1
|
Guan YQ, Ma KG, Wang DC, Guo HM. Asymmetric Olefin Isomerization via Phase-Transfer-Catalyzed [1,3]-Hydrogen Transfer for Access to Axially Chiral Furan-Benzimidazoles. Org Lett 2025; 27:5094-5100. [PMID: 40343855 DOI: 10.1021/acs.orglett.5c01181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
An efficient catalytic asymmetric olefin isomerization of axially chiral methylene dihydrofuran-benzimidazoles via kinetic resolution is reported. Under mild phase-transfer catalysis, axially chiral furan-benzimidazole compounds and recovered methylene dihydrofuran-benzimidazoles were obtained in high ee. The combination of the kinetic resolution and TBD-catalyzed isomerization of recovered dihydrofuran-benzimidazoles provided access to both enantiomers of furan-benzimidazoles. Deuterium-labeling experiments reveal intramolecular [1,3]-H transfer mechanism. The utility of this method was demonstrated by scale-up synthesis and functionalization of the products.
Collapse
Affiliation(s)
- Yu-Qing Guan
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Kai-Ge Ma
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dong-Chao Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Ren Y, Lin C, Zhang H, Liu Z, Wei D, Feng J, Du D. Organocatalytic atroposelective de novo construction of monoaxially and 1,4-diaxially chiral fused uracils with potential antitumor activity. Chem Sci 2025; 16:7876-7883. [PMID: 40191121 PMCID: PMC11966538 DOI: 10.1039/d5sc00452g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Atropisomers bearing multiple stereogenic axes are of increasing relevance to materials science, pharmaceuticals, and catalysis. However, the catalytic enantioselective construction of these atropisomers in a single step remains synthetically challenging. We herein report the first NHC-organocatalytic enantioselective synthesis of a new class of monoaxially and 1,4-diaxially chiral fused uracil scaffolds. Preliminary studies on the antitumor activity of selected compounds demonstrated that this new class of axially chiral uracil derivatives may have potential applications in the discovery of new lead compounds in medicinal chemistry.
Collapse
Affiliation(s)
- Yuzhi Ren
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Chen Lin
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Han Zhang
- College of Chemistry, Zhengzhou University Zhengzhou Henan Province 450001 P. R. China
| | - Zuquan Liu
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University Zhengzhou Henan Province 450001 P. R. China
| | - Jie Feng
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Ding Du
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| |
Collapse
|
3
|
D’Astolfo P, Vilhena J, Rothenbühler S, Drechsel C, Gutiérrez-Varela O, Häner R, Decurtins S, Liu SX, Prampolini G, Pawlak R, Meyer E. On-Surface Synthesis and Cryogenic Exfoliation of Sterically Frustrated Atropisomers. ACS NANO 2025; 19:13805-13816. [PMID: 40168186 PMCID: PMC12005049 DOI: 10.1021/acsnano.4c16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/03/2025]
Abstract
On-surface synthesis provides exceptional control over nanostructure and material composition, enabling the creation of molecular compounds that are difficult or impossible to obtain with other synthesis methods. In this work, we demonstrate the possibility of synthesizing atropisomeric molecules made of chains of polyaromatic hydrocarbon units via on-surface synthesis. Scanning probe microscopy reveals that molecules adsorbed on Au(111) surfaces adopt a planar structure, with adjacent monomeric units aligning either in parallel or antiparallel configurations, influencing the alignment of the molecule on the surface. Cryo-force spectroscopy peeling experiments show that metastable conformers can be mechanically stabilized during the lifting-redeposition process of the polymer from the surface. In this process, periodic drops in frequency shift are observed, corresponding to monomer detachment-readsorption. Interestingly, this periodicity is independent of the parallel/antiparallel configuration but is counterintuitively smaller than the monomer size. Molecular dynamics simulations relate this effective reduction in unit length to a tethering effect between the chain and the surface. This, in turn, allowed us to test and validate Silva's analytical phenomenological power law model for peeling. Our findings not only provide a method for studying the elusive class 1 atropisomeric molecules but also offer deeper insight into the peeling phenomenon at the nanoscale.
