1
|
Ranganathan R, Franklin J, Oh T, Peric M. Fluorescence anisotropy (FA) of anionic dyes bound to ionic and zwitterionic micelles. J Photochem Photobiol A Chem 2025; 466:116401. [PMID: 40322726 PMCID: PMC12048021 DOI: 10.1016/j.jphotochem.2025.116401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Anionic fluorescein and 8-hydroxy-1,3,6-pyrenetrisulfonate (POH), bind to cationic and zwitterionic micelles, experience hindered rotation and exhibit fluorescence anisotropy (FA). Fluorescein emits three lines from its dianion, carboxylate, and phenolate forms. POH emissions are from excited POH* and its deprotonated form, PO-. Fluorescence was excited by vertically polarized (V) light. Spectra recorded with vertical (IVV) and horizontal (IVH) polarizers in the emitted beam were corrected for instrument response and polarization bias. Corrected line shapes were fit to Gaussians availing the computationally derived second harmonic for better fit precision. FA of the individual forms of the same dye was calculated from the IVV and IVH intensities of each component line. For fluorescein, FA phenolate > carboxylate > dianion and FA PO-> POH*. Micelle-bound dye conformations, consistent with this order, are presented. Distinguishing between FA of different forms is novel and significant to elucidation of dye-host interactions.
Collapse
Affiliation(s)
- Radha Ranganathan
- Department of Physics, California State University Northridge, Northridge, CA 91330, USA
| | - Jack Franklin
- Department of Physics, California State University Northridge, Northridge, CA 91330, USA
| | - Taeboem Oh
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330, USA
| | - Miroslav Peric
- Department of Physics, California State University Northridge, Northridge, CA 91330, USA
| |
Collapse
|
2
|
Nagy SG, Metiva JJ, Schoenfisch MH. Nitric Oxide-Releasing Liposomes for Treatment of Mycobacterium abscessus Infections. ACS APPLIED BIO MATERIALS 2025. [PMID: 40378264 DOI: 10.1021/acsabm.5c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Nontuberculosis mycobacteria (NTM) are ubiquitous, opportunistic pathogens that cause severe respiratory infection, primarily in elderly and immunocompromised populations. The second most prevalent NTM pathogen, Mycobacterium abscessus, is considered the most refractory due to its fast growth rate, intracellular survivability, and antibiotic resistance. Treatments are thus sparse and generally ineffective, promoting antibiotic resistance upon chronic use. Nitric oxide (NO) is an endogenously produced free radical that exerts antimicrobial effects against pathogens via several mechanisms of action, and as such, it is unlikely to elicit resistance. Methyl tris diazeniumdiolate (MD3) is a small-molecule NO-releasing prodrug that is capable of sustained NO release, making it an attractive candidate as an antimicrobial therapeutic; however, its triple negative charge makes cellular uptake unlikely. As liposomes enable cellular uptake, their use as an MD3 delivery system may further enhance the utility of NO release for treating intracellular NTM infections. Herein, liposomal formulations were evaluated as a function of pH and buffer composition and optimized for MD3 loading to enable the delivery of bactericidal levels of NO. Planktonic studies with two clinically relevant morphotypes of M. abscessus revealed that lower pKa liposomal systems employ a better antimicrobial efficacy. Prevention and eradication assays revealed that liposomal MD3 significantly improves biofilm inhibition compared to nonliposomal MD3 and was capable of eradicating biofilm bacteria at 4 mg mL-1. Liposomal MD3 and MD3 had similar reductions in intracellular bacterial load, achieving at least a three-log reduction at relevant concentrations. Fluorescence spectroscopy over 24 h demonstrated that liposomal encapsulation increased the intracellular concentration of a membrane-impermeable fluorophore by 3.4-fold. Confocal microscopy was used to visualize the increase in the number of cells containing intracellular NO and the sustained presence of NO within the cell, confirming that liposomal MD3 increases small-molecule internalization.
Collapse
Affiliation(s)
- Sarah G Nagy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joseph J Metiva
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Gu H, Sun X, Bao H, Feng X, Chen Y. Optically pH-Sensing in smart wound dressings towards real-time monitoring of wound states: A review. Anal Chim Acta 2025; 1350:343808. [PMID: 40155158 DOI: 10.1016/j.aca.2025.343808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Over the recent years, the investigations on wound dressings have been undergoing significant evolution, and now smart dressings with the function of the real-time monitoring of the wound states have been recognized as one of the most advanced treatment modalities. Among a variety of wound-related biomarkers, pH represents a promising candidate for in situ supervising the wound healing status. In this regard, a variety of optically pH sensing agents have been widely incorporated into different types of wound dressings. RESULTS Herein, we first presented an overview of the advanced wound dressings, especially those commonly used in wound pH sensing. Then, a comprehensive summary of the optical pH sensing agents that could be incorporated into the wound dressings for detecting the pH alteration on the wound bed was described in detail. These materials were classified into colorimetric dyes (i.e., synthetic and plant-based dyes) and fluorescent probes (i.e., small-molecular fluorescein and fluorescent nanomaterials). Each type of pH sensing agent was fully discussed with advantages and limitations for monitoring the wound pH alteration, as well as typical examples of practical applications. To well interpret messages produced by the color-coding dressings, the approaches for defining and communicating color were also summarized, and a proof-of-concept, the smartphone-based remote supervision was particularly highlighted. SIGNIFICANCE This review provides a comprehensive overview of the utilization of optically pH sensing in advanced wound dressings for the real-time monitoring of the wound states. It was expected to be an informative source for the exploitation of novel diagnostic dressings for wound management, and also a reference the for application of these materials in the biosensing of other physiological or pathological fluids.
Collapse
Affiliation(s)
- Hongchun Gu
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xinxing Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Hongyang Bao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, Shenyang, 110034, China.
