1
|
Han Y, Liu Y, Zhang Y, He X, Fu X, Shi R, Jiao S, Zhao Y. Functionalized Quasi-Solid-State Electrolytes in Aqueous Zn-Ion Batteries for Flexible Devices: Challenges and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412447. [PMID: 39466981 DOI: 10.1002/adma.202412447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Indexed: 10/30/2024]
Abstract
The rapid development of wearable and intelligent flexible devices has posed strict requirements for power sources, including excellent mechanical strength, inherent safety, high energy density, and eco-friendliness. Zn-ion batteries with aqueous quasi-solid-state electrolytes (AQSSEs) with various functional groups that contain electronegative atoms (O/N/F) with tunable electron accumulation states are considered as a promising candidate to power the flexible devices and tremendous progress has been achieved in this prospering area. Herein, this review proposes a comprehensive summary of the recent achievements using the AQSSE in flexible devices by focusing on the significance of different functional groups. The fundamentals and challenges of the ZIBs are introduced from a chemical view in the first place. Then, the mechanism behind the stabilization of the flexible ZIBs with the functionalized AQSSE is summarized and explained in detail. Then the recent progress regarding the enhanced electrochemical stability of the ZIBs with the AQSSE is summarized and classified based on the functional groups on the polymer chain. The advanced characterization methods for the AQSSE are briefly introduced in the following sections. Last but not least, current challenges and future perspectives for this promising area are provided from the authors' point of view.
Collapse
Affiliation(s)
- Yinlong Han
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Ye Liu
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yan Zhang
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xiaoxiao He
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xianwei Fu
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Ruijuan Shi
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Shilong Jiao
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yong Zhao
- School of Nanoscience and Materials Engineering, Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
2
|
Wang N, Bai Y, Guo Z, Fan Y, Meng F. Synergies between the circular economy and carbon emission reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175603. [PMID: 39155011 DOI: 10.1016/j.scitotenv.2024.175603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Climate change and sustainable development drive transformation in economic development models. Carbon emission reduction and the circular economy propel climate change and sustainable development, yet it's unclear if they synergize or counteract each other. This study examines the question from theoretical and practical perspectives. Using a theory-practice framework, bibliometric and big data analyses were conducted on the Web of Science and Chinese case data, totaling 2.29GB, to explore synergies between carbon emission reduction and the circular economy. The study finds predominantly synergistic interactions between the circular economy and carbon emission reduction, with minimal offsetting effects. That is, the circular economy markedly enhances carbon emissions reduction. At the theoretical level, the two fields are gradually evolving towards in-depth research, while at the practical level, collaboration is coalescing around four areas: hot fields, potential fields, auxiliary fields and common goals. A noteworthy contribution of this study is the development of a framework that synergizes theory and practice, providing a structured approach for future research in this domain. By quantifying the synergistic and offsetting relationship between the circular economy and carbon emissions reduction through systematic big data analysis, this research offers insights essential for achieving the UN's Sustainable Development Goals. We also stress the need for diverse case studies and multi-dimensional analyses in ongoing research.
Collapse
Affiliation(s)
- Ning Wang
- Beijing Information Science and Technology University, School of Economics and Management, Beijing 100192, China; Beijing Key Lab of Green Development Decision Making Based on Big Data, Beijing 100192, China
| | - Yubing Bai
- Beijing Information Science and Technology University, School of Economics and Management, Beijing 100192, China
| | - Zhanqiang Guo
- China Association of Circular Economy, Beijing 100037, China
| | - Yu Fan
- Beijing Information Science and Technology University, School of Economics and Management, Beijing 100192, China
| | - Fanxin Meng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
3
|
Kintzi A, Daturpalli S, Battagliarin G, Zumstein M. Biodegradation of Water-Soluble Polymers by Wastewater Microorganisms: Challenging Laboratory Testing Protocols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39134471 PMCID: PMC11360367 DOI: 10.1021/acs.est.4c05808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
For water-soluble polymers (WSPs) that enter environmental systems at their end-of-life, biodegradability is a key functionality. For the development and regulation of biodegradable WSPs, testing methods that are both scientifically validated and economically practicable are needed. Here, we used respirometric laboratory tests to study the biodegradation of poly(amino acids), poly(ethylene glycol), and poly(vinyl alcohol), together with appropriate low-molecular-weight reference substrates. We varied key protocol steps of commonly used testing methods, which were originally established for small molecules and tested for effects on WSP biodegradation. We found that avoiding aeration of the wastewater inoculate prior to WSP addition, incubating WSP with filter-sterilized wastewater prior to biodegradation testing, and lowering the WSP concentration can increase biodegradation rates of WSPs. Combining the above-mentioned protocol variations substantially affected the results of the biodegradation testing for the two poly(amino acids) tested herein (i.e., poly(lysine) and poly(aspartic acid)). Our findings were consistent between microbial inocula derived from two municipal wastewater treatment plants. Our study presents promising biodegradation dynamics for poly(amino acids) and highlights the importance, strengths, and limitations of respirometric laboratory methods for WSP biodegradation testing.
