1
|
Huang J, Ballester P. A Bimolecular Diels-Alder Reaction Mediated by Inclusion in a Polar Bis-calix[4]pyrrole Octa-Imine Cage. J Am Chem Soc 2025; 147:13962-13972. [PMID: 40198743 DOI: 10.1021/jacs.5c03361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
We describe using a dynamically self-assembled octa-imine cage as a molecular flask to accelerate a bimolecular Diels-Alder reaction. We investigate the cage's binding properties using 1H NMR spectroscopic titrations, ITC experiments, and X-ray crystallography. We detect and characterize the formation of the ternary complex (Michaelis) in solution. A detailed kinetic analysis of the reaction data supports that the cage's acceleration is provided by including the two reactants, resulting in an effective molarity (EM) of ∼40 M. Exo-selectivity and shift of the reaction's chemical equilibrium are also encountered in the cage's confined space. Our results mimic enzymes' ability to bind two substrates in a polar cavity, using directional interactions, and accelerate their stereoselective reaction, with the potential for cavity engineering to enable other reactions.
Collapse
Affiliation(s)
- Jiaming Huang
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans 16, Tarragona 43007, Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Avgda. Països Catalans 16, Tarragona 43007, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
2
|
Zhou H, Pang XY, Xie X, Phillips DL, Gong HY, Sessler JL, Jiang W. Amide-Based Naphthotubes as Biomimetic Receptors for Acetal Protection and Other Substrates in Water via Noncovalent Interactions. J Am Chem Soc 2024; 146:34842-34851. [PMID: 39637361 DOI: 10.1021/jacs.4c13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Active compound protection can allow inherently unstable molecules to be stabilized and latent reactivity to be masked. Synthetic receptors are attractive in terms of providing such protection. Nevertheless, preserving the activity and functionality of organic molecules in water poses a challenge. Here, we show that biomimetic receptors, specifically amide naphthotubes and an amide anthryltube, allow the efficient preservation of functional organic molecules in water. In particular, the amide naphthotubes were found to extend the half-lives of acetal-containing substrates ("acetals") against acid-catalyzed hydrolysis by up to 3000 times. This kinetic protection effect was ascribed to hydrogen bond-based recognition of the organic guests. A substrate dependence was seen that was further exploited to achieve the kinetic resolution of acetal isomers. To the best of our knowledge, the present study constitutes one of the most effective acetal protection strategies reported to date. The recognition-based protection approach reported here appears generalizable as evidenced by the protection of eight different substrates against six distinct chemical reactions. Based on the present findings, we propose that it is possible to design receptors that provide for the protection of specific substrates under a variety of reaction conditions including those carried out in water.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xin-Yu Pang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Wei Jiang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
3
|
Campbell JW, Cotnam MJ, Annan FR, Hilborn JW, Thompson A. Synthesis of chiral systems featuring the pyrrole unit: a review. Chem Commun (Camb) 2024; 60:11385-11414. [PMID: 39292192 DOI: 10.1039/d4cc03601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Synthetic strategies towards pyrroles within chiral frameworks are summarised, focussing on reports published 2010-2023. The synthesis of pyrroles featuring substituents bearing chiral centres are summarised, as are those whereby pyrroles are located within axially chiral systems courtesy of restricted bond rotation.
Collapse
Affiliation(s)
- Jacob W Campbell
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Michael J Cotnam
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Francisca R Annan
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - James W Hilborn
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Alison Thompson
- Department of Chemistry, Dalhousie University, P. O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
4
|
Mandal S, Sarkar P, Ghosh P. A macrocycle-based new organometallic nano-vessel towards sustainable C2-selective arylation of free indole in water. Org Biomol Chem 2024; 22:7438-7447. [PMID: 39188153 DOI: 10.1039/d4ob00886c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
C2-selectivity of unsubstituted indole over facile C3-substitution is attempted by utilizing the π-cavity of a nano-vessel made up of a palladium complex of an amino-ether heteroditopic macrocycle. Functional group tolerance (cyano, nitro, halo, ester, etc.), a broad substrate scope and outstanding selectivities with excellent yields (80-93%) of the desired products have been achieved in 12 h by maintaining all sustainable conditions like aqueous medium, recyclable catalyst, one-pot reaction, no external additives, mild temperature, etc. Interestingly, we observed that electron-deficient indole derivatives underwent the present transformation with marginally superior reactivity in comparison with electron-rich indole derivatives. This approach establishes a green pathway for selective C-C coupling employing a π-cavitand as a nano-reactor.
