for timely intervention, seizure prevention, and personalized treatment. However, over 30% of patients with epilepsy exhibit negative results on electroencephalography and magnetic resonance imaging (MRI), which can lead to misdiagnosis and subsequent delays in treatment. Consequently, enhancing diagnostic methodologies is imperative for effective epilepsy management. The integration of nanomaterials with biomedicine has led to the development of diagnostic tools for epilepsy. Key advancements include nanomaterial-enhanced neural electrodes, contrast agents, and biochemical sensors. Nanomaterials improve the quality of electrophysiological signals and broaden the detection range of electrodes. In imaging, functionalized magnetic nanoparticles enhance MRI sensitivity, facilitating localization of the epileptogenic zone. NIR-II nanoprobes enable tracking of seizure-related biomarkers with deep tissue penetration. Furthermore, nanomaterials enhance the sensitivity of biochemical sensors for detecting epilepsy biomarkers, which is crucial for early detection. These advancements significantly increase diagnostic sensitivity and specificity. However, challenges remain, particularly regarding biosafety, quality control, and the scalability of fabrication processes. Overcoming these obstacles is essential for successful clinical translation. Artificial-intelligence-based big data analytics can facilitate the development of diagnostic tools by screening nanomaterials with specific properties. This approach may help to address current limitations and improve both effectiveness and safety. This review explores the application of nanomaterials in the diagnosis and detection of epilepsy, with the objective of inspiring innovative ideas and strategies to enhance diagnostic effectiveness.
Collapse
Affiliation(s)
- Wanbin Huang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ming Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tong-Fei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Songqing Pan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheman Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
2
|
Lai J, Tian Y, Wei H, Bai Y, Wu F, Yu F, Yu P, Mao L. Tailoring the Electrocatalytic Properties of Porphyrin Covalent Organic Frameworks for Highly Selective Oxygen Sensing In Vivo. Anal Chem 2025; 97:3418-3426. [PMID: 39908399 DOI: 10.1021/acs.analchem.4c05606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
In vivo selective sensing of oxygen (O2) dynamics in the central nervous system could provide insights into energy metabolism and neural activities. Although the electrocatalytic four-electron oxygen reduction reaction (ORR) paves an effective way to the electrochemical sensing of O2 in vivo, the concurrent hydrogen peroxide reduction reaction (HPRR) within the potential windows for four-electron ORR unfortunately poses a great challenge to the conventional mechanism employed for selective electrochemical O2 sensing. In this work, we find that regulation of the linkers within the skeleton of porphyrin-based covalent organic frameworks (COFs) could improve the selectivity of the O2 sensor against hydrogen peroxide (H2O2). The electrochemical results reveal that the Co porphyrin active sites facilitate the direct four-electron pathway for ORR and that the Co porphyrin-based COF, enriched with pyrene units, shows enhanced four-electron ORR kinetics and better tolerance to HPRR. The theoretical calculation suggests that introducing pyrene units essentially weakens the adsorption of H2O2, leading to suppression of the HPRR. The microsensor fabricated with the Co porphyrin-based COF as the electrocatalyst features a high selectivity for real-time monitoring of O2 in a living rat brain.
Collapse
Affiliation(s)
- Jiawei Lai
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yao Tian
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huan Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuliang Bai
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fei Wu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fei Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Xie X, Tang S, Zhai C, Fu K, Li F, Cai K, Zhang J. Photoexcited Electro-Driven Reactive Oxygen Species Channeling for Precise Extraction of Biomarker Information from Tumor Interstitial Fluid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410358. [PMID: 39763116 DOI: 10.1002/smll.202410358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/29/2024] [Indexed: 02/21/2025]
Abstract
Direct electrochemical detection of miRNA biomarkers in tumor tissue interstitial fluid (TIF) holds great promise for adjuvant therapy for tumors in the perioperative period, yet is limited by background interference and weak signal. Herein, a wash-free and separation-free miRNA biosensor based on photoexcited electro-driven reactive oxygen channeling analysis (LEOCA) is developed to solve the high-fidelity detection in physiological samples. In the presence of miRNA, nanoacceptors (ultrasmall-size polydopamine, uPDA) are responsively assembled on the surface of nanodonors (zirconium metal-organic framework, ZrMOF) to form core-satellite aggregates. The produced lifetime-constraint singlet oxygen upon light irradiation is captured by the catechol of constrained uPDA, and the oxidized quinone is immediately electro-reduced to the catechol at transient collision process on the electrode, resulting in a cascade electron transfer and amplified current. Thereby, the nanosensor exhibits a low detection limit (1.1 fM), and high reproducibility (relative standard deviation of 2.0%). Compared with quantitative real-time polymerase chain reaction (qRT-PCR), the clinical accuracy (area under the curve value) is significantly increased from 0.75 to 0.93 in distinguishing breast cancer patients from healthy donors. This study demonstrates an inspiration on the synergy of the reactive oxygen channeling between nanodonor/nanoacceptor and the synchronous electron transfer cascade on the electrode to solve the bottleneck problem of detecting unprocessed clinical samples in a sample-in-answer-out manner.