Collapse
Affiliation(s)
- Aaron Kintzi
- Division
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
- Doctoral
School in Microbiology and Environmental Science, University of Vienna, Vienna 1090, Austria
| | | | | | - Michael Zumstein
- Division
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| |
Collapse
|
4
|
Shellard EK, Diment WT, Resendiz-Lara DA, Fiorentini F, Gregory GL, Williams CK. Al(III)/K(I) Heterodinuclear Polymerization Catalysts Showing Fast Rates and High Selectivity for Polyester Polyols. ACS Catal 2024; 14:1363-1374. [PMID: 38327648 PMCID: PMC10845108 DOI: 10.1021/acscatal.3c05712] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 02/09/2024]
Abstract
Low molar mass, hydroxyl end-capped polymers, often termed "polyols," are widely used to make polyurethanes, resins, and coatings and as surfactants in liquid formulations. Epoxide/anhydride ring-opening copolymerization (ROCOP) is a controlled polymerization route to make them, and its viability depends upon catalyst selection. In the catalysis, the polyester polyol molar masses and end-groups are controlled by adding specific but excess quantities of diols (vs catalyst), known as the chain transfer agent (CTA), to the polymerizations, but many of the best current catalysts are inhibited or even deactivated by alcohols. Herein, a series of air-stable Al(III)/K(I) heterodinuclear polymerization catalysts show rates and selectivity at the upper end of the field. They also show remarkable increases in activity, with good selectivity and control, as quantities of diol are increased from 10-400 equiv. The reactions are accelerated by alcohols, and simultaneously, their use allows for the production of hydroxy telechelic poly/oligoesters (400 < Mn (g mol-1) < 20,400, Đ < 1.19). For example, cyclohexene oxide (CHO)/phthalic anhydride (PA) ROCOP, using the best Al(III)/K(I) catalyst with 200 equiv of diol, shows a turnover frequency (TOF) of 1890 h-1, which is 4.4× higher than equivalent reactions without any diol (Catalyst/Diol/PA/CHO = 1:10-400:400:2000, 100 °C). In all cases, the catalysis is well controlled and highly ester linkage selective (ester linkages >99%) and operates effectively using bicyclic and/or biobased anhydrides with bicyclic or flexible alkylene epoxides. These catalysts are recommended for future production and application development using polyester polyols.
Collapse
Affiliation(s)
- Edward
J. K. Shellard
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Wilfred T. Diment
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Diego A. Resendiz-Lara
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Francesca Fiorentini
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Georgina L. Gregory
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Charlotte K. Williams
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
5
|
Fiandra EF, Shaw L, Starck M, McGurk CJ, Mahon CS. Designing biodegradable alternatives to commodity polymers. Chem Soc Rev 2023; 52:8085-8105. [PMID: 37885416 DOI: 10.1039/d3cs00556a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The development and widespread adoption of commodity polymers changed societal landscapes on a global scale. Without the everyday materials used in packaging, textiles, construction and medicine, our lives would be unrecognisable. Through decades of use, however, the environmental impact of waste plastics has become grimly apparent, leading to sustained pressure from environmentalists, consumers and scientists to deliver replacement materials. The need to reduce the environmental impact of commodity polymers is beyond question, yet the reality of replacing these ubiquitous materials with sustainable alternatives is complex. In this tutorial review, we will explore the concepts of sustainable design and biodegradability, as applied to the design of synthetic polymers intended for use at scale. We will provide an overview of the potential biodegradation pathways available to polymers in different environments, and highlight the importance of considering these pathways when designing new materials. We will identify gaps in our collective understanding of the production, use and fate of biodegradable polymers: from identifying appropriate feedstock materials, to considering changes needed to production and recycling practices, and to improving our understanding of the environmental fate of the materials we produce. We will discuss the current standard methods for the determination of biodegradability, where lengthy experimental timescales often frustrate the development of new materials, and highlight the need to develop better tools and models to assess the degradation rate of polymers in different environments.
Collapse
Affiliation(s)
- Emanuella F Fiandra
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Lloyd Shaw
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Matthieu Starck
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | | - Clare S Mahon
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
6
|
Haslewood MND, Farmer TJ, North M. Synthesis and chemoselective crosslinking of functionalized polyesters from bio‐based epoxides and cyclic anhydrides. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Michael North
- Green Chemistry Centre of Excellence University of York York UK
| |
Collapse
|