1
|
Shi Z, Wu T, Huang L, Liu S, Xiao X, Zhao B. Direct Enantioselective Allylic Alkylation of α-Amino Esters to Quaternary Glutamates via Strategic Pyridoxal Catalyst Design. J Am Chem Soc 2025. [PMID: 40273118 DOI: 10.1021/jacs.5c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The difficulty for N-unprotected α-substituted glycinates as α-C nucleophiles originates from both competing N nucleophilic interference and steric hindrance of the α substituent, which makes direct asymmetric α-C alkylation of N-unprotected α-substituted glycinates with Morita-Baylis-Hillman (MBH) adducts especially challenging. Given the wide utilization of α-quaternary chiral glutamic acid derivatives in therapeutic studies, we took advantage of biomimetic carbonyl catalysis to achieve their efficient synthesis. A bifunctional centrally chiral pyridoxal, featured with an expanded catalytic cavity and reduced steric hindrance around the aldehyde group, was designed and synthesized. In this work, we describe the novel centrally chiral pyridoxal enabled direct asymmetric α-C alkylation of N-unprotected α-substituted glycinates with MBH acetates. A broad range of α-quaternary chiral glutamic acid derivatives with multiple modifications were produced with high reactivity and excellent stereocontrol.
Collapse
Affiliation(s)
- Zhengjun Shi
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Tianhao Wu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Longjie Huang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Siqi Liu
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Xiao Xiao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
2
|
Tan DH, Das A, Huang V, Schoch TD, Mohammed AL, Lipshultz JM. Pyridoxal-Inspired Photo-Decarboxylase Catalysis: Photochemical Decarboxylation of Unprotected Amino Acids. Angew Chem Int Ed Engl 2025; 64:e202424843. [PMID: 39954015 PMCID: PMC12009495 DOI: 10.1002/anie.202424843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Accepted: 02/14/2025] [Indexed: 02/17/2025]
Abstract
A photochemical organocatalytic method for the protodecarboxylation of unprotected amino acids is reported. Inspired by pyridoxal 5'-phosphate-dependent decarboxylase enzymes, the catalytic activation of amino acid substrates by 3-hydroxyisonicotinaldehyde enables a photochemical decarboxylation event, which can be leveraged in combination with a thiol co-catalyst. The necessary and sufficient structural features of the pyridoxal-like framework for photoactivity are determined using ultraviolet-visible absorption spectroscopy. A broad scope of unprotected amino acids can be decarboxylated in this system, with selectivity between multiple carboxylates realized on the possible basis of hyperconjugation. The ability to engage simple amino acids in decarboxylative functionalization at ambient conditions using a pyridoxal-mimicking organocatalyst enables new possibilities for the translation of biogenic amino acids into medicinally valuable amines.
Collapse
Affiliation(s)
- Dong-Hang Tan
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Agniva Das
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Vincent Huang
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Timothy D Schoch
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Abubakar Lawal Mohammed
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Jeffrey M Lipshultz
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
3
|
Yang JY, Du YR, Cheng FQ, An K, Hu Y, Li ZY. Construction of Axially Chiral Dialdehydes via Rhodium-Catalyzed Enantioselective C-H Amidation. Angew Chem Int Ed Engl 2025; 64:e202421412. [PMID: 39853834 DOI: 10.1002/anie.202421412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/04/2025] [Accepted: 01/24/2025] [Indexed: 01/26/2025]
Abstract
Achieving axially chiral biaryl dialdehydes through asymmetric catalysis remains significantly challenging due to the lack of efficient strategies. In this report, we developed a rhodium-catalyzed enantioselective C-H amidation through chiral transient directing group strategy. With this new approach, a series of axially chiral amido dialdehydes were achieved in up to 86 % yields with 99.5 : 0.5 er. Furthermore, detailed mechanistic studies indicated that both the imine formation and C-H bond cleavage steps were reversible. More interestingly, the X-ray crystallographic analysis of Int-2 showed probable C-H/π interaction between biaryl group and chiral amine moiety. This process offered a convenient route to access axially chiral dialdehyde derivatives. More broadly, it demonstrated a new tool through transient and C-H/π synergistic interactions, which would stimulate further development of asymmetric catalytic system in enantioselective C-H functionalization.