Collapse
Affiliation(s)
- Subham Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India.
| | - Piyali Sarkar
- Institute of Health Sciences, Presidency University, Second Campus, Plot No. DG/02/02, Premises No. 14-0358, Action Area-ID, New Town, Kolkata 700156, West Bengal, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
5
|
Lu Y, Wang SM, He SS, Huang Q, Zhao CD, Yu S, Jiang W, Yao H, Wang LL, Yang LP. An endo-functionalized molecular cage for selective potentiometric determination of creatinine. Chem Sci 2024:d4sc04950k. [PMID: 39184288 PMCID: PMC11342131 DOI: 10.1039/d4sc04950k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Potentiometric ion-selective electrodes (ISEs), which rely on selective and lipophilic ionophores, are commonly employed in clinical diagnostics. However, there are very limited specific ionophores for the detection of creatinine, a critical biomarker for renal function assessment. In the present research, we designed and synthesized an endo-functionalized cage, which is able to selectively bind the creatininium cation (K a = 8.6 × 105 M-1) through the formation of multiple C-H⋯O and N-H⋯N hydrogen bonds and cation⋯π interactions. ISEs prepared with this host show a Nernstian response to creatinine and exhibit excellent selectivity and a low detection limit of 0.95 μM. In addition, the creatinine levels in urine or plasma samples determined by our sensor are consistent with those analyzed using enzymatic assay on a Cobas c702. The method is simple, fast and accurate, and amenable to clinical detection of creatinine levels.
Collapse
Affiliation(s)
- Yu Lu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Song-Meng Wang
- Department of Chemistry, Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Sui-Sui He
- School of Pharmaceutical Science, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Qicheng Huang
- Department of Chemistry, Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Cheng-Da Zhao
- School of Pharmaceutical Science, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
- The Affiliated Nanhua Hospital, University of South China Hengyang Hunan 421001 China
| | - Shan Yu
- The Affiliated Nanhua Hospital, University of South China Hengyang Hunan 421001 China
| | - Wei Jiang
- Department of Chemistry, Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Huan Yao
- School of Pharmaceutical Science, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Li-Li Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| | - Liu-Pan Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China Hengyang Hunan 421001 China
| |
Collapse
|
6
|
Bai S, Zhang LW, Wei ZH, Wang F, Zhu QW, Han YF. Calix[2]azolium[2]benzimidazolone hosts for selective binding of neutral substrates in water. Nat Commun 2024; 15:6616. [PMID: 39103340 DOI: 10.1038/s41467-024-50980-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
The separation and purification of chemical raw materials, particularly neutral compounds with similar physical and chemical properties, represents an ongoing challenge. In this study, we introduce a class of water-soluble macrocycle compound, calix[2]azolium[2]benzimidazolone (H), comprising two azolium and two benzimidazolone subunits. The heterocycle subunits form a hydrophobic binding pocket that enables H1 to encapsulate a series of neutral guests in water with 1:1 or 2:1 stoichiometry, including aldehydes, ketones, and nitrile compounds. The host-guest complexation in the solid state was further confirmed through X-ray crystallography. Remarkably, H1 was shown to be a nonporous adaptive crystal material to separate valeraldehyde from the mixture of valeraldehyde/2-methylbutanal/pentanol with high selectivity and recyclability in the solid states. This work not only demonstrates that azolium-based macrocycles are promising candidates for the encapsulation of organic molecules but also shows the potential application in separation science.
Collapse
Affiliation(s)
- Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Lu-Wen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Zi-Hang Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Fang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Qing-Wen Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| |
Collapse
|
7
|
Kihara K, Kobayashi T, Xu W, Kumagai N. In2Q2: A New Entry of 16-Membered Tetraazamacrocycle Concatenating Indole and Quinoline Units. Chemistry 2024; 30:e202304176. [PMID: 38407941 DOI: 10.1002/chem.202304176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
A new family of 16-membered macrocycles comprising two indole (In) and two quinoline (Q) units, coined In2Q2, was synthesized. Each unit is diagonally located and concatenated in a head-to-tail fashion, furnishing a non-flat saddle-shaped architecture with C2 symmetry. The synthetic protocol utilizing macrocyclic diamide as a pivotal precursor allowed us to access a series of In2Q2 derivatives bearing various substituents on the periphery. The In2Q2 derivatives and their Zn2+ complexes were emissive in both solution phase and solid state. While the entire architecture of In2Q2 is similar to that of quinoline tetramer TEtraQuinoline, a couple of contrasting physicochemical properties were revealed.