Collapse
Affiliation(s)
- Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Shuqi Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Chunhui Zhai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaixiu Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Fan Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| |
Collapse
|
4
|
Zhang F, Xu Y, Zhao G, Chen Z, Li C, Yan Z. Multifunctional Porous Soft Bioelectronics. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2025; 82:123-138. [PMID: 40212730 PMCID: PMC11981227 DOI: 10.1016/j.mattod.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Soft bioelectronics, seamlessly interfacing with the human body to enable both recording and modulation of curvilinear biological tissues and organs, have significantly driven fields such as digital healthcare, human-machine interfaces, and robotics. Nonetheless, intractable challenges persist due to the onerous demand for imperceptible, burden-free, and user-centric comfortable bioelectronics. Porous soft bioelectronics is a new way to a library of imperceptible bioelectronic systems, that form natural interfaces with the human body. In this review, we provide an overview of the development and recent advances in multifunctional porous engineered soft bioelectronics, aiming to bridge the gap between living biotic and stiff abiotic systems. We first discuss strategies for fabricating porous, soft, and stretchable bioelectronic materials, emphasizing the concept of materials-level porous engineering for breathable and imperceptible bioelectronics. Next, we summarize wearable bioelectronics devices and multimodal systems with porous configurations designed for on-skin healthcare applications. Moving beneath the skin, we discuss implantable devices and systems enabled by porous bioelectronics with tissue-like compliance. Finally, existing challenges and translational gaps are also proposed to usher further research efforts towards realizing practical and clinical applications of porous bioelectronic systems; thus, revolutionizing conventional healthcare and medical practices and opening up unprecedented opportunities for long-term, imperceptible, non-invasive, and human-centric healthcare networks.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Yadong Xu
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Ganggang Zhao
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Zehua Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Can Li
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
5
|
Hao Y, Yang Y, Wang W, Gu H, Chen W, Li C, Zhang P, Zeng R, Xu M, Chen S. Development of a Photoelectrochemical Microelectrode Using an Organic Probe for Monitoring Hydrogen Sulfide in Living Brains. Anal Chem 2024; 96:19822-19832. [PMID: 39576966 DOI: 10.1021/acs.analchem.4c05336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Hydrogen sulfide (H2S) is an important bioactive molecule that plays a significant role in various functions, particularly in the living brain, where it is closely linked to cognition, memory, and several neurological diseases. Consequently, developing effective detection methods for H2S is essential for studying brain functions and the underlying mechanisms of these diseases. This study aims to construct a novel photoelectrochemical (PEC) microelectrode Ti/TiO2@HSP for the quantitative monitoring of H2S levels in the living brain. The PEC microelectrode Ti/TiO2@HSP is formed by covalently bonding a specifically designed organic PEC probe HSP, which possesses a D-π-A structure, to the surface of TiO2 nanotubes generated via in situ anodic oxidation of titanium wire. The PEC probe HSP can effectively react with H2S and generate significant photocurrent response under long-wavelength excitation light (560 nm), thereby achieving quantitative detection of H2S. The sensor demonstrates high sensitivity and good selectivity. In vivo experiments utilizing the PEC microelectrode Ti/TiO2@HSP enable the monitoring of dynamic changes in H2S levels across various regions of the mouse brain. The findings reveal that in normal mice, the concentration of H2S in the hippocampus is significantly higher than in the striatum and cerebral cortex. Additionally, following propargylglycine drug stimulation, H2S concentrations in different brain regions were observed to decrease, with the most substantial reduction noted in the hippocampus. This suggests that cystathionine γ-lyase (CSE) is the primary enzyme responsible for H2S production in this area, while the striatum exhibits a less pronounced decrease in H2S concentration, indicating a reliance on alternative enzymatic pathways for H2S production. Therefore, this study not only successfully develops a high-performance H2S detection sensor but also provides new experimental tools and theoretical foundations for further exploring the roles of H2S in neurophysiological and pathological processes.