Collapse
Affiliation(s)
- Jie-Ying Yang
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Ya-Ru Du
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Fu-Qiang Cheng
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Kun An
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yuefei Hu
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Zhong-Yuan Li
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
4
|
Liang H, Morais GN, Chen G, Tang W, Zhao J, Wang C, Houk KN, Chen S, Ma J. Half-Sandwich Ru(II) Complexes Featuring Metal-Centered Chirality: Configurational Stabilization by Ligand Design, Preparation via Kinetic Resolution, and Application in Asymmetric Catalysis. J Am Chem Soc 2025; 147:6825-6834. [PMID: 39937927 DOI: 10.1021/jacs.4c16928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
While it is well established that half-sandwich Ru(II) complexes possess metal-centered chirality, effective strategies to leverage their metal-centered chirality toward asymmetric synthesis have been challenging due to the configurational lability of the metal stereocenters. The metal-centered chirality is typically mediated by enantiopure ligands, which occupy a relatively narrow chemical space compared to their achiral counterparts. We demonstrate that achiral ligands can be used to access chiral-at-ruthenium half-sandwich complexes with exceptionally high configurational stability. Key to success is the introduction of a rigid bidentate ligand with a minimized dihedral angle between the pyridyl and phenolic moieties, which proved effective for preventing racemization. Computational studies revealed the energetic factors contributing to the exceptional configurational stability enabled by the rigid and planar structure of the successful ligand design. These optically active chiral-at-ruthenium complexes incorporating aldehyde moieties were obtained by NHC-catalyzed kinetic resolution with excellent selectivities (s-factor up to >200, ee up to 99%). We further demonstrate that they are highly effective chiral aldehyde catalysts for the asymmetric 1,6-conjugate addition of glycine ester and para-quinone methide.
Collapse
Affiliation(s)
- Hui Liang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Gabriel N Morais
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, United States
| | - Gang Chen
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wei Tang
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jing Zhao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St., Oberlin, Ohio 44074, United States
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
5
|
Han H, Yi W, Ding S, Ren X, Zhao B. Enantioselective Three-Component α-Allylic Alkylation of α-Amino Esters by Synergistic Photoinduced Pd/Carbonyl Catalysis. Angew Chem Int Ed Engl 2025; 64:e202418910. [PMID: 39551702 DOI: 10.1002/anie.202418910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
Photoinduced excited-state Pd catalysis has emerged as an intriguing strategy for unlocking new reactivity potential of simple substrates. However, the related transformations are still limited and the enantiocontrol remains challenging. Organocatalysis displays unique capability in substrate activation and stereocontrol. Combination of organocatalysis and photoinduced excited-state Pd catalysis may provide opportunities to develop new enantioselective reactions from simple substrates. By applying cooperative triple catalysis including excited-state Pd catalysis, ground-state Pd catalysis, and carbonyl catalysis, we have successfully realized enantioselective α-allylic alkylation of α-amino esters with simple styrene and alkyl halide starting materials. The reaction allows rapid modular assembly of the three reaction partners into a variety of chiral quaternary α-amino esters in good yields with 90-99 % ee, without protecting group manipulations at the active NH2 group. The cooperation of the chiral pyridoxal catalyst and the chiral phosphine ligand accounts for the excellent chirality induction.