Collapse
Affiliation(s)
- Kazuki Kihara
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Toi Kobayashi
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Wei Xu
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Naoya Kumagai
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
- Institute of Microbial Chemistry, Tokyo, 141-0021, Japan
| |
Collapse
|
8
|
Ohtani S, Nakaguchi K, Kato K, Ogoshi T. Solid-State Emissive Pillar[6]arene Derivative Having Alternate Methylene and Nitrogen Bridges. Chem Asian J 2024; 19:e202400106. [PMID: 38380963 DOI: 10.1002/asia.202400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/22/2024]
Abstract
Macrocyclic arenes show conformational adaptability, which allows host-guest complexations with the size-matched guest molecules. However, their emission properties are often poor in the solid states due to the self-absorption. Herein, we newly synthesized pillar[6]arene derivatives having alternate methylene and nitrogen bridging structures. Solvatochromic study reveals that the nitrogen-embedding into the cyclic structures can strengthen the intramolecular charge transfer (CT) nature compared to that of the linear nitrogen-bridged precursor. Owing to the large Stokes shift in the solid state, one of the nitrogen-embedded pillar[6]arenes shows high absolute photoluminescence quantum yield (ΦPL=0.36). Furthermore, it displays a turn-off sensing ability toward nitrobenzene (NB) vapor; a fluorescence quenching is observed when exposed to the NB vapor. From the structural analysis before and after the exposure of NB vapor, the amorphous nitrogen-embedded pillar[6]arene efficiently co-crystallize with NB and formed non-emissive intermolecular CT complexes with NB.
Collapse
Affiliation(s)
- Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazeto Nakaguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
9
|
Cao W, Wang XB. Organic Molecules Mimic Alkali Metals Enabling Spontaneous Harpoon Reactions with Halogens. Chemistry 2024; 30:e202400038. [PMID: 38287792 DOI: 10.1002/chem.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 01/31/2024]
Abstract
The harpoon mechanism has been a milestone in molecular reaction dynamics. Until now, the entity from which electron harpooning occurs has been either alkali metal atoms or non-metallic analogs in their excited states. In this work, we demonstrate that a common organic molecule, octamethylcalix[4] pyrrole (omC4P), behaves just like alkali metal atoms, enabling the formation of charge-separated ionic bonding complexes with halogens omC4P+ ⋅ X- (X=F-I, SCN) via the harpoon mechanism. Their electronic structures and chemical bonding were determined by cryogenic photoelectron spectroscopy of the corresponding anions and confirmed by theoretical analyses. The omC4P+ ⋅ X- could be visualized to form from the reactants omC4P+X via electron harpooning from omC4P to X at a distance defined by the energy difference between the ionization potential of omC4P and electron affinity of X.
Collapse
Affiliation(s)
- Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, MS J7-10, Richland, WA, 99352, USA
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, MS J7-10, Richland, WA, 99352, USA
| |
Collapse
|
10
|
Ohtani S, Akine S, Kato K, Fa S, Shi TH, Ogoshi T. Silapillar[ n]arenes: Their Enhanced Electronic Conjugation and Conformational Versatility. J Am Chem Soc 2024; 146:4695-4703. [PMID: 38324921 DOI: 10.1021/jacs.3c12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
During recent decades, methylene-bridged macrocyclic arenes have been widely used in supramolecular chemistry. However, their π-conjugations are very weak, as the methylene bridges disrupt the electronic communication between π orbitals of the aromatic units. Herein, we successfully synthesized a series of silapillar[n]arenes (n = 4, 6, and 8) using silylene bridging. These showed enhanced electronic conjugation compared with the parent pillar[n]arenes because of σ*-π* conjugation between σ* (Si-C) orbitals and π* orbitals of the benzenes. Owing to the longer Si-C bond compared with the C-C bond, silylene-bridging provides additional structural flexibility into the pillar[n]arene scaffolds; a strained silapillar[4]arene was formed, which is unavailable in the parent pillar[n]arenes because of the steric requirements. Furthermore, silapillar[n]arenes displayed interesting size-dependent structural and optical properties.