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
4
|
Jakobsen RK, Stenspil SG, Chen J, Laursen BW. Dynamic proton coupled electron transfer quenching as a sensing modality in fluorescent probes. Chem Sci 2025; 16:7450-7458. [PMID: 40160357 PMCID: PMC11948341 DOI: 10.1039/d5sc00326a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
Fluorescent off-on probes based on a modular design where an analyte sensitive PET moiety is attached to a fluorophore are extremely successful. Here we report a new modular fluorescence probe design switched by dynamic quenching due to proton coupled electron transfer (PCET) mediated by collision with weak bases in solution. The fluorescence lifetime of this probe directly reports on the rate of deprotonation by the weak bases in the solution. We investigate the probe design, mechanism of response, and sensitivity to various abundant weak bases/metabolites including acetate, glutamate, phosphate, valine, and amines. We find that this modular PCET based probe design, in contrast to traditional PET probes, can work efficiently with a fluorescence lifetime readout providing a calibration free probe for weak bases. Upon further development we envision such dynamic PCET probes as sensitive tools for studies of cellular buffer systems and metabolite pools.
Collapse
Affiliation(s)
- Rasmus K Jakobsen
- Nano-Science Center & Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Stine G Stenspil
- Nano-Science Center & Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Bo W Laursen
- Nano-Science Center & Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| |
Collapse
|
5
|
Yucknovsky A, Amdursky N. Photoacids and Photobases: Applications in Functional Dynamic Systems. Angew Chem Int Ed Engl 2025; 64:e202422963. [PMID: 39888194 PMCID: PMC11848990 DOI: 10.1002/anie.202422963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Indexed: 02/01/2025]
Abstract
Brønsted photoacids and photobases are a unique class of molecules that undergo a major change in their pKa values between their ground and excited states, resulting in donating or accepting a proton, respectively, but only after light excitation. This property of photoacids/photobases makes them an attractive tool for light-gating various dynamic processes. Here, we review the use of this property to manipulate functional dynamic systems with light. We discuss how a proton transfer event that can happen upon light excitation from a photoacid to a chemical moiety of a certain system or, vice versa, from the system to a photobase, can result in a shift in the equilibrium of the system, resulting in some dynamicity. We detail various systems, including self-assembly processes of nanostructures, self-propulsion of droplets, catalysis for hydrogen evolution or CO2 capturing, nanotechnological devices based on enzymatic processes, and changes in proton-conducting ionophores and materials. We detail the basic guidelines for using Brønsted photoacids and photobases in a desired system and conclude with the current technological gaps in further using these molecules.
Collapse
Affiliation(s)
- Anna Yucknovsky
- Schulich Faculty of ChemistryTechnion – Israel Institute of TechnologyHaifa3200003Israel
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TA
| | - Nadav Amdursky
- Schulich Faculty of ChemistryTechnion – Israel Institute of TechnologyHaifa3200003Israel
- ChemistrySchool of Mathematical and Physical SciencesUniversity of SheffieldSheffieldS3 7HFUnited Kingdom
| |
Collapse
|
6
|
Zhang Z, Luo X, Wang X, Liu M, Yue X, Zheng Z. A Ratiometric Fluorescence Nano pH Biosensor for Live-Cell Imaging Using Cerasome. BIOSENSORS 2025; 15:114. [PMID: 39997016 PMCID: PMC11852597 DOI: 10.3390/bios15020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
The development of a robust and biocompatible pH-sensing platform is critical for monitoring intracellular processes and diagnosing diseases. Here, we present a smart ultrastable ratiometric fluorescence nano pH sensor based on silica-coated liposome nanoparticles (cerasome, 138.4 nm). The sensor integrates pH-sensitive dye, pyranine, within cerasome, achieving enhanced photostability, sensitivity, and biocompatibility. Its unique ratiometric design enables precise pH monitoring with minimal photobleaching and quenching, covering a linear detection range of pH 6.25-8.5. The hybrid nanoparticles exhibit high morphological stability, making them suitable for real-time intracellular pH measurement. This novel platform shows great promise for applications in cellular biology, disease diagnosis, and therapeutic monitoring, offering a versatile tool for biomedical research.
Collapse
Affiliation(s)
- Zhongqiao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoshan Luo
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China (X.W.)
| | - Xuanbo Wang
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China (X.W.)
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Suzhou 215123, China;
| | - Xiuli Yue
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China (X.W.)
| |
Collapse
|
7
|
Ray S, Behera D, Singh Harariya M, Das S, Tarafdar PK, Mukherjee S. Alkoxy-Directed Dienamine Catalysis in [4 + 2]-Cycloaddition: Enantioselective Synthesis of Benzo-[3]-ladderanol. J Am Chem Soc 2025; 147:2523-2536. [PMID: 39797784 DOI: 10.1021/jacs.4c13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Despite tremendous progress of dienamine catalysis along with its application in enantioselective synthesis over nearly two decades, certain limitations, especially with respect to the regioselectivity in the dienamine generation step, continue to persist. To overcome these shortcomings of classical dienamine catalysis, we now introduce the concept of alkoxy-directed dienamine catalysis and apply it to the enantioselective de novo arene construction by desymmetrizing meso-enediones through [4 + 2]-cycloaddition. Catalyzed by a diphenylprolinol silyl ether, this reaction utilizes γ-alkoxy α,β-unsaturated aldehydes as the substrate and proceeds in a highly regioselective fashion through the intermediacy of δ-alkoxy dienamine. Besides carrying out mechanistic elucidation through density functional theory (DFT) calculation, the utility of this newly developed strategy is demonstrated for the concise enantioselective synthesis of a benzo-analogue of the natural ladderane phospholipid component (+)-[3]-ladderanol. Designed as a functional analogue of natural [3]-ladderanol, this unnatural benzo-[3]-ladderanol was found to impart lower proton permeability and higher stability to the membrane compared to its natural counterpart.