Collapse
Affiliation(s)
- Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Yewen Yang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Wenhui Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Chunlan Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, Henan Province 476000, China
| | - Peisheng Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Rongjin Zeng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, Henan Province 476000, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| |
Collapse
|
6
|
Chen J, Xia F, Ding X, Zhang D. Highly Sensitive and Biocompatible Microsensor for Selective Dynamic Monitoring of Dopamine in Rat Brain. ACS Sens 2024. [PMID: 39505410 DOI: 10.1021/acssensors.4c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Highly selective and sensitive in vivo neurotransmitter dynamic monitoring of the central nervous system has long been a challenging endeavor. Here, an implantable and biocompatible microsensor with excellent performances was reported by electrodepositing poly(3,4-ethylenedioxythiophene)-electrochemically reduced graphene oxide (PEDOT-ERGO) nanocomposites and poly(tannic acid) (pTA) sequentially on the carbon fiber electrode (CFE) surface, and its feasibility in in vivo electrochemical sensing applications were demonstrated. Due to the synergistic electrocatalytic effect of PEDOT-ERGO nanocomposites with the negative-charged pTA on dopamine (DA) redox reaction, the microsensor exhibits high detection sensitivities of 1.1 and 0.37 nA μM-1 in the detection ranges of 0.02-0.5 and 0.5-20 μM with a low limit of detection of 9.2 nM. Also, the microsensor shows excellent selectivity, good sensing stability, repeatability, and reproducibility. In addition, the highly hydrophilic and negative-charged pTA inhibits the nonspecific adsorption of hydrophobic proteins, which endows the microsensor with good antifouling ability. Moreover, DA dynamics in rat brain were successfully monitored in real time, and the selective sensing ability of the microsensor in vivo was also demonstrated. The present study provides a new method for selective dynamics monitoring of DA in the brain, which would help to better understand the pathological and physiological functions of DA.
Collapse
Affiliation(s)
- Jiatao Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Fuyun Xia
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Xiuting Ding
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| |
Collapse
|
7
|
Shen T, Wang X, Ni J, Ma L, Zhang L, Wang C, Huang G. Pinecone derived hierarchical carbon nanostructure as a transducer in a solid-state ion-selective electrode for in vivo analysis of calcium ion. Anal Chim Acta 2024; 1305:342590. [PMID: 38677844 DOI: 10.1016/j.aca.2024.342590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024]
Abstract
Monitoring extracellular calcium ion (Ca2+) chemical signals in neurons is crucial for tracking physiological and pathological changes associated with brain diseases in live animals. Potentiometry based solid-state ion-selective electrodes (ISEs) with the assist of functional carbon nanomaterials as ideal solid-contact layer could realize the potential response for in vitro and in vivo analysis. Herein, we employ a kind of biomass derived porous carbon as a transducing layer to prompt efficient ion to electron transduction while stabilizes the potential drift. The eco-friendly porous carbon after activation (APB) displays a high specific area with inherit macropores, micropores, and large specific capacitance. When employed as transducer in ISEs, a stable potential response, minimized potential drift can be obtained. Benefiting from these excellent properties, a solid-state Ca2+ selective carbon fiber electrodes (CFEs) with a sandwich structure is constructed and employed for real time sensing of Ca2+ under electrical stimulation. This study presents a new approach to develop sustainable and versatile transducers in solid-state ISEs, a crucial way for in vivo sensing.