Collapse
Affiliation(s)
- Haohao Han
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Wuqi Yi
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Shaojie Ding
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Xinyi Ren
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
6
|
Zhu F, He H, Wen W, Guan HL, Wu ZL, Cai T, Ni SF, Guo QX. Chiral Aldehyde/Palladium Catalysis Enables Asymmetric Branched-Selective Ring-Opening Functionalization of Methylenecyclopropanes with Amino Acid Esters. J Am Chem Soc 2025; 147:2315-2322. [PMID: 39791232 DOI: 10.1021/jacs.4c16934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Achieving catalytic asymmetric functionalization of methylenecyclopropanes (MCPs) by selective C-C bond cleavage is a notable challenge due to the intricate reaction partners involved. In this work, we report that chiral aldehyde/palladium combined catalysis enables the asymmetric functionalization of MCPs with NH2-unprotected amino acid esters. This reaction proceeds through a regiospecific branched ring-opening mechanism, resulting in optically active α,α-disubstituted α-amino acid esters bearing nonconjugated terminal alkene units. Mechanism studies indicate that the ring-opening pathways are irreversible and the ultimate regioselectivity is governed by palladium catalysis. The products can be utilized in the construction of chiral dihydropyrazoles, α-methyl aspartic acid derivatives, and analogues of VPC01091 and BMS-986104.
Collapse
Affiliation(s)
- Fang Zhu
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hui He
- College of Chemistry & Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hong-Lin Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shao-Fei Ni
- College of Chemistry & Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Fu X, Tian J, Zhang M, Jing Y, Liu Y, Song H, Wang Q. Biomimetic Dehydrogenative Intermolecular Formal Allylic Amidation of Branched α-Olefins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411744. [PMID: 39556708 PMCID: PMC11727114 DOI: 10.1002/advs.202411744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/19/2024] [Indexed: 11/20/2024]
Abstract
Allylic amide moieties are commonly encountered in natural products and are privileged structures in pharmaceuticals and agrochemicals. Moreover, because allylic amide can be to converted into an array of high-value motifs, they have been widely employed in organic synthesis. However, the development of catalytic systems for intermolecular allylic amidation of olefins, particularly branched α-olefins, has proven to be challenging. Here, a biomimetic, synergistic catalytic method is reported that combines photoredox, cobalt, and Brønsted base catalysis for the synthesis of substituted allylic amides from branched α-olefins and simple imides without using oxidants. This low-cost, operationally simple method features a broad substrate scope and excellent functional group compatibility. Moreover, it is successfully used for the functionalization of several structurally complex molecules demonstrating the method's potential utility for medicinal chemistry applications. Mechanistic studies revealed that C(sp3)─N bond formation is mediated by a nitrogen-centered radical intermediate, which is generated via a sequence involving deprotonation and single-electron oxidation.
Collapse
Affiliation(s)
- Xiaoyang Fu
- State Key Laboratory of Elemento‐Organic ChemistryResearch Institute of Elemento‐Organic ChemistryFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071P. R. China
| | - Jiarui Tian
- State Key Laboratory of Elemento‐Organic ChemistryResearch Institute of Elemento‐Organic ChemistryFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071P. R. China
| | - Mingjun Zhang
- State Key Laboratory of Elemento‐Organic ChemistryResearch Institute of Elemento‐Organic ChemistryFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071P. R. China
| | - Yue Jing
- State Key Laboratory of Elemento‐Organic ChemistryResearch Institute of Elemento‐Organic ChemistryFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071P. R. China
| | - Yuxiu Liu
- State Key Laboratory of Elemento‐Organic ChemistryResearch Institute of Elemento‐Organic ChemistryFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071P. R. China
| | - Hongjian Song
- State Key Laboratory of Elemento‐Organic ChemistryResearch Institute of Elemento‐Organic ChemistryFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071P. R. China
| | - Qingmin Wang
- State Key Laboratory of Elemento‐Organic ChemistryResearch Institute of Elemento‐Organic ChemistryFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071P. R. China
| |
Collapse
|
8
|
Shaw R, Prakash P. Thiamine (Vitamin B1) Promoted Organic Transformations: A Recent Updates. Chem Asian J 2024; 19:e202400841. [PMID: 39171681 DOI: 10.1002/asia.202400841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/23/2024]
Abstract
Due to the growing significance of sustainable and environmentally friendly organic transformations, there has been increasing interest in utilizing vitamins as catalysts owing to their green nature, biocompatibility, and ease of preparation. Among these, Vitamin B1, also known as thiamine stands out for its nonflammable, water-soluble, inexpensive, and non-toxic characteristics. This review summarized recent developments on the catalytic application of Vitamin B1 in organic transformations, particularly in facilitating C-C and C-X (N, O, S) bond formations, thus demonstrating its efficacy in synthesizing complex molecules. Vitamin B1 exhibits versatility in these reactions, functioning as both an organocatalyst as well as a co-catalyst or ligand with other metal catalysts. The review also delves into the application of thiamine diphosphate-dependent enzymes as catalysts in organic reactions, drawing inspiration from natural enzymatic processes. Additionally, the mechanistic intricacies of thiamine-catalyzed reactions and the roles of co-catalysts or additives are thoroughly examined, providing insights into reaction pathways and facilitating informed catalyst design strategies.