Collapse
Affiliation(s)
- Philipp D’Astolfo
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - J.G. Vilhena
- CSIC, Instituto
de Ciencia de Materiales de Madrid (ICMM), 28049 Madrid, Spain
| | - Simon Rothenbühler
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, W. Inäbnit
Laboratory for Molecular Quantum Materials, University of Bern, Freiestrasse 3, CH 3012 Bern, Switzerland
| | - Carl Drechsel
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | | | - Robert Häner
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, W. Inäbnit
Laboratory for Molecular Quantum Materials, University of Bern, Freiestrasse 3, CH 3012 Bern, Switzerland
| | - Silvio Decurtins
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, W. Inäbnit
Laboratory for Molecular Quantum Materials, University of Bern, Freiestrasse 3, CH 3012 Bern, Switzerland
| | - Shi-Xia Liu
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, W. Inäbnit
Laboratory for Molecular Quantum Materials, University of Bern, Freiestrasse 3, CH 3012 Bern, Switzerland
| | - Giacomo Prampolini
- CNR−Consiglio
Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo
Metallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Rémy Pawlak
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Ernst Meyer
- Department
of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Hu Y, Zheng J, Chen YJ, Pu WY, Xu YJ, Dong L. Stereoselective synthesis of a KRAS G12C inhibitor with a quinoline-piperazine scaffold. Org Biomol Chem 2025; 23:3194-3198. [PMID: 40052217 DOI: 10.1039/d4ob02104e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
We developed a novel synthetic route for the KRASG12C inhibitor, focusing on the efficient construction of its central quinoline scaffold. The method offers several advantages: eliminates the formation of regioselective by-products and avoids the use of high temperatures and nitric acid. The last step of the overall route enables gentle hydrolysis of phenyl esters with methanol and potassium carbonate, which greatly reduces the occurrence of side reactions. In addition, the stereoisomers were successfully separated by silica gel column chromatography.
Collapse
Affiliation(s)
- Ying Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China.
| | - Jing Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yin-Jun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Wei-Yi Pu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yan-Jun Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Ge L, Li X, Zhu G, Niu B, Chen Q, Zhong D, Sun X. Recent developments and applications of solid membrane in chiral separation. J Chromatogr A 2025; 1743:465652. [PMID: 39827785 DOI: 10.1016/j.chroma.2025.465652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Chirality is a fundamental property in nature, and chiral molecules are closely related to human health and the origin of life. Therefore, the exploration and preparation of optically active compounds of paramount importance. Membrane separation is a large-scale and continuous separation technique that has been developing quickly in recent years. It has many potential applications, particularly in chiral membrane separation technology, which is currently a hotspot for study. Depending on the types of membranes, chiral membranes can be divided into two categories: chiral solid membranes and chiral liquid membranes. Solid membranes outperform the others in terms of better mechanical performance and separation efficiency. This review presents in-depth summaries of chiral solid membranes made of different materials, and their applications in drug separation. It also providing insights into the potential for the future development of chiral solid membranes.
Collapse
Affiliation(s)
- Li Ge
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xinyu Li
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Gege Zhu
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China
| | - Bing Niu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Dan Zhong
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xiaodong Sun
- Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Zhang X, Jia F, Guo X, Liu G. Pd-Catalyzed C(sp 2)-C(sp 3) Suzuki Coupling and Synthesis of Lumacaftor Using Designed Monophosphine Ligands. Org Lett 2024; 26:10419-10423. [PMID: 39382250 DOI: 10.1021/acs.orglett.4c03203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Novel monophosphine ligands L1 and L2 with a C-P ring were designed and synthesized for the efficient Pd-catalyzed C(sp2)-C(sp3) Suzuki coupling. With 0.5 mol % Pd2dba3 and 2 mol % L1, aryl halides coupled with alkylboronic acids to give the products in up to 99% yield. The aryl thianthrene salt was further applied for late-stage methylation in 97% yield. The active pharmaceutical ingredient lumacaftor was synthesized by aryl-alkyl and aryl-aryl Suzuki coupling reactions using L1 and L2.