Collapse
Affiliation(s)
- Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
11
|
Giri M, Dash Y, Guchhait T. Does Larger Cavity-Size Really Help Bigger Anions to Bind? A Scrutiny on Core-Expanded Calix[4]pyrroles and Their Properties. Chempluschem 2024; 89:e202300427. [PMID: 37830245 DOI: 10.1002/cplu.202300427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
Calix[4]pyrroles are an important class of oligopyrrolic macrocycles and have found applications in many diverse fields including anion recognition. To modulate the properties of the calix[4]pyrrole, several structural modifications are realized. The core-expansion has attracted extra attention as it provides larger cavity-size compared to parent calix[4]pyrrole(s). This review highlights the synthetic development of various core-expanded calix[4]pyrroles and their applications in anion-binding properties. Emphasis is given to the changes in the binding properties observed with expanded versions of calix[4]pyrrole(s) in both solution and the solid states. The expanded versions of calix[4]pyrrole do not always show higher binding affinities for larger anions as anticipated. Rather, they display reduced affinities with the anions. The truncated form or asymmetric nature of the expanded versions of calix[4]pyrrole does not probably allow to access all the available binding sites for the anions and hence reduced binding affinities are observed. The receptors which contain a greater number of binding sites and are somehow rigid or preorganized apparently show enhanced binding affinities for anions. The relative binding constants for halide series indicate that the enlarged molecules are more beneficial for largest iodide among others. However, most of the receptors show selectivity towards smallest fluoride over other anions studied.
Collapse
Affiliation(s)
- Monalisa Giri
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha 752054, India
| | - Yashaswini Dash
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha 752054, India
| | - Tapas Guchhait
- Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha 752054, India
| |
Collapse
|
12
|
Wang R, Li WB, Deng JY, Han H, Chen FY, Li DY, Jing LB, Song Z, Fu R, Guo DS, Cai K. Adaptive and Ultrahigh-Affinity Recognition in Water by Sulfated Conjugated Corral[5]arene. Angew Chem Int Ed Engl 2023:e202317402. [PMID: 38078790 DOI: 10.1002/anie.202317402] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 12/29/2023]
Abstract
The pursuit of synthetic receptors with high binding affinities has long been a central focus in supramolecular chemistry, driven by their significant practical relevance in various fields. Despite the numerous synthetic receptors that have been developed, most exhibit binding affinities in the micromolar range or lower. Only a few exceptional receptors achieve binding affinities exceeding 109 M-1 , and their substrate scopes remain rather limited. In this context, we introduce SC[5]A, a conjugated corral-shaped macrocycle functionalized with ten sulfate groups. Owing to its deep one-dimensional confined hydrophobic cavity and multiple sulfate groups, SC[5]A displays an extraordinarily high binding strength of up to 1011 M-1 towards several size-matched, rod-shaped organic dications in water. Besides, its conformation exhibits good adaptability, allowing it to encapsulate a wide range of other guests with diverse molecular sizes, shapes, and functionalities, exhibiting relatively strong affinities (Ka =106 -108 M-1 ). Additionally, we've explored the preliminary application of SC[5]A in alleviating blood coagulation induced by hexadimethrine bromide in vitro and in vivo. Therefore, the combination of ultrahigh binding affinities (towards complementary guests) and adaptive recognition capability (towards a wide range of functional guests) of SC[5]A positions it as exceptionally valuable for numerous practical applications.