Collapse
Affiliation(s)
- Ranjay Shaw
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Prasoon Prakash
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Hauz Khas, 110016, India
| |
Collapse
|
9
|
Zhang R, Xu J, Liu S, Si S, Chen J, Wang L, Chen WW, Zhao B. Direct Enantioselective α-C-H Conjugate Addition of Propargylamines to α,β-Unsaturated Ketones via Carbonyl Catalysis. J Am Chem Soc 2024; 146:25927-25933. [PMID: 39259771 DOI: 10.1021/jacs.4c09840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Direct asymmetric α-C-H conjugate addition of propargylamines to α,β-unsaturated ketones remains a great challenge due to the low α-amino C-H acidity of propargylamines and the nucleophilic interference of the NH2 group. Utilizing a new type of pyridoxals featuring a benzene-pyridine biaryl skeleton and a bulky amide side chain as carbonyl catalyst, we have accomplished direct asymmetric α-C-H conjugate addition of NH2-unprotected propargylamines to α,β-unsaturated ketones. The adducts undergo subsequent in situ intramolecular cyclization, delivering a wide range of chiral polysubstituted 1-pyrrolines in high yields (up to 92%) with excellent diastereo- and enatioelectivities (up to >20:1 dr and 99% ee). This work has demonstrated a straightforward approach to access pharmaceutically important chiral 1-pyrrolines, and it has also provided an impressive instance of direct asymmetric functionalization of inert C-H bonds enabled by biomimetic organocatalysts.
Collapse
Affiliation(s)
- Ruixin Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jiwei Xu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Siqi Liu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Shibo Si
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Jiayao Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Lingxiao Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Wen-Wen Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
10
|
Lin Y, Wen W, Liu JH, Zhu F, Li CX, Wu ZL, Cai T, Liu CJ, Guo QX. Asymmetric α-Allylation of Amino Acid Esters with Alkynes Enabled by Chiral Aldehyde/Palladium Combined Catalysis. Org Lett 2024; 26:7908-7913. [PMID: 39254672 DOI: 10.1021/acs.orglett.4c02840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A highly efficient, atom-economical α-allylation reaction of NH2-unprotected amino acid esters and alkynes is achieved by chiral aldehyde/palladium combined catalysis. A diverse range of α,α-disubstituted nonproteinogenic α-amino acid esters are produced in 31-92% yields and 84-97% ee values. The allylation products are utilized for the synthesis of drug molecule BMS561392 and other chiral molecules possessing complex structures. Mechanistic investigations reveal that this reaction proceeds via a chiral aldehyde-/palladium-mediated triple cascade catalytic cycle.