Collapse
Affiliation(s)
- Tongjun Shen
- College of New Energy and Materials, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Ximin Wang
- College of New Energy and Materials, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China; CNOOC Tianjin Chemical Research and Design Institute Co. Ltd., Tianjin, 300131, China
| | - Jiping Ni
- College of New Energy and Materials, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China; College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ling Ma
- College of New Energy and Materials, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Lifu Zhang
- College of New Energy and Materials, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Chunxia Wang
- College of New Energy and Materials, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Guoyong Huang
- College of New Energy and Materials, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China.
| |
Collapse
|
8
|
Da Y, Sun Q, Zhang L, Tian Y. Light-activated g-C 3N 4 photoelectrodes with a selective molecular sieve for in vivo quantification of oxygen levels in the living mouse brain. Chem Commun (Camb) 2024. [PMID: 38465876 DOI: 10.1039/d4cc00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A novel micro-photoelectrode with a selective molecular sieve was created for in vivo monitoring of O2 levels in the mouse brain. An ITO optical fiber modified by graphitized carbon nitride (g-C3N4) in situ was employed as the light activated substrate to provide rich photo-induced electrons for the catalytic reduction of O2. Meanwhile, the porous hybrid layer composed of zeolitic imidazolate framework-8 and polysulfone was constructed over the g-C3N4 surface as the molecular sieve to synergically enhance the selectivity of O2 detections. By advantage of this useful tool, the real time variation of the O2 level was successfully determined in the mouse brain upon ischemia.
Collapse
Affiliation(s)
- Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Qi Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| |
Collapse
|
9
|
Cong XZ, Feng J, Zhang HJ, Zhang LZ, Lin TY, Chen G, Zhang ZL. Microfluidic Device-Based In Vivo Detection of PD-L1-Positive Small Extracellular Vesicles and Its Application for Tumor Monitoring. Anal Chem 2024; 96:2658-2665. [PMID: 38311857 DOI: 10.1021/acs.analchem.3c05418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Liquid biopsy is of great significance in tumor early diagnosis and treatment stratification. PD-L1-positive small extracellular vesicles (PD-L1+ sEVs) are closely related to tumor growth and immunotherapy response, which are considered valuable liquid biopsy biomarkers. In contrast to conventional in vitro detection, in vivo detection has the ability to improve the detection efficiency and enable continuous or real-time dynamic monitoring. However, in vivo detection of PD-L1+ sEVs has multiple difficulties, such as high cell background, complex blood environments, and lack of a specific and stable detection method. Herein, the in vivo detection of PD-L1+ sEVs method was constructed, which efficiently separated sEVs based on the microfluidic device and quantitatively analyzed PD-L1+ sEVs by aptamer recognition and hybridization chain reaction. The concentration of PD-L1+ sEVs was continuously monitored, and significant differences at different stages of tumor as well as a correlation with tumor volume were found. Diseased and healthy individuals could also be effectively distinguished based on the concentration of PD-L1+ sEVs. The method with good stability, biocompatibility, and detection performance provided a powerful means for in vivo detection of PD-L1+ sEVs, contributing to the clinical diagnosis and treatment of tumor.
Collapse
Affiliation(s)
- Xi-Zhu Cong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jiao Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - He-Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Lin-Zhou Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Tian-Yang Lin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
10
|
Chen M, Qin Y, Fan WT, Yan J, Hong F, Huang WH, Liu YL. Three-Dimensional Stretchable Sensor-Hydrogel Integrated Platform for Cardiomyocyte Culture and Mechanotransduction Monitoring. Anal Chem 2023; 95:12859-12866. [PMID: 37589391 DOI: 10.1021/acs.analchem.3c02151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Cardiomyocytes are responsible for generating contractile force to pump blood throughout the body and are very sensitive to mechanical forces and can initiate mechano-electric coupling and mechano-chemo-transduction. Remarkable progress has been made in constructing heart tissue by engineered three-dimensional (3D) culture models and in recording the electrical signals of cardiomyocytes. However, it remains a severe challenge for real-time acquiring of the transient biochemical information in cardiomyocyte mechano-chemo-transduction. Herein, we reported a multifunctional platform by integrating a 3D stretchable electrochemical sensor with collagen hydrogel for the culture, electrical stimulation, and electrochemical monitoring of cardiomyocytes. The 3D stretchable electrochemical sensor was prepared by assembling functionalized conductive polymer PEDOT:PSS on an elastic scaffold, which showed excellent electrochemical sensing performance and stability under mechanical deformations. The integration of a 3D stretchable electrochemical sensor with collagen hydrogel provided an in vivo-like microenvironment for cardiomyocyte culture and promoted cell orientation via in situ electrical stimulation. Furthermore, this multifunctional platform allowed real-time monitoring of stretch-induced H2O2 release from cardiomyocytes under their normal and pathological conditions, as well as pharmacological interventions.