Collapse
Affiliation(s)
- Ruiguo Wang
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Wen-Bo Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Jia-Ying Deng
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Han Han
- College of Chemistry, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong SAR, China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Dai-Yuan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Li-Bo Jing
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Zihang Song
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Rong Fu
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, 300071, Tianjin, China
| | - Kang Cai
- College of Chemistry, Nankai University, 94 Weijin Road, 300071, Tianjin, China
| |
Collapse
|
13
|
Tobajas-Curiel G, Sun Q, Sanders JKM, Ballester P, Hunter CA. Aromatic interactions with heterocycles in water. Chem Sci 2023; 14:11131-11140. [PMID: 37860651 PMCID: PMC10583712 DOI: 10.1039/d3sc03824f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
Conformationally well-defined supramolecular complexes that can be studied in different solvents provide a platform for separating and quantifying free energy contributions due to functional group interactions and desolvation. Here 1:1 complexes formed between four different calix[4]pyrrole receptors and eleven different pyridine N-oxide guests have been used to dissect the factors that govern aromatic interactions with heterocycles in water and in chloroform solution. 1H NMR spectroscopy shows that the three-dimensional structures of the complexes are fixed by four H-bonding interactions between the pyrrole donors at the bottom of the receptor and the N-oxide acceptor on the guest, locking the geometrical arrangement of interacting functional groups in the binding pocket at the other end of the receptor. An aromatic heterocycle on the guest makes two stacking interactions and two edge-to-face interactions with the side walls of the receptor. Chemical double mutant cycles were used to measure the free energy contribution of these four aromatic interactions to the overall stability of the complex. In chloroform, the aromatic interactions measured with pyridine, pyrimidine, furan, thiophene and thiazole are similar to the interactions with a phenyl group, but the effect of introducing a heteroatom depends on where it sits with respect to the aromatic side-walls of the cavity. A nitrogen lone pair directed into a π-face of the side-walls of the binding site leads to repulsive interactions of up to 8 kJ mol-1. In water, the heterocycle aromatic interactions are all significantly more favourable (by up to 12 kJ mol-1). For the non-polar heterocycles, furan and thiophene, the increase in interaction energy correlates directly with hydrophobicity, as measured by the free energy of transfer of the heterocycle from n-hexadecane into water (ΔG°(water-hex)). For the heterocycles with polar nitrogen H-bond acceptors, water can access cracks in the walls of the receptor binding site to solvate the edges of the heterocycles without significantly affecting the geometry of the aromatic interactions, and these nitrogen-water H-bonds stabilise the complexes by about 15 kJ mol-1. The results highlight the complexity of the solvation processes that govern molecular recognition in water.
Collapse
Affiliation(s)
| | - Qingqing Sun
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans, 16 43007 Tarragona Spain
- Yangzhou University, School of Chemistry and Chemical Engineering Yangzhou 225002 Jiangsu China
| | - Jeremy K M Sanders
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans, 16 43007 Tarragona Spain
- ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
14
|
Martí-Rujas J, Elli S, Zanotti A, Famulari A, Castiglione F. Molecular Recognition of Aromatics in Spherical Nanocages. Chemistry 2023; 29:e202302025. [PMID: 37459420 DOI: 10.1002/chem.202302025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 09/06/2023]
Abstract
In general, due to the lack of efficient specific molecular interactions, achieving host-guest molecular recognition inside large and neutral metal-organic cages (MOCs) is challenging. Preferential molecular recognition of aromatics using the internal binding sites of interlocked icosahedral (i. e., spherical) M12 L8 MOCs within poly-[n]-catenane (1) is reported. The guest absorption was monitored directly in the solid-state by consecutive single-crystal-to-single-crystal (SCSC) reactions in a gas-solid environment, in single-crystal X-ray diffraction (SC-XRD) experiments. The preferential guest uptake was corroborated by density functional theory (DFT) calculations by determining the host-guest interaction energy (Ehost-guest ) with a nitrobenzene (NB)≫p-xylene (p-xy)≫o-dichlorobenzene (o-DCB) trend (i. e., from 44 to 25 kcal mol-1 ), assessing the XRD outcomes. Combining SC-XRD, DFT and solid-state 13 C NMR, the exceptional stability of the M12 L8 cages, together with the guest exchange/release properties were rationalized by considering the presence of mechanical bonds (efficient π-π interactions) and by the pyridine's rotor-like behaviour (with 3 kcal mol-1 rotational energy barrier). The structure-function properties of M12 L8 makes 1 a potential candidate in the field of molecular sensors.
Collapse
Affiliation(s)
- Javier Martí-Rujas
- Dipartimento di Chimica Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Stefano Elli
- Dipartimento di Chimica Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Alessandro Zanotti
- Dipartimento di Chimica Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| | - Antonino Famulari
- Dipartimento di Chimica Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
- INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Florence, 50121, Italy
| | - Franca Castiglione
- Dipartimento di Chimica Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131, Milan, Italy
| |
Collapse
|