Collapse
Affiliation(s)
- Yao Lin
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jian-Hua Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fang Zhu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chao-Xing Li
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chen-Jiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Su L, Gao S, Liu J. Enantioconvergent synthesis of axially chiral amides enabled by Pd-catalyzed dynamic kinetic asymmetric aminocarbonylation. Nat Commun 2024; 15:7248. [PMID: 39179590 PMCID: PMC11344157 DOI: 10.1038/s41467-024-51717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Atropisomeric biaryls bearing carbonyl groups have attracted increasing attention due to their prevalence in diverse bioactive molecules and crucial role as efficient organo-catalysts or ligands in asymmetric transformations. However, their preparation often involves tedious multiple steps, and the direct synthesis via asymmetric carbonylation has scarcely been investigated. Herein, we report an efficient palladium-catalyzed enantioconvergent aminocarbonylation of racemic heterobiaryl triflates with amines via dynamic kinetic asymmetric transformation (DyKAT). This protocol features a broad substrate scope and excellent compatibility for rapid construction of axially chiral amides in good to high yields with excellent enantioselectivities. Detailed mechanistic investigations discover that the base can impede the intramolecular hydrogen bond-assisted axis rotation of the products, thus allowing for the success to achieve high enantioselectivity. Moreover, the achieved axially chiral heterobiaryl amides can be directly utilized as N,N,N-pincer ligands in copper-catalyzed enantioselective formation of C(sp3)-N and C(sp3)-P bonds.
Collapse
Affiliation(s)
- Lei Su
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Shen Gao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawang Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Wang Y, Das S, Aboulhosn K, Champagne SE, Gemmel PM, Skinner KC, Ragsdale SW, Zimmerman PM, Narayan ARH. Nature-Inspired Radical Pyridoxal-Mediated C-C Bond Formation. J Am Chem Soc 2024; 146:23321-23329. [PMID: 39106078 DOI: 10.1021/jacs.4c05997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Pyridoxal-5'-phosphate (PLP) and derivatives of this cofactor enable a plethora of reactions in both enzyme-mediated and free-in-solution transformations. With few exceptions in each category, such chemistry has predominantly involved two-electron processes. This sometimes poses a significant challenge for using PLP to build tetrasubstituted carbon centers, especially when the reaction is reversible. The ability to access radical pathways is paramount to broadening the scope of reactions catalyzed by this coenzyme. In this study, we demonstrate the ability to access a radical PLP-based intermediate and engage this radical intermediate in a number of C-C bond-forming reactions. By selection of an appropriate oxidant, single-electron oxidation of the quinonoid intermediate can be achieved, which can subsequently be applied to C-C bond-forming reactions. Through this radical reaction pathway, we synthesized a series of α-tertiary amino acids and esters to investigate the substrate scope and identify nonproductive reaction pathways. Beyond the amino acid model system, we demonstrate that other classes of amine substrates can be applied in this reaction and that a range of small molecule reagents can serve as coupling partners to the semiquinone radical. We anticipate that this versatile semiquinone radical species will be central to the development of a range of novel reactions.
Collapse
Affiliation(s)
- Ye Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Soumik Das
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kareem Aboulhosn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sarah E Champagne
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Philipp M Gemmel
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kevin C Skinner
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R H Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Liu JH, Wen W, Wu ZL, Cai T, Huang YM, Guo QX. Asymmetric three-component Tsuji-Trost allylation reaction enabled by chiral aldehyde/palladium combined catalysis. Chem Sci 2024; 15:10232-10236. [PMID: 38966351 PMCID: PMC11220596 DOI: 10.1039/d4sc02594f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Despite the long-standing exploration of the catalytic asymmetric Tsuji-Trost allylation reaction since the mid-20th century, most reported instances have adhered to a two-component approach. Here, we present a remarkably efficient three-component asymmetric allylation reaction enabled by the collaborative action of chiral aldehyde and palladium. A diverse array of NH2-unprotected amino acid esters, aryl or alkenyl iodides, and allyl alcohol esters exhibit robust participation in this reaction, resulting in the synthesis of structurally diverse non-proteinogenic α-amino acid esters with favorable experimental outcomes. Mechanistic investigations reveal the dominance of the allylation/Heck coupling cascade in reactions involving electron-rich aryl iodides, while the Heck coupling/allylation cascade emerges as the dominant pathway in reactions involving electron-deficient aryl iodides. This chiral aldehyde/palladium combining catalytic system precisely governs the chemoselectivity of C-allylation and N-allylation, the regioselectivity of linear and branched allylation, and the enantioselectivity of C-allylation products.