Collapse
Affiliation(s)
- Xiangdong Zhang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University (South Campus), 24 Zhaojun Road, Hohhot 010030, China
| | - Fushun Jia
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University (South Campus), 24 Zhaojun Road, Hohhot 010030, China
| | - Xu Guo
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University (South Campus), 24 Zhaojun Road, Hohhot 010030, China
| | - Guodu Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University (South Campus), 24 Zhaojun Road, Hohhot 010030, China
- Inner Mongolia Academy of Science and Technology, 2 Shandan Street, Hohhot 010010, China
| |
Collapse
|
7
|
Jia L, Li B, Wang X, Zhao J, Qu J, Zhou Y. Construction of axially chiral 2-arylpyrroles using catalytic asymmetric Suzuki-Miyaura cross-coupling: an efficient approach to esaxerenone. Org Biomol Chem 2024; 22:8749-8754. [PMID: 39177493 DOI: 10.1039/d4ob01174k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A general and efficient method has been developed to access axially chiral 2-arylpyrroles using catalytic asymmetric Suzuki-Miyaura cross-coupling. A wide range of axially chiral arylpyrroles were obtained in high yields with good to excellent enantioselectivities. The key to success is the use of a combined catalytic system involving a palladium catalyst and chiral ferrocene diphosphine ligand for achieving effective enantiocontrol. More importantly, this axially chiral CF3-substituted 2-arylpyrrole serves as a key intermediate in the preparation of the anti-hypertensive and diabetic nephropathy drug esaxerenone. It was directly asymmetrically synthesized with high enantioselectivity (92% ee). Thus, a new strategy is provided for the catalytic asymmetric synthesis of esaxerenone.
Collapse
Affiliation(s)
- Ling Jia
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Bing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Xi Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
8
|
Li T, Zhang Y, Du C, Yang D, Song MP, Niu JL. Simultaneous construction of inherent and axial chirality by cobalt-catalyzed enantioselective C-H activation of calix[4]arenes. Nat Commun 2024; 15:7673. [PMID: 39242562 PMCID: PMC11379863 DOI: 10.1038/s41467-024-52133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
The simultaneous construction of multiple stereogenic elements in a single step is highly appealing and desirable in the field of asymmetric synthesis. Furthermore, the catalytic enantioselective synthesis of inherently chiral calix[n]arenes with high enantiopurity has long been a challenging endeavor. Herein, we report an enantioselective cobalt-catalyzed C-H activation/annulation for the efficient construction of inherently chiral calix[4]arenes bearing multiple C-N axially chiral element. By employing the benzamide tethered calix[4]arene as the substrate, the C-H annulation with alkynes can be successfully accomplished, leading to the generation of multiple stereogenic elements. A wide range of calix[4]arenes and alkynes are found to be well compatible, and exhibit good yields, high enantioselectivity and excellent diastereoselectivity. Notably, the gram-scale reaction, catalytic application, synthetic transformations, and chiral recognition further showcase the potential applications of this protocol.
Collapse
Affiliation(s)
- Tong Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yanbo Zhang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Cong Du
- School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, China
| | - Dandan Yang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China.
| | - Mao-Ping Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Jun-Long Niu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Wang TT, Cao J, Li X. Synthesis of N-N Axially Chiral Pyrrolyl-oxoisoindolin via Isothiourea-Catalyzed Acylative Dynamic Kinetic Resolution. Org Lett 2024; 26:6179-6184. [PMID: 39023300 DOI: 10.1021/acs.orglett.4c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The development of methods for the asymmetric synthesis of N-N axial chirality remains elusive and challenging. Here, we disclose a method for the construction of N-N axially chiral pyrrolyl-oxoisoindolins along with central chirality via the isothiourea (ITU)-catalyzed acylative dynamic kinetic resolution (DKR). Axial chirality was introduced into the acylative DKR of hemiaminals for the first time. This protocol features mild conditions with excellent yields and enantioselectivities.