Collapse
Affiliation(s)
- Ming Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Qin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Ting Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
11
|
Zhao Y, Jin KQ, Li JD, Sheng KK, Huang WH, Liu YL. Flexible and Stretchable Electrochemical Sensors for Biological Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305917. [PMID: 37639636 DOI: 10.1002/adma.202305917] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Indexed: 08/31/2023]
Abstract
The rise of flexible and stretchable electronics has revolutionized biosensor techniques for probing biological systems. Particularly, flexible and stretchable electrochemical sensors (FSECSs) enable the in situ quantification of numerous biochemical molecules in different biological entities owing to their exceptional sensitivity, fast response, and easy miniaturization. Over the past decade, the fabrication and application of FSECSs have significantly progressed. This review highlights key developments in electrode fabrication and FSECSs functionalization. It delves into the electrochemical sensing of various biomarkers, including metabolites, electrolytes, signaling molecules, and neurotransmitters from biological systems, encompassing the outer epidermis, tissues/organs in vitro and in vivo, and living cells. Finally, considering electrode preparation and biological applications, current challenges and future opportunities for FSECSs are discussed.
Collapse
Affiliation(s)
- Yi Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kai-Qi Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jing-Du Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kai-Kai Sheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
12
|
Qin Y, Zhang X, Song Y, Zhong B, Liu L, Wang D, Zhang Y, Lu W, Zhao X, Jia Z, Li M, Zhang L, Qing G. A highly sensitive nanochannel device for the detection of SUMO1 peptides. Chem Sci 2023; 14:8360-8368. [PMID: 37564410 PMCID: PMC10411628 DOI: 10.1039/d3sc02140h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
SUMOylation is an important and highly dynamic post-translational modification (PTM) process of protein, and its disequilibrium may cause various diseases, such as cancers and neurodegenerative disorders. SUMO proteins must be accurately detected to understand disease states and develop effective drugs. Reliable antibodies against SUMO2/3 are commercially available; however, efficient detectors are yet to be developed for SUMO1, which has only 50% homology with SUMO2 and SUMO3. Here, using phage display technology, we identified two cyclic peptide (CP) sequences that could specifically bind to the terminal dodecapeptide sequence of SUMO1. Then we combined the CPs and polyethylene terephthalate conical nanochannel films to fabricate a nanochannel device highly sensitive towards the SUMO1 terminal peptide and protein; sensitivity was achieved by ensuring marked variations in both transmembrane ionic current and Faraday current. The satisfactory SUMO1-sensing ability of this device makes it a promising tool for the time-point monitoring of the SENP1 enzyme-catalyzed de-SUMOylation reaction and cellular imaging. This study not only solves the challenge of SUMO1 precise recognition that could promote SUMO1 proteomics analysis, but also demonstrates the good potential of the nanochannel device in monitoring of enzymes and discovery of effective drugs.