Collapse
Affiliation(s)
- Jian-Hua Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Yan-Min Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University Nanning 530001 China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| |
Collapse
|
14
|
Kirschning A. Why pyridoxal phosphate could be a functional predecessor of thiamine pyrophosphate and speculations on a primordial metabolism. RSC Chem Biol 2024; 5:508-517. [PMID: 38846080 PMCID: PMC11151856 DOI: 10.1039/d4cb00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/15/2024] [Indexed: 06/09/2024] Open
Abstract
The account attempts to substantiate the hypothesis that, from an evolutionary perspective, the coenzyme couple pyridoxal phosphate and pyridoxamine phosphate preceded the coenzyme thiamine pyrophosphate and acted as its less efficient chemical analogue in some form of early metabolism. The analysis combines mechanism-based chemical reactivity with biosynthetic arguments and provides evidence that vestiges of "TPP-like reactivity" are still found for PLP today. From these thoughts, conclusions can be drawn about the key elements of a primordial form of metabolism, which includes the citric acid cycle, amino acid biosynthesis and the pentose phosphate pathway.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B 30167 Hannover Germany
- Uppsala Biomedical Center (BMC), University Uppsala, Husargatan 3 752 37 Uppsala Sweden
| |
Collapse
|
15
|
Ouyang Y, Page CG, Bilodeau C, Hyster TK. Synergistic Photoenzymatic Catalysis Enables Synthesis of a-Tertiary Amino Acids Using Threonine Aldolases. J Am Chem Soc 2024; 146:13754-13759. [PMID: 38739748 PMCID: PMC11694721 DOI: 10.1021/jacs.4c04661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
a-Tertiary amino acids are essential components of drugs and agrochemicals, yet traditional syntheses are step-intensive and provide access to a limited range of structures with varying levels of enantioselectivity. Here, we report the α-alkylation of unprotected alanine and glycine by pyridinium salts using pyridoxal (PLP)-dependent threonine aldolases with a Rose Bengal photoredox catalyst. The strategy efficiently prepares various a-tertiary amino acids in a single chemical step as a single enantiomer. UV-vis spectroscopy studies reveal a ternary interaction between the pyridinium salt, protein, and photocatalyst, which we hypothesize is responsible for localizing radical formation to the active site. This method highlights the opportunity for combining photoredox catalysts with enzymes to reveal new catalytic functions for known enzymes.
Collapse
Affiliation(s)
- Yao Ouyang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Claire G. Page
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Catherine Bilodeau
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Todd K. Hyster
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
16
|
Huang Y, Peng X, Li T. Recent Advances in NHC-Catalyzed Chemoselective Activation of Carbonyl Compounds. Chem Asian J 2024; 19:e202400097. [PMID: 38451172 DOI: 10.1002/asia.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
N-Heterocyclic carbenes (NHCs) catalysts have been employed as effective tools in the development of various reactions, which have made notable contributions in developing diverse reaction modes and generating significant functionalized molecules. This review provides an overview of the recent advancements in the chemo- and regioselective activation of different aldehydes using NHCs, categorized into five parts based on the different activation modes. A brief conclusion and outlook is provided to stimulate the development of novel activation modes for accessing functional molecules.