Collapse
Affiliation(s)
- Tong-Tong Wang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun Cao
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Li
- College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
10
|
Sun Y, Yang T, Wang Q, Shi L, Song MP, Niu JL. Atroposelective N-N Axes Synthesis via Electrochemical Cobalt Catalysis. Org Lett 2024; 26:5063-5068. [PMID: 38864356 DOI: 10.1021/acs.orglett.4c01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Here, we disclosed an unprecedented cobalt electrocatalyzed atroposelective C-H activation and annulation for the efficient construction of diversely functionalized N-N axes in an undivided cell. A broad range of allene substrates and benzamides bearing different functionalities are compatible with generating axially chiral products with good yields and excellent enantioselectivities (up to 92% yield and 99% ee). A series of synthetic applications and control experiments were also performed, which further expanded the practicality of this strategy.
Collapse
Affiliation(s)
- Yingjie Sun
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Taixin Yang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Qiuling Wang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Linlin Shi
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Mao-Ping Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Long Niu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Liu Y, Yuan L, Dai L, Zhu Q, Zhong G, Zeng X. Carbene-Catalyzed Atroposelective Construction of Chiral Diaryl Ethers. J Org Chem 2024. [PMID: 38738853 DOI: 10.1021/acs.joc.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Atropoisomeric chemotypes of diaryl ethers-related scaffolds are prevalent in naturally active compounds. Nevertheless, there remains considerable research to be carried out on the catalytic asymmetric synthesis of these axially chiral molecules. In this instance, we disclose an N-heterocyclic carbene (NHC)-catalyzed synthesis of axially chiral diaryl ethers via atroposelective esterification of dialdehyde-containing diaryl ethers. NHC desymmetrization produces axially chiral diaryl ether atropisomers with high yields and enantioselectivities in moderate circumstances. Chiral diaryl ether compounds may be precursors for highly functionalized diaryl ethers with bioactivity and chiral ligands for asymmetric catalysis.
Collapse
Affiliation(s)
- Yuheng Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Lutong Yuan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Linlong Dai
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo 315200, Zhejiang, China
| | - Qiaohong Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Guofu Zhong
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo 315200, Zhejiang, China
| | - Xiaofei Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
12
|
Pan ML, Hsu CH, Lin YD, Chen WS, Chen BH, Lu CH, Yang SD, Cheng MJ, Chou PT, Wu YT. A New Series of Sandwich-Type 5,5'-Biterphenylenes: Synthetic Challenge, Structural Uniqueness and Photodynamics. Chemistry 2024; 30:e202303523. [PMID: 37997021 DOI: 10.1002/chem.202303523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
A new series of biaryls, bi-linear-terphenylenes (BLTPs), were prepared using the tert-butyllithium-mediated cyclization as the key synthetic step. The three-dimensional structures of the studied compounds were verified using X-ray crystallography and DFT calculations. Tetraaryl(ethynyl)-substituted BLTPs are highly crowded molecules, and the internal rotation around the central C-C bond is restricted due to a high barrier (>50 kcal/mol). These structures contain several aryl/terphenylenyl/aryl sandwiches, where the through-space π-π (TSPP) interactions are strongly reflected in the shielding of 1 H NMR chemical shifts, reduction of oxidation potentials, increasing aromaticity of the central six-membered ring and decreasing antiaromaticity of the four-membered rings in a terphenylenyl moiety based on NICS(0) and iso-chemical shielding surfaces. Despite the restricted C-C bond associated intramolecular TSPP interactions for BLTPs in the ground state, to our surprise, the electronic coupling between two linear terphenylenes (LTPs) in BLTPs in the excited state is weak, so that the excited-state behavior is dominated by the corresponding monomeric LTPs. In other words, all BLTPs undergo ultrafast relaxation dynamics via strong exciton-vibration coupling, acting as a blue-light absorber with essentially no emission.