Collapse
Affiliation(s)
- Sayan Ray
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Deepak Behera
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mahesh Singh Harariya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Subrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Sülzner N, Jung G, Nuernberger P. A dual experimental-theoretical perspective on ESPT photoacids and their challenges ahead. Chem Sci 2025; 16:1560-1596. [PMID: 39759939 PMCID: PMC11697080 DOI: 10.1039/d4sc07148d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 01/07/2025] Open
Abstract
Photoacids undergo an increase in acidity upon electronic excitation, enabling excited-state proton transfer (ESPT) reactions. A multitude of compounds that allow ESPT has been identified and integrated in numerous applications, as is outlined by reviewing the rich history of photoacid research reaching back more than 90 years. In particular, achievements together with ambitions and challenges are highlighted from a combined experimental and theoretical perspective. Besides explicating the spectral signatures, transient ion-pair species, and electronic states involved in an ESPT, special emphasis is put on the diversity of methods used for studying photoacids as well as on the effects of the environment on the ESPT, illustrated in detail for 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and the naphthols as examples of prototypical photoacids. The development of exceptionally acidic super-photoacids and magic photoacids is subsequently discussed, which opens the way to applications even in aprotic solvents and provides additional insight into the mechanisms underlying ESPT. In the overview of highlights from theory, a comprehensive picture of the scope of studies on HPTS is presented, along with the general conceptualization of the electronic structure of photoacids and approaches for the quantification of excited-state acidity. We conclude with a juxtaposition of established applications of photoacids together with potential open questions and prospective research directions.
Collapse
Affiliation(s)
- Niklas Sülzner
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum 44780 Bochum Germany +49 234 32 24523
| | - Gregor Jung
- Biophysikalische Chemie, Universität des Saarlandes 66123 Saarbrücken Germany +49 681 302 71320
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg 93040 Regensburg Germany +49 941 943 4487
| |
Collapse
|
9
|
Huang Y, Wu C, Cao Y, Zheng J, Zeng B, Li X, Li M, Tang J. Scalable integration of photoresponsive highly aligned nanochannels for self-powered ionic devices. SCIENCE ADVANCES 2024; 10:eads5591. [PMID: 39705341 DOI: 10.1126/sciadv.ads5591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
Artificial ionic nanochannels with light perception capabilities hold promise for creating ionic devices. Nevertheless, most research primarily focuses on regulating single nanochannels, leaving the cumulative effect of numerous nanochannels and their integration underexplored. We herein develop a biomimetic photoreceptor based on photoresponsive highly aligned nanochannels (pHANCs), which exhibit uniform channel heights, phototunable surface properties, and excellent compatibility with microfabrication techniques, enabling the scalable fabrication and integration into functional ionic devices. These pHANCs demonstrate exceptional ion selectivity and permeability due to the high surface charges and well-ordered conduits, resulting in outstanding energy harvesting from concentration gradients. Large-scale fabrication of pHANCs has been successfully realized, wherein hundreds of biomimetic photoreceptors produce an ultrahigh voltage over 76 volts, which has not been achieved previously. In addition, we demonstrate that the biomimetic photoreceptor can be further upscaled to be a self-powered ionic image sensor, capable of sensing and decoding incident light information.
Collapse
Affiliation(s)
- Yaxin Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Changjin Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Yingnan Cao
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jing Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Binglin Zeng
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Xiaofeng Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Mingliang Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong 999077, China
- HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, Hong Kong 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), The University of Hong Kong, Hong Kong, 999077 China
| |
Collapse
|
10
|
Ramanthrikkovil Variyam A, Rzycki M, Yucknovsky A, Stuchebrukhov AA, Drabik D, Amdursky N. Proton diffusion on the surface of mixed lipid membranes highlights the role of membrane composition. Biophys J 2024; 123:4200-4210. [PMID: 38961623 PMCID: PMC11700359 DOI: 10.1016/j.bpj.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Proton circuits within biological membranes, the foundation of natural bioenergetic systems, are significantly influenced by the lipid compositions of different biological membranes. In this study, we investigate the influence of mixed lipid membrane composition on the proton transfer (PT) properties on the surface of the membrane. We track the excited-state PT (ESPT) process from a tethered probe to the membrane with timescales and length scales of PT relevant to bioenergetic systems. Two processes can happen during ESPT: the initial PT from the probe to the membrane at short timescales, followed by diffusion of dissociated protons around the probe on the membrane, and the possible geminate recombination with the probe at longer timescales. Here, we use membranes composed of mixtures of phosphatidylcholine (PC) and phosphatidic acid (PA). We show that the changes in the ESPT properties are not monotonous with the concentration of the lipid mixture; at a low concentration of PA in PC, we find that the membrane is a poor proton acceptor. Molecular dynamics simulations indicate that the membrane is more structured at this specific lipid mixture, with the least number of defects. Accordingly, we suggest that the structure of the membrane is an important factor in facilitating PT. We further show that the composition of the membrane affects the geminate proton diffusion around the probe, whereas, on a timescale of tens of nanoseconds, the dissociated proton is mostly lateral restricted to the membrane plane in PA membranes, while in PC, the diffusion is less restricted by the membrane.
Collapse
Affiliation(s)
| | - Mateusz Rzycki
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Anna Yucknovsky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Dominik Drabik
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
11
|
Shen Y, Hong R, He X, Wang C, Wang X, Li S, Zhu X, Gui D. Utilizing excited-state proton transfer fluorescence quenching mechanism, layered rare earth hydroxides enable ultra-sensitive detection of nitroaromatic. J Colloid Interface Sci 2024; 673:564-573. [PMID: 38889547 DOI: 10.1016/j.jcis.2024.06.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Convenient, rapid, and accurate detection of nitroaromatic organic toxins and harmful substances is of great significance in research. In the present study, two-dimensional layered rare-earth hydroxides (LYH) were used as ion-exchange matrix materials, and the anionic fluorescent dye molecules (HPTS) were successfully introduced into the LYH structures in situ via a simple and effective "plug-and-play" strategy, which gave the compounds ultra-sensitive fluorescence sensing detection of nitrobenzene, p-nitrotoluene and p-nitrophenol (Fluorescence response time < 1 sec, and the LOD for nitrobenzene, p-nitrophenol and p-nitrotoluene reached an impressive 349 ppb, 22 ppb and 98 ppb, respectively). Combined with theoretical calculations, we elucidated in detail the fluorescence quenching response mechanism of the LYH-HPTS towards nitroaromatic. Additionally, we also constructed fluorescent paper sensor, which effectively transformed the LYH-HPTS from theoretical detection to device application. The LYH-HPTS material is not only simple to synthesize, cost-effective and stable, but also has the features of fast response, excellent sensitivity and selectivity, and good reproducibility, which provides a new approach for the rapid and accurate detection of nitroaromatic.