Collapse
Affiliation(s)
- Yue Qin
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology No. 11 Street, Economic and Technological Development Zone Shenyang 110142 P. R. China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Xiaoyu Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Yanling Song
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology No. 11 Street, Economic and Technological Development Zone Shenyang 110142 P. R. China
| | - Bowen Zhong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Lu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Yahui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Wenqi Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Xinjia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Zhiqi Jia
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology No. 11 Street, Economic and Technological Development Zone Shenyang 110142 P. R. China
| | - Minmin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
- College of Chemistry and Chemical Engineering, Wuhan Textile University 1 Sunshine Road Wuhan 430200 P. R. China
| |
Collapse
|
13
|
Liu Y, Liu Z, Zhou Y, Tian Y. Implantable Electrochemical Sensors for Brain Research. JACS AU 2023; 3:1572-1582. [PMID: 37388703 PMCID: PMC10301805 DOI: 10.1021/jacsau.3c00200] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023]
Abstract
Implantable electrochemical sensors provide reliable tools for in vivo brain research. Recent advances in electrode surface design and high-precision fabrication of devices led to significant developments in selectivity, reversibility, quantitative detection, stability, and compatibility of other methods, which enabled electrochemical sensors to provide molecular-scale research tools for dissecting the mechanisms of the brain. In this Perspective, we summarize the contribution of these advances to brain research and provide an outlook on the development of the next generation of electrochemical sensors for the brain.
Collapse
Affiliation(s)
- Yuandong Liu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - Zhichao Liu
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| | - Yi Zhou
- School
of Basic Medical Sciences, Chengdu University
of Traditional Chinese Medicine, Sichuan 611137, People’s Republic of China
| | - Yang Tian
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, People’s Republic of China
| |
Collapse
|
14
|
Wei H, Li L, Xue Y, Yu P, Mao L. Stability Enhancement of Galvanic Redox Potentiometry by Optimizing the Redox Couple in Counterpart Poles. Anal Chem 2023; 95:8232-8238. [PMID: 37201512 DOI: 10.1021/acs.analchem.3c00110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Potentiometry based on the galvanic cell mechanism, i.e., galvanic redox potentiometry (GRP), has recently emerged as a new tool for in vivo neurochemical sensing with high neuronal compatibility and good sensing property. However, the stability of open circuit voltage (EOC) outputting remains to be further improved for in vivo sensing application. In this study, we find that the EOC stability could be enhanced by adjusting the sort and the concentration ratio of the redox couple in the counterpart pole (i.e., indicating electrode) of GRP. With dopamine (DA) as the sensing target, we construct a spontaneously powered single-electrode-based GRP sensor (GRP2.0) and investigate the correlation between the stability and the redox couple used in the counterpart pole. Theoretical consideration suggests that the EOC drift is minimum when the concentration ratio of the oxidized form (O1) to the reduced form (R1) of the redox species in the backfilled solution is 1:1. The experimental results demonstrate that, compared with other redox species (i.e., dissolved O2 at 3 M KCl, potassium ferricyanide (K3Fe(CN)6), and hexaammineruthenium(III) chloride (Ru(NH3)6Cl3)) used as the counterpart pole, potassium hexachloroiridate(IV) (K2IrCl6) exhibits better chemical stability and outputs more stable EOC. As a result, when IrCl62-/3- with the concentration ratio of 1:1 is used as the counterpart, GRP2.0 displays not only an excellent EOC stability (i.e., 3.8 mV drifting during 2200 s for in vivo recording) but also small electrode-to-electrode variation (i.e., the maximum EOC variation between four electrodes is 2.7 mV). Upon integration with the electrophysiology, GRP2.0 records a robust DA release, accompanied by a burst of neural firing, during the optical stimulation. This study paves a new avenue to stable neurochemical sensing in vivo.
Collapse
Affiliation(s)
- Huan Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lijuan Li
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100191, China
| | - Yifei Xue
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
15
|
Yin Y, Zeng H, Zhang S, Gao N, Liu R, Cheng S, Zhang M. Hydrogel-Coated Microelectrode Resists Protein Passivation of In Vivo Amperometric Sensors. Anal Chem 2023; 95:3390-3397. [PMID: 36725686 DOI: 10.1021/acs.analchem.2c04806] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Passivation of electrodes caused by nonspecific adsorption of protein can dramatically reduce sensing sensitivity and accuracy, which is a great challenge for in vivo neurochemical monitoring. However, most antipassivation strategies are not suitable to carbon fiber microelectrodes (CFMEs) for in vivo measurement, and these methods also do not work on electrochemical biosensors that fix biometric elements. In this study, we demonstrate that chitosan hydrogel-coated microelectrodes can avoid the current passivation caused by protein adsorption on the surface of carbon fiber because the chitosan hydrogel prepared by local pH gradient caused by hydrogen evolution reaction has three-dimensional networks containing large amounts of water. The highly hydrophilic three-dimensional structure of hydrogel not only forms a biocompatible interface to confine enzymes but also keeps the fast mass transfer of analytes, such as dopamine, ascorbic acid, and glucose. The consistency of the precalibration and postcalibration of the prepared sensor enables in vivo amperometric detection of both electroactive species based on their redox property and electroinactive species based on the enzyme. This study provides a simple and versatile strategy to constitute an amperometric sensor interface to resist passivation of protein adsorption in a complex biological environment such as the brain.