Collapse
Affiliation(s)
- Ming-Lun Pan
- Department of Chemistry, National Cheng Kung University, 70101, Tainan, Taiwan
| | - Chao-Hsien Hsu
- Department of Chemistry, National Taiwan University, 10617, Taipei, Taiwan
| | - Yan-Ding Lin
- Department of Chemistry, National Taiwan University, 10617, Taipei, Taiwan
| | - Wei-Sen Chen
- Department of Chemistry, National Cheng Kung University, 70101, Tainan, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Chih-Hsuan Lu
- Institute of Photonics Technologies, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, 70101, Tainan, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, 10617, Taipei, Taiwan
| | - Yao-Ting Wu
- Department of Chemistry, National Cheng Kung University, 70101, Tainan, Taiwan
| |
Collapse
|
13
|
Wang JY, Gao CH, Ma C, Wu XY, Ni SF, Tan W, Shi F. Design and Catalytic Asymmetric Synthesis of Furan-Indole Compounds Bearing both Axial and Central Chirality. Angew Chem Int Ed Engl 2024; 63:e202316454. [PMID: 38155472 DOI: 10.1002/anie.202316454] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
In the chemistry community, catalytic asymmetric synthesis of furan-based compounds bearing both axial and central chirality has proven to be a significant but challenging issue owing to the importance and difficulty in constructing such frameworks. In this work, we have realized the first catalytic asymmetric synthesis of five-five-membered furan-based compounds bearing both axial and central chirality via organocatalytic asymmetric (2+4) annulation of achiral furan-indoles with 2,3-indolyldimethanols with uncommon regioselectivity. By this strategy, furan-indole compounds bearing both axial and central chirality were synthesized in high yields with excellent regio-, diastereo-, and enantioselectivities. Moreover, theoretical calculations were conducted to provide an in-depth understanding of the reaction pathway, activation mode, and the origin of the selectivity.
Collapse
Affiliation(s)
- Jing-Yi Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cong-Hui Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cheng Ma
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Xin-Yue Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
14
|
Wang HY, Li ZC, Zhang CL, Ye S. N-Heterocyclic Carbene-Catalyzed Atroposelective Synthesis of Axially Chiral α-Carbolinones via Heterocycle Formation. J Org Chem 2023; 88:11913-11923. [PMID: 37498087 DOI: 10.1021/acs.joc.3c01194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
An NHC-catalyzed atroposelective synthesis of axially chiral α-carbolinones from α,β-unsaturated iminoindole derivatives and α-chloroaldehydes was developed. The reaction proceeds through a cascade process including [4 + 2] annulation and then oxidative dehydrogenation with concomitant central-to-axial chirality conversion under mild conditions. The developed method opens a new avenue to efficiently access axially chiral α-carbolinones in moderate to good enantioselectivities.
Collapse
Affiliation(s)
- Hai-Ying Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Song J, Kim A, Hong I, Kim S, Byun WS, Lee HS, Kim HS, Lee SK, Kwon Y. Synthesis and biological evaluation of atropisomeric tetrahydroisoquinolines overcoming docetaxel resistance in triple-negative human breast cancer cells. Bioorg Chem 2023; 137:106573. [PMID: 37229969 DOI: 10.1016/j.bioorg.2023.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Herein, atropisomeric 8-aryltetrahydroisoquinolines have been synthesized and biologically evaluated. Based on our structure-activity relationship study, a highly bioactive racemic compound has been produced, and it exhibited high antiproliferative activities against various cancer cell lines, including docetaxel-resistant breast cancer cell lines. Each enantiomer can be synthesized in an enantioselective manner by employing the chiral phosphoric acid-catalyzed atroposelective Pictet-Spengler cyclization. An axially (R)-configured enantiomer showed a higher biological activity compared with the axially (S)-configured enantiomer. Further biological studies suggested that the (R)-enantiomer overcomes docetaxel resistance via the downregulation of signal transducer and activator of transcription 3 activation and consequently induces cellular apoptosis in docetaxel-resistant triple-negative breast cancer cell lines.