Collapse
Affiliation(s)
- Yexin Shen
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Ran Hong
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China; National Local Joint Engineering Laboratory to Functional Adsorption Material Technology for the Environmental Protection, Jiangsu, Suzhou 215123, PR China
| | - Xin He
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Cong Wang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Xiuyuan Wang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Shantao Li
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| | - Xiandong Zhu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| | - Daxiang Gui
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China.
| |
Collapse
|
12
|
Ettikkan NK, Priyanka P, Mahato RR, Maiti S. Nucleotide-mediated modulation of chemoselective protein functionalization in a liquid-like condensed phase. Commun Chem 2024; 7:242. [PMID: 39462061 PMCID: PMC11513967 DOI: 10.1038/s42004-024-01333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Liquid-like protein condensates are ubiquitous in cellular system and are increasingly recognized for their roles in physiological processes. Condensed phase harbors distinctive chemical microenvironment, markedly different than dilute aqueous phase. Herein, we demonstrate chemoselective modification pattern of nucleophilic canonical amino acid sidechains (namely - cysteine, tyrosine and lysine) of the protein towards 4-chloro-7-nitrobenzofurazan in the dilute and condensed phase. We also delineate how the effect of nucleotides and their in situ enzymatic dissociation temporally modulate the protein condensate's pH and the protein's corresponding chemoselective modification. We have shown that the pH of the condensate decreases in the presence of nucleoside triphosphate, whereas it increases in the presence of nucleoside monophosphates or phosphate ion. For instance, we find lysine-specific modification gets inhibited in the presence of adenosine triphosphate (ATP), but significantly enhanced in the presence of monophosphates. This feature enables us to gain temporal control over dynamic change in protein functionalization via enzymatic ATP hydrolysis. Overall, this work substantiates the alteration in pH-responsiveness of Brønsted basicity of a protein's ε-amine in the condensed phase. Furthermore, this environment sensitivity in chemoselective protein functionalization in condensed phase will be important in adaptable protein engineering to the chemical biology of protein phase separation.
Collapse
Affiliation(s)
- Nandha Kumar Ettikkan
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Priyanka Priyanka
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Rishi Ram Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India.
| |
Collapse
|
13
|
Sangeeta, Sil A, Singh V, Bhati R, Guchhait B. Exploring Unusual Confined Chemistry: Excited-State Proton Transfer Reaction in Supported Liquid Membrane with Deep Eutectic Solvents. J Phys Chem B 2024; 128:9805-9814. [PMID: 39340445 DOI: 10.1021/acs.jpcb.4c03517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Supported liquid membrane (SLM) incorporating ionic liquids (ILs) or deep eutectic solvents (DESs) offers a promising method for ion and (bio)chemical separations and CO2 capture. However, a molecular understanding of whether chemical reactions occur in these confined media is crucial. We report excited-state proton transfer (ESPT) reaction of a photoacid, HPTS, in various DES-based SLMs (pore size ∼280 nm) using steady-state and time-resolved fluorescence spectroscopy. Our findings reveal that, while the ESPT is unfavorable in bulk DESs, it occurs substantially in SLM-containing DESs. Time-resolved area normalized emission spectra (TRANES) show that ESPT time ranges from 2.6 to 7.5 ns and is greatly affected by changes in DES constituents. The results suggest that HPTS interacts with ordered DES structures formed by long-range interfacial effects in membrane pores, making it suitable for ESPT. Furthermore, it is found that the dynamics of solvent relaxation in confined DESs are significantly slower than in bulk liquids. This observation, together with a large red-edge excitation shift, supports the impact of long-range interfacial effects on the DES structure inside membrane pores. Given the task-specific properties of DESs, the incorporation of these solvents into SLM pores can be a useful strategy for investigating new chemical processes.
Collapse
Affiliation(s)
- Sangeeta
- Department of Chemistry, School of Natural Sciences Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Arnab Sil
- Department of Chemistry, School of Natural Sciences Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Vikash Singh
- Department of Chemistry, School of Natural Sciences Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Renu Bhati
- Department of Chemistry, School of Natural Sciences Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Biswajit Guchhait
- Department of Chemistry, School of Natural Sciences Shiv Nadar Institution of Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| |
Collapse
|
14
|
Seo H, Schretter J, Massen-Hane M, Hatton TA. Visible Light-Driven CO 2 Capture and Release Using Photoactive Pyranine in Water in Continuous Flow. J Am Chem Soc 2024; 146:26777-26785. [PMID: 39132711 DOI: 10.1021/jacs.4c07278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The urgent need to address climate change and its environmental consequences demands innovative carbon capture technologies, given the relationship between rising global temperatures and increased atmospheric CO2 levels. Here, we present a reversible photochemical carbon capture and release strategy and system utilizing photoactive pyranine in an aqueous bicarbonate buffer system. Control experiments suggested that the photoacid effect occurs at the surface which contributes to CO2 release, complemented by the photothermal effect at the surface and in the bulk. A continuous flow setup employing a tube-in-tube configuration with a hollow fiber membrane demonstrates the efficiency and reliability of the visible light-driven carbon capture system, with the release of CO2 captured from a 15% CO2 feed in the dark, at a rate of 0.48 mmol CO2 per hour to a nitrogen sweep stream under light irradiation at 200 W/m2, a level comparable to solar intensity of visible light (150 W/m2 of blue light -250 W/m2 of blue and green light). The robustness and scalability of the system has been demonstrated, with long-term operation over 7 days yielding 60 mmol (1.34 L CO2 at STP) of cumulated CO2 separation. Additionally, we explored the potential for direct air capture, yielding 3 μmol of CO2 separation over 2 h of operation from a bicarbonate buffer solution saturated with ambient air (420 ppm). This work introduces the prospect of photoswing of carbon capture systems, which can avoid external energy input beyond solar irradiation, offering promising avenues for addressing the challenges associated with climate change.