Collapse
Affiliation(s)
- Yixian Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xiaolin Peng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Tingting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
17
|
Pecchini P, Fochi M, Bartoccini F, Piersanti G, Bernardi L. Enantioselective organocatalytic strategies to access noncanonical α-amino acids. Chem Sci 2024; 15:5832-5868. [PMID: 38665517 PMCID: PMC11041364 DOI: 10.1039/d4sc01081g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Organocatalytic asymmetric synthesis has evolved over the years and continues to attract the interest of many researchers worldwide. Enantiopure noncanonical amino acids (ncAAs) are valuable building blocks in organic synthesis, medicinal chemistry, and chemical biology. They are employed in the elaboration of peptides and proteins with enhanced activities and/or improved properties compared to their natural counterparts, as chiral catalysts, in chiral ligand design, and as chiral building blocks for asymmetric syntheses of complex molecules, including natural products. The linkage of ncAA synthesis and enantioselective organocatalysis, the subject of this perspective, tries to imitate the natural biosynthetic process. Herein, we present contemporary and earlier developments in the field of organocatalytic activation of simple feedstock materials, providing potential ncAAs with diverse side chains, unique three-dimensional structures, and a high degree of functionality. These asymmetric organocatalytic strategies, useful for forging a wide range of C-C, C-H, and C-N bonds and/or combinations thereof, vary from classical name reactions, such as Ugi, Strecker, and Mannich reactions, to the most advanced concepts such as deracemisation, transamination, and carbene N-H insertion. Concurrently, we present some interesting mechanistic studies/models, providing information on the chirality transfer process. Finally, this perspective highlights, through the diversity of the amino acids (AAs) not selected by nature for protein incorporation, the most generic modes of activation, induction, and reactivity commonly used, such as chiral enamine, hydrogen bonding, Brønsted acids/bases, and phase-transfer organocatalysis, reflecting their increasingly important role in organic and applied chemistry.
Collapse
Affiliation(s)
- Pietro Pecchini
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| | - Mariafrancesca Fochi
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| | - Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 6 61029 Urbino PU Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 6 61029 Urbino PU Italy
| | - Luca Bernardi
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| |
Collapse
|
18
|
Wen W, Guo QX. Chiral Aldehyde Catalysis-Enabled Asymmetric α-Functionalization of Activated Primary Amines. Acc Chem Res 2024; 57:776-794. [PMID: 38381559 DOI: 10.1021/acs.accounts.3c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
ConspectusThe development of catalytic activation modes provides a reliable and effective platform for designing new enantioselective reactions and preparing chiral molecules with diverse structures. Chiral aldehyde catalysis is an attractive concept in asymmetric catalysis, which utilizes a chiral aldehyde catalyst to promote the asymmetric hydroamination of allylic amines, the asymmetric α-functionalization of primary amines, or the asymmetric transamination of α-keto esters. Typically, the chiral aldehyde-catalyzed asymmetric α-functionalization of primary amines provides an efficient and straightforward method for the synthesis of α-functionalized chiral amines, which does not require any additional protection or deprotection manipulations of the amine group. However, achieving catalytic stereoselective transformations with high efficiency and enantioselectivity by this strategy has remained an intractable challenge.This Account summarizes our endeavors in the development and application of chiral aldehyde catalysis. Using a chiral aldehyde as a catalyst, we reported the catalytic asymmetric α-C alkylation of 2-aminomalonate with 3-indolylmethanol in 2014, which represents the first chiral aldehyde-catalyzed asymmetric α-functionalization of an activated primary amine. Subsequently, several axially chiral aldehyde catalysts were continuously prepared by using chiral BINOL as the starting material, and their applications in asymmetric synthesis were explored. On the one hand, they were used as organocatalysts to realize the various transformations of α-amino acid esters, such as asymmetric 1,4-addition toward conjugated enones/α,β-unsaturated diesters and cyclic 1-azadienes as well as asymmetric α-arylation/allylation and benzylation with corresponding halohydrocarbons. Notably, taking advantage of the difference in the distribution of catalytic sites between two chiral aldehyde catalysts, we disclosed chiral aldehyde-catalyzed diastereodivergent 1,6-conjugated addition and Mannich reactions. On the other hand, the potential for the cooperative catalysis of a chiral aldehyde with a transition metal has also been demonstrated. Enabled by the combination of a chiral aldehyde, a palladium complex, and a Lewis acid, the enantioselective α-allylation of amino acid esters with allyl alcohol esters was established. Moreover, the ternary catalytic system has been successfully used for the α-functionalization of amino acid esters with 1,3-dienes, allenes, allenylic alcohol esters, 1,3-disubstituted allyl alcohol esters, and arylmethanol esters as well as the asymmetric cascade Heck-alkylation reaction. The combination of a chiral aldehyde and nickel complex allows for the asymmetric α-propargylation of amino acid esters with propargylic alcohol esters and provides excellent enantioselectivities. These transformations provide a large library of optically active amines and amino acids. With those chiral amino acid esters as key building blocks, the synthesis or formal synthesis of multiple natural products and biologically significant unnatural molecules was accomplished. This includes the stereodivergent synthesis of natural pyrrolizidine alkaloid NP25302 and the formal synthesis of natural product (S)-hypoestestatin 1 and manzacidin C, clinical candidate compound (+)-AG-041R, and somatostatin mimetics. It is fully anticipated that chiral aldehyde catalysis will soon witness rapid expansion both in the development of novel asymmetric transformations and in innovative applications for constructing optically active nitrogen-containing molecules with significant values.