Collapse
Affiliation(s)
- Jayoung Song
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ahreum Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Intaek Hong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangji Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
16
|
Chen ZH, Li TZ, Wang NY, Ma XF, Ni SF, Zhang YC, Shi F. Organocatalytic Enantioselective Synthesis of Axially Chiral N,N'-Bisindoles. Angew Chem Int Ed Engl 2023; 62:e202300419. [PMID: 36749711 DOI: 10.1002/anie.202300419] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
This study establishes the first organocatalytic enantioselective synthesis of axially chiral N,N'-bisindoles via chiral phosphoric acid-catalyzed formal (3+2) cycloadditions of indole-based enaminones as novel platform molecules with 2,3-diketoesters, where de novo indole-ring formation is involved. Using this new strategy, various axially chiral N,N'-bisindoles were synthesized in good yields and with excellent enantioselectivities (up to 87 % yield and 96 % ee). More importantly, this class of axially chiral N,N'-bisindoles exhibited some degree of cytotoxicity toward cancer cells and was derived into axially chiral phosphine ligands with high catalytic activity. This study provides a new strategy for enantioselective synthesis of axially chiral N,N'-bisindoles using asymmetric organocatalysis and is the first to realize the applications of such scaffolds in medicinal chemistry and asymmetric catalysis.
Collapse
Affiliation(s)
- Zhi-Han Chen
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tian-Zhen Li
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.,School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Ning-Yi Wang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiao-Fang Ma
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Yu-Chen Zhang
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- Research Center of Chiral Functional Heterocycles, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.,School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
17
|
Dai L, Liu Y, Xu Q, Wang M, Zhu Q, Yu P, Zhong G, Zeng X. A Dynamic Kinetic Resolution Approach to Axially Chiral Diaryl Ethers by Catalytic Atroposelective Transfer Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202216534. [PMID: 36536515 DOI: 10.1002/anie.202216534] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Diaryl ethers are widespread in biologically active compounds, ligands and catalysts. It is known that the diaryl ether skeleton may exhibit atropisomerism when both aryl rings are unsymmetrically substituted with bulky groups. Despite recent advances, only very few catalytic asymmetric methods have been developed to construct such axially chiral compounds. We describe herein a dynamic kinetic resolution approach to axially chiral diaryl ethers via a Brønsted acid catalyzed atroposelective transfer hydrogenation (ATH) reaction of dicarbaldehydes with anilines. The desired diaryl ethers could be obtained in moderate to good chemical yields (up to 79 %) and high enantioselectivities (up to 95 % ee) under standard reaction conditions. Such structural motifs are interesting precursors for further transformations and may have potential applications in the synthesis of chiral ligands or catalysts.
Collapse
Affiliation(s)
- Linlong Dai
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China.,Department of Chemistry, Eastern Institute for Advanced Study, Ningbo, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Yuheng Liu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Qing Xu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Meifang Wang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Qiaohong Zhu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Peiyuan Yu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Guofu Zhong
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Xiaofei Zeng
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
18
|
Bai G, Yang Y, Wang X, Wu J, Wang H, Ye X, Bao X. DBU Promoted Polysubstituted Arene Formation via a Michael Addition/Cyclization/Elimination Cascade Reaction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238167. [PMID: 36500260 PMCID: PMC9738611 DOI: 10.3390/molecules27238167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
The straightforward construction of polysubstituted arenes is essential in both synthetic chemistry and medicinal chemistry. Herein, we reported a DBU promoted Michael addition/cyclization/elimination cascade reaction between vinylogous malononitrile derivatives and chlorinated nitrostyrenes for the synthesis of polysubstituted arenes. The method features mild reaction conditions, wide substrate scope and high yield. Interestingly, preliminary study of the enantioselective version of this cascade was conducted to give chiral biaryl atropisomers with up to 40% ee through center-to-axial chirality transfer strategy.
Collapse
Affiliation(s)
- Guishun Bai
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yang Yang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingyue Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiamin Wu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang International Sci-Tech Cooperation Base for the Exploitation and Utilization of Nature Product, Hangzhou 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- Correspondence: (H.W.); (X.Y.); (X.B.)
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang International Sci-Tech Cooperation Base for the Exploitation and Utilization of Nature Product, Hangzhou 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- Correspondence: (H.W.); (X.Y.); (X.B.)
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang International Sci-Tech Cooperation Base for the Exploitation and Utilization of Nature Product, Hangzhou 310014, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- Correspondence: (H.W.); (X.Y.); (X.B.)
| |
Collapse
|