Collapse
Affiliation(s)
- Hyowon Seo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Johannes Schretter
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Massen-Hane
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - T Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Malik VK, Pak OS, Feng J. Curvature-Assisted Vesicle Explosion Under Light-Induced Asymmetric Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400504. [PMID: 39136143 PMCID: PMC11481189 DOI: 10.1002/advs.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/14/2024] [Indexed: 10/17/2024]
Abstract
Exposure of cell membranes to reactive oxygen species can cause oxidation of membrane lipids. Oxidized lipids undergo drastic conformational changes, compromising the mechanical integrity of the membrane and causing cell death. For giant unilamellar vesicles, a classic cell mimetic system, a range of mechanical responses under oxidative assault has been observed including formation of nanopores, transient micron-sized pores, and total sudden catastrophic collapse (i.e., explosion). However, the physical mechanism regarding how lipid oxidation causes vesicles to explode remains elusive. Here, with light-induced asymmetric oxidation experiments, the role of spontaneous curvature on vesicle instability and its link to the conformational changes of oxidized lipid products is systematically investigated. A comprehensive membrane model is proposed for pore-opening dynamics incorporating spontaneous curvature and membrane curling, which captures the experimental observations well. The kinetics of lipid oxidation are further characterized and how light-induced asymmetric oxidation generates spontaneous curvature in a non-monotonic temporal manner is rationalized. Using the framework, a phase diagram with an analytical criterion to predict transient pore formation or catastrophic vesicle collapse is provided. The work can shed light on understanding biomembrane stability under oxidative assault and strategizing release dynamics of vesicle-based drug delivery systems.
Collapse
Affiliation(s)
- Vinit Kumar Malik
- Department of Mechanical Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - On Shun Pak
- Department of Mechanical Engineering and Department of Applied MathematicsSanta Clara UniversitySanta ClaraCA95053USA
| | - Jie Feng
- Department of Mechanical Science and EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Materials Research LaboratoryUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
16
|
Ruppelt D, Ackermann ELM, Robinson T, Steinem C. Assessing the mechanism of facilitated proton transport across GUVs trapped in a microfluidic device. Biophys J 2024; 123:3267-3274. [PMID: 39066477 PMCID: PMC11428277 DOI: 10.1016/j.bpj.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Proton transport across lipid membranes is one of the most fundamental reactions that make up living organisms. In vitro, however, the study of proton transport reactions can be very challenging due to limitations imposed by proton concentrations, compartment size, and unstirred layers as well as buffer exchange and buffer capacity. In this study, we have developed a proton permeation assay based on the microfluidic trapping of giant vesicles enclosing the pH-sensitive dye pyranine to address some of these challenges. Time-resolved fluorescence imaging upon a rapid pH shift enabled us to investigate the facilitated H+ permeation mediated by either a channel or a carrier. Specifically, we compared the proton transport rates as a function of different proton gradients of the channel gramicidin D and the proton carrier carbonyl cyanide-m-chlorophenyl hydrazone. Our results demonstrate the efficacy of the assay in monitoring proton transport reactions and distinguishing between a channel-like and a carrier-like mechanism. This groundbreaking result enabled us to elucidate the enigmatic mode of the proton permeation mechanism of the recently discovered natural fibupeptide lugdunin.
Collapse
Affiliation(s)
- Dominik Ruppelt
- Institute of Organic and Biomolecular Chemistry, Georg-August Universität Göttingen, Göttingen, Germany
| | - Elena L M Ackermann
- Institute of Organic and Biomolecular Chemistry, Georg-August Universität Göttingen, Göttingen, Germany
| | - Tom Robinson
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
17
|
Bahuguna G, Patolsky F. Universal Approach to Direct Spatiotemporal Dynamic In Situ Optical Visualization of On-Catalyst Water Splitting Electrochemical Processes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401258. [PMID: 38650122 PMCID: PMC11199991 DOI: 10.1002/advs.202401258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Electrochemical reactions are the unrivaled backbone of next-generation energy storage, energy conversion, and healthcare devices. However, the real-time visualization of electrochemical reactions remains the bottleneck for fully exploiting their intrinsic potential. Herein, for the first time, a universal approach to direct spatiotemporal-dynamic in situ optical visualization of pH-based as well as specific byproduct-based electrochemical reactions is performed. As a highly relevant and impactful example, in-operando optical visualization of on-catalyst water splitting processes is performed in neutral water/seawater. HPTS (8-hydroxypyrene-1,3,6-trisulfonicacid), known for its exceptional optical capability of detecting even the tiniest pH changes allows the unprecedented "spatiotemporal" real-time visualization at the electrodes. As a result, it is unprecedentedly revealed that at a critical cathode-to-anode distance, the bulk-electrolyte "self-neutralization" phenomenon can be achieved during the water splitting process, leading to the practical realization of enhanced additive-free neutral water splitting. Furthermore, it is experimentally unveiled that at increasing electrolyte flow rates, a swift and severe inhibition of the concomitantly forming acidic and basic 'fronts', developed at anode and cathode compartments are observed, thus acting as a "buffering" mechanism. To demonstrate the universal applicability of this elegant strategy which is not limited to pH changes, the technique is extended to visualization of hypochlorite/ chlorine at the anode during electrolysis of sea water using N-(4-butanoic acid) dansylsulfonamide (BADS). Thus, a unique experimental tool that allows real-time spatiotemporal visualization and simultaneous mechanistic investigation of complex electrochemical processes is developed that can be universally extended to various fields of research.