Collapse
Affiliation(s)
- Yongyue Yin
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Hui Zeng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shuai Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Nan Gao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Rantong Liu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shuwen Cheng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
16
|
Yin Y, Zeng H, Wang HM, Zhang M. Biocompatible Microelectrode for In Vivo Sensing with Improved Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1719-1729. [PMID: 36689914 DOI: 10.1021/acs.langmuir.2c03267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In vivo sensing based on implantable microelectrodes has been widely used to monitor neurochemicals due to its high spatial and temporal resolution and engineering interface designability, which has become a powerful drive to decode the mysteries of degenerative diseases and regulate neural activity. Over the past few decades, with the development of a variety of advanced materials and technologies, encouraging progress has been made in quantifying various neurochemical transients. However, because of the complex chemical atmosphere including thousands of small and large biomolecules and the inherent low mechanical property of brain tissue, the design of a compatible microelectrode for the in vivo electrochemical tracking of neurochemicals with high selectivity and stability still faces great challenges. This Perspective presents a brief account of recent representative progress in the rational regulation of the microelectrode interface to resolve the questions of selectivity and sensitive decrease resulting from antiprotein adsorption, and how to decrease the mechanical mismatch of an implanted electrode with that of brain tissue. Possible future research directions on further addressing the above key issues and a more biocompatible microelectrode for in vivo long-time electrochemical analysis are also discussed.
Collapse
Affiliation(s)
- Yongyue Yin
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Hui Zeng
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Hui-Ming Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
17
|
Wang S, Liu Y, Zhu A, Tian Y. In Vivo Electrochemical Biosensors: Recent Advances in Molecular Design, Electrode Materials, and Electrochemical Devices. Anal Chem 2023; 95:388-406. [PMID: 36625112 DOI: 10.1021/acs.analchem.2c04541] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Electrochemical biosensors provide powerful tools for dissecting the dynamically changing neurochemical signals in the living brain, which contribute to the insight into the physiological and pathological processes of the brain, due to their high spatial and temporal resolutions. Recent advances in the integration of in vivo electrochemical sensors with cross-disciplinary advances have reinvigorated the development of in vivo sensors with even better performance. In this Review, we summarize the recent advances in molecular design, electrode materials, and electrochemical devices for in vivo electrochemical sensors from molecular to macroscopic dimensions, highlighting the methods to obtain high performance for fulfilling the requirements for determination in the complex brain through flexible and smart design of molecules, materials, and devices. Also, we look forward to the development of next-generation in vivo electrochemical biosensors.
Collapse
Affiliation(s)
- Shidi Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Anwei Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
18
|
Wu F, Yu P, Mao L. Multi-Spatiotemporal Probing of Neurochemical Events by Advanced Electrochemical Sensing Methods. Angew Chem Int Ed Engl 2023; 62:e202208872. [PMID: 36284258 DOI: 10.1002/anie.202208872] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/05/2022]
Abstract
Neurochemical events involving biosignals of different time and space dimensionalities constitute the complex basis of neurological functions and diseases. In view of this fact, electrochemical measurements enabling real-time quantification of neurochemicals at multiple levels of spatiotemporal resolution can provide informative clues to decode the molecular networks bridging vesicles and brains. This Minireview focuses on how scientific questions regarding the properties of single vesicles, neurotransmitter release kinetics, interstitial neurochemical dynamics, and multisignal interconnections in vivo have driven the design of electrochemical nano/microsensors, sensing interface engineering, and signal/data processing. An outlook for the future frontline in this realm will also be provided.
Collapse
Affiliation(s)
- Fei Wu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|