Collapse
Affiliation(s)
- Gaurav Bahuguna
- School of ChemistryFaculty of Exact SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Fernando Patolsky
- School of ChemistryFaculty of Exact SciencesTel Aviv UniversityTel Aviv69978Israel
- Department of Materials Science and Engineeringthe Iby and Aladar Fleischman Faculty of EngineeringTel Aviv UniversityTel Aviv69978Israel
| |
Collapse
|
18
|
Jang T, Lee S, Pang Y. Anomalous proton transfer of a photoacid HPTS in nonaqueous reverse micelles. Phys Chem Chem Phys 2024; 26:11283-11294. [PMID: 38456549 DOI: 10.1039/d3cp05710k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The proton transfer reaction is one of the fundamental chemical reactions where the reaction dynamics strongly depend on solvent properties such as acidity or basicity. A photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) shows a sharp decrease of pKa (7.7 → 0.5) upon photoexcitation, and the excited-state proton transfer (ESPT) occurs with ultrafast time constants of 2.5 and 89 ps in bulk aqueous solution. However, the two-step proton transfers via the contact ion pair formation and the proton diffusion are strongly limited inside the nanopools of reverse micelles (RMs). The confinement in small RMs strongly impeded the proton transfer reactions. In this work, we report the ESPT of HPTS confined in methanol-in-oil RMs by steady-state and time-resolved electronic spectroscopy. Interestingly, HPTS shows substantial deprotonation in the excited state only in small RMs, while the ESPT of HPTS does not occur in bulk methanol solution due to the low basicity of aliphatic alcohols. The kinetic analysis of time-resolved fluorescence and transient absorption measurements will compare the proton transfer dynamics of HPTS in the water-in-oil and methanol-in-oil RMs. The ESPT of photoacids, especially in the nonaqueous RMs, can be crucial in understanding many important chemical reactions involving proton transfer in the confined environments of cells and membranes.
Collapse
Affiliation(s)
- Taehyung Jang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Sebok Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Yoonsoo Pang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
19
|
Gilad Barzilay Y, Yucknovsky A, Amdursky N. Light-Triggered Reversible Change in the Electronic Structure of MoO 3 Nanosheets via an Excited-State Proton Transfer Mechanism. NANO LETTERS 2024; 24:1936-1943. [PMID: 38289664 PMCID: PMC10870760 DOI: 10.1021/acs.nanolett.3c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
Light is an attractive source of energy for regulating stimulus-responsive chemical systems. Here, we use light as a gating source to control the redox state, the localized surface plasmonic resonance (LSPR) peak, and the structure of molybdenum oxide (MoO3) nanosheets, which are important for various applications. However, the light excitation is not that of the MoO3 nanosheets but rather that of pyranine (HPTS) photoacids, which in turn undergo an excited-state proton transfer (ESPT) process. We show that the ESPT process from HPTS to the nanosheets and the intercalation of protons within the MoO3 nanosheets trigger the reduction of the nanosheets and the broadening of the LSPR peak, a process that is reversible, meaning that in the absence of light, the LSPR peak diminishes and the nanosheets return to their oxidized form. We further show that this reversible process is accompanied by a change in the nanosheet size and morphology.
Collapse
Affiliation(s)
- Yuval Gilad Barzilay
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Anna Yucknovsky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
20
|
Ghosh G, Roy DS, Ghosh R, Mukherjee D, Biswas S, Roy L, Chattopadhyay A, Das R, Pal SK. Excited-State Dynamics of a Photoacid: A Potential Probe for Recognizing Transition from Lamellar to Nonlamellar Inverted Structures of Liposome based Nanocarriers. Chemphyschem 2024; 25:e202300635. [PMID: 37936318 DOI: 10.1002/cphc.202300635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023]
Abstract
Liposomes of a cationic lipid dioctadecyldimethylammonium bromide (DODAB) are efficient nanocarriers of nucleic acids. Incorporation of a neutral lipid monoolein (MO) in excess (xMO >0.5) changes the lamellar organization of DODAB liposomes into non-lamellar inverted structures of DODAB/MO liposomes facilitating nucleic acid delivery to cells. Photoexcitation of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), a photoacid, initiates an excited state proton transfer (ESPT) reaction in its protonated form (ROH*) generating the deprotonated anionic form (RO- *). The fluorescence intensity ratio (IROH* /IRO-* ) of these two forms is governed by the ESPT dynamics, and increases with increasing MO content (xMO ) in the cationic liposomes of DODAB. Transition from lamellar organization of DODAB liposomes into non-lamellar inverted structures of DODAB/MO liposomes, due to incorporation of MO (xMO ~0.7), is manifested by a significant increase of ESPT time (τPT ) and the time constant of wobbling motion (τW ) of HPTS. Thus, the lamellar organizations of DODAB or DODAB-rich (xMO 0.2) liposomes and the non-lamellar organizations of MO-rich (xMO ~0.7) liposomes are recognized by significantly different excited state dynamics of the photoacid.
Collapse
Affiliation(s)
- Gourab Ghosh
- Dept. of Chemistry, West Bengal State University, Barasat, Kolkata, 700126, India
| | - Debanjana Singha Roy
- Dept. of Chemistry, West Bengal State University, Barasat, Kolkata, 700126, India
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, India
| | - Ria Ghosh
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Dipanjan Mukherjee
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, India
| | - Suman Biswas
- Dept. of Chemistry, West Bengal State University, Barasat, Kolkata, 700126, India
| | - Lopamudra Roy
- Department of Applied Optics and Photonics, University of Calcutta, 92, Acharya Prafulla Chandra Rd, Kolkata, 700009, India
| | - Arpita Chattopadhyay
- Department of Basic science and humanities, Techno International New Town, Rajarhat, Kolkata, 700156
| | - Ranjan Das
- Dept. of Chemistry, West Bengal State University, Barasat, Kolkata, 700126, India
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, India
| |
Collapse
|
21
|
Yang Z, Nandi R, Orieshyna A, Gershoni-Poranne R, Zhang S, Amdursky N. Light-Triggered Enhancement of Fluorescence Efficiency in Organic Cages. J Phys Chem Lett 2024; 15:136-141. [PMID: 38147826 DOI: 10.1021/acs.jpclett.3c02667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The fluorescence efficiency of excited molecules can be enhanced by many external factors. Here, we showcase a surprising phenomenon whereby light is used as a gating source to increase the fluorescence efficiency of organic cages composed of biphenyl subunits. We show that the enhancement of fluorescence is not due to structural changes or ground-state events. Cryo-fluorescence measurements and kinetic studies suggest a restriction of the phenyl-based structures in the excited state, leading to increased fluorescence, which is also supported by time-resolved measurements. Through computational calculations, we propose that the planarization of the biphenyl units within the cages contributes to emission enhancement. This phenomenon offers insights into the design of optoelectronic structures with improved fluorescence properties.
Collapse
Affiliation(s)
- Zhenyu Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200400, China
| | - Ramesh Nandi
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Anna Orieshyna
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Renana Gershoni-Poranne
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200400, China
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
22
|
Yucknovsky A, Amdursky N. Controlling pH-Sensitive Chemical Reactions Pathways with Light - a Tale of Two Photobases: an Arrhenius and a Brønsted. Chemistry 2023:e202303767. [PMID: 38084008 DOI: 10.1002/chem.202303767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 12/22/2023]
Abstract
Light-gated chemical reactions allow spatial and temporal control of chemical processes. Here, we suggest a new system for controlling pH-sensitive processes with light using two photobases of Arrhenius and Brønsted types. Only after light excitation do Arrhenius photobases undergo hydroxide ion dissociation, while Brønsted photobases capture a proton. However, none can be used alone to reversibly control pH due to the limitations arising from excessively fast or overly slow photoreaction timescales. We show here that combining the two types of photobases allows light-triggered and reversible pH control. We show an application of this method in directing the pH-dependent reaction pathways of the organic dye Alizarin Red S simply by switching between different wavelengths of light, i. e., irradiating each photobase separately. The concept of a light-controlled system shown here of a sophisticated interplay between two photobases can be integrated into various smart functional and dynamic systems.
Collapse
Affiliation(s)
- Anna Yucknovsky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | | |
Collapse
|
23
|
Pal T, Sahu K. Effect of salt addition on a triblock copolymer-zwitterionic surfactant assembly: insight from excited-state proton transfer. Phys Chem Chem Phys 2023; 25:29816-29830. [PMID: 37886857 DOI: 10.1039/d3cp03388k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Copolymer-surfactant assemblies are frequently utilized across various fields, from medicine to nanotechnology. Understanding the organization of the mixed assemblies in a saline environment will further expand their application horizons, especially under physiological conditions. Excited-state proton transfer (ESPT) can provide insight into the hydration nature and organization of the non-toxic assembly of a triblock copolymer F127 (poly-(ethylene oxide)101 (PEO101)-poly(propylene oxide)56 (PPO56)-PEO101)) and a zwitterionic sulfobetaine surfactant N-dodecyl-N,N-dimethyl-3-ammoniopropane sulfonate (SB12). Here, we present a comprehensive investigation of the compactness and hydration nature of the F127-SB12 mixed assemblies at different salt concentrations using the ESPT of 8-hydroxy pyrene-1,3,6-trisulfonate (HPTS). In the absence of salts, gradual SB12 addition to a premicellar (0.4 mM) or a post-micellar (4 mM) F127 solution leads to an anomalous modulation of the protonated and deprotonated emission bands. The emission intensity ratio (protonated/deprotonated) first increases to a maximum at a particular SB12 concentration (6 mM and 35 mM for the premicellar and post-micellar F127 assemblies, respectively), and then the ratio decreases with a further increase in the surfactant concentration. Since the intensity ratio is an indicator of the retardation of the ESPT process, the mixed micellar configuration displaying a maximum intensity ratio represents the most compact and least hydrated state. Salt addition to this configuration lowers the intensity ratio, signifying an enhanced ESPT process. Dynamic light scattering (DLS) results indicate that the size of the mixed assembly remains almost unaltered with the addition of salts. Thus, salinity enhances the ESPT process inside the F127-SB12 mixed assemblies without significantly altering the hydrodynamic radius.
Collapse
Affiliation(s)
- Tapas Pal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
24
|
Liao JZ, Liu SJ, Ke H. Excited-State Proton Transfer in a Photoacid-Based Crystalline Coordination Compound: Reversible Photochromism, Near-Infrared Photothermal Conversion, and Conductivity. Inorg Chem 2023; 62:16825-16831. [PMID: 37779255 DOI: 10.1021/acs.inorgchem.3c02271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
By harnessing the power of coordination self-assembly, crystalline materials can act as carriers for photoacids. Unlike their solution-based counterparts, these photoacids are capable of altering the properties of the crystalline material under light and can even generate proton transfer in a solid-state environment. Due to the photoinduced proton transfer and charge transfer processes within this functional material, this crystal exhibits powerful absorption spanning the visible to near-infrared spectrum upon light irradiation. This feature enables reproducible, significant chromatic variation, near-infrared photothermal conversion, and photocontrollable conductivity for this photoresponsive material. The findings suggest that the synthesis of pyranine photoacid-based crystalline materials via coordination self-assembly can not only enhance light-harvesting efficiency but also enable excited-state proton transfer processes within solid crystalline materials, thereby maintaining and even improving the properties of photoacids.
Collapse
Affiliation(s)
- Jian-Zhen Liao
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, Jiangxi, PR China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, PR China
| | - Shu-Jie Liu
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, Jiangxi, PR China
| | - Hua Ke
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, Jiangxi, PR China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, PR China
| |
Collapse
|
25
|
Andrei IM, Chen W, Baaden M, Vincent SP, Barboiu M. Proton- versus Cation-Selective Transport of Saccharide Rim-Appended Pillar[5]arene Artificial Water Channels. J Am Chem Soc 2023; 145:21904-21914. [PMID: 37771004 DOI: 10.1021/jacs.3c06335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Transport of water across cell membranes is a fundamental process for important biological functions. Herein, we focused our research on a new type of symmetrical saccharide rim-functionalized pillar[5]arene (PA-S) artificial water channels with variable pore structures. To point out the versatility of PA-S channels, we systematically varied the nature of anchoring/gate keepers d-mannoside, d-mannuronic acid, or sialic acid H-bonding groups on lateral pillar[5]arene (PA) arms, known as good membrane adhesives, to best describe the influence of the chemical structure on their transport activity. The control of hydrophobic membrane binding-hydrophilic water binding balance is an important feature influencing the channels' structuration and efficiency for a proper insertion into bilayer membranes. The glycosylated PA channels' transport performances were assessed in lipid bilayer membranes, and the channels were able to transport water at high rates (∼106-107 waters/s/channel within 1 order of magnitude as for aquaporins), serving as selective proton railways with total Na+ and K+ rejection. Molecular simulation substantiates the idea that the PAs can generate supramolecular pores, featuring hydrophilic carbohydrate gate-keepers that serve as water-sponge relays at the channel entrance, effectively absorbing and redirecting water within the channel. The present channels may be regarded as a rare biomimetic example of artificial channels presenting proton vs cation transport selectivity performances.
Collapse
Affiliation(s)
- Iuliana M Andrei
- Institut Europeen des Membranes (IEM), Adaptive Supramolecular Nanosystems Group (NSA), University of Montpellier, ENSCM-CNRS, UMR 5635, 34095 Montpellier, France
| | - Wenzhang Chen
- Department of Chemistry, Bio-Organic Chemistry Laboratory, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Marc Baaden
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Stéphane P Vincent
- Department of Chemistry, Bio-Organic Chemistry Laboratory, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Mihail Barboiu
- Institut Europeen des Membranes (IEM), Adaptive Supramolecular Nanosystems Group (NSA), University of Montpellier, ENSCM-CNRS, UMR 5635, 34095 Montpellier, France
| |
Collapse
|
26
|
Huang X, Han Y, Li J, Tang M, Qing G. Sensitive and specific detection of saccharide species based on fluorescence: update from 2016. Anal Bioanal Chem 2023:10.1007/s00216-023-04703-w. [PMID: 37119357 PMCID: PMC10148015 DOI: 10.1007/s00216-023-04703-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
Increasing evidence supports the critical role of saccharides in various pathophysiological steps of tumor progression, where they regulate tumor proliferation, invasion, hematogenic metastasis, and angiogenesis. The identification and recognition of these saccharides provide a solid foundation for the development of targeted drug preparations, which are however not fully understood due to their complex and similar structures. In order to achieve fluorescence sensing of saccharides, extensive research has been conducted to design molecular probes and nanoparticles made of different materials. This paper aims to provide in-depth discussion of three main topics that cover the current status of the carbohydrate sensing based on the fluorescence sensing mechanism, including a phenylboronic acid-based sensing platform, non-boronic acid entities, as well as an enzyme-based sensing platform. It also highlights efforts made to understand the recognition mechanisms and improve the sensing properties of these systems. Finally, we present the challenge of achieving high selectivity and sensitivity recognition of saccharides, and suggest possible future avenues for exploration.
Collapse
Affiliation(s)
- Xiaohuan Huang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, People's Republic of China
| | - Ying Han
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, People's Republic of China
| | - Junrong Li
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, People's Republic of China
| | - Mingliang Tang
- College of Life Sciences, Wuhan University, 299 Bayi Road, Wuhan, 430072, People's Republic of China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| |
Collapse
|
27
|
Dong Y, Zhai J, Zhang Z, Peng C, Zhang Y, Zhang Z. A regenerable electrochemical sensor for electro-inactive cyclovirobuxine D detection in biological samples. Analyst 2023; 148:1265-1274. [PMID: 36786730 DOI: 10.1039/d2an01859d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Based on the pKa determination of cyclovirobuxine D (CVB-D) using the method of potentiometry, we predicted the ionization state of CVB-D at physiological pH. Thus, by taking advantage of the ionization state and consequent non-covalent interactions between protonated CVB-D and deprotonated polymerized bromothymol blue (poly-BTB) under physiological conditions, we developed a simple and reusable electrochemical sensor that contains a poly-BTB/SWNT-modified electrode for electro-inactive CVB-D detection in biological fluids using poly-BTB as both the recognition unit and the electrochemical probe. Upon being immersed in the solution of CVB-D, the poly BTB-based electrode shows a current decrease due to the interaction-driven binding of CVB-D on the electrode surface. The current decrease in the electrochemical sensor toward CVB-D concentration shows a linear relationship in the dynamic ranges of 0.01-1 μM and 1-50 μM with a detection limit of 1.65 nM based on 3σ. The sensor can be easily regenerated through the removal of the binding of CVB-D from the electrode surface by highly negatively charged heparin, and it presents high repeatability with an RSD of less than 4.0% for seven measurements. In animal experiments, the electrochemical sensor was selective and sensitive for CVB-D determination in plasma and liver homogenates. The electrochemical sensor is readily accessible, robust, and cost-effective and holds good promise for more applications in biological and clinical fields associated with CVB-D using less technically demanding and simple operating procedures.
Collapse
Affiliation(s)
- Yongliang Dong
- Anhui University of Chinese Medicine, School of Pharmacy, Hefei 230012, China.
| | - Jiali Zhai
- Anhui University of Chinese Medicine, School of Pharmacy, Hefei 230012, China.
| | - Ziwei Zhang
- Wannan Medical College, School of Forensic Medicine, Wuhu 241002, China.
| | - Can Peng
- Anhui University of Chinese Medicine, School of Pharmacy, Hefei 230012, China.
| | - Yunjing Zhang
- Anhui University of Chinese Medicine, School of Pharmacy, Hefei 230012, China.
| | - Zipin Zhang
- Anhui University of Chinese Medicine, School of Pharmacy, Hefei 230012, China.
| |
Collapse
|