Collapse
Affiliation(s)
- Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
19
|
Zheng Z, Liu Q, Peng X, Jin Z, Wu J. NHC-Catalyzed Chemo- and Enantioselective Reaction between Aldehydes and Enals for Access to Axially Chiral Arylaldehydes. Org Lett 2024; 26:917-921. [PMID: 38236760 DOI: 10.1021/acs.orglett.3c04189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A chiral carbene-catalyzed chemo- and enantioselective reaction with racemic biaryl aldehydes and α-bromoenals is developed for access to axially chiral 2-arylbenzaldehydes through atroposelective dynamic kinetic resolution (DKR) processes. This atroposelective DKR strategy can tolerate a broad scope of substrates with diverse functionalities. The axially chiral 2-aryl benzaldehyde products generally afford moderate to good yields and enantioselectivities. The axially chiral molecules afforded from the current approach are variable through simple transformations to afford axially chiral functional molecules with excellent optical purities.
Collapse
Affiliation(s)
- Zhiguo Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qian Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiaolin Peng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
20
|
Li J, Gong S, Gao S, Chen J, Chen WW, Zhao B. Asymmetric α-C(sp 3)-H allylic alkylation of primary alkylamines by synergistic Ir/ketone catalysis. Nat Commun 2024; 15:939. [PMID: 38296941 PMCID: PMC10830461 DOI: 10.1038/s41467-024-45131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Primary alkyl amines are highly reactive in N-nucleophilic reactions with electrophiles. However, their α-C-H bonds are unreactive towards electrophiles due to their extremely low acidity (pKa ~57). Nonetheless, 1,8-diazafluoren-9-one (DFO) can activate primary alkyl amines by increasing the acidity of the α-amino C-H bonds by up to 1044 times. This makes the α-amino C-H bonds acidic enough to be deprotonated under mild conditions. By combining DFO with an iridium catalyst, direct asymmetric α-C-H alkylation of NH2-unprotected primary alkyl amines with allylic carbonates has been achieved. This reaction produces a wide range of chiral homoallylic amines with high enantiopurities. The approach has successfully switched the reactivity between primary alkyl amines and allylic carbonates from intrinsic allylic amination to the α-C-H alkylation, enabling the construction of pharmaceutically significant chiral homoallylic amines from readily available primary alkyl amines in a single step.
Collapse
Affiliation(s)
- Jianyu Li
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China
| | - Sheng Gong
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China
| | - Shaolun Gao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China
| | - Jianfeng Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China.
| | - Wen-Wen Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis and Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
21
|
Cai Y, Lv Y, Shu L, Jin Z, Chi YR, Li T. Access to Axially Chiral Aryl Aldehydes via Carbene-Catalyzed Nitrile Formation and Desymmetrization Reaction. RESEARCH (WASHINGTON, D.C.) 2024; 7:0293. [PMID: 38628355 PMCID: PMC11020146 DOI: 10.34133/research.0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/08/2023] [Indexed: 04/19/2024]
Abstract
An approach utilizing N-heterocyclic carbene for nitrile formation and desymmetrization reaction is developed. The process involves kinetic resolution, with the axially chiral aryl monoaldehydes obtained in moderate yields with excellent optical purities. These axially chiral aryl monoaldehydes can be conveniently transformed into functionalized molecules, showing great potential as catalysts in organic chemistry.
Collapse
Affiliation(s)
- Yuanlin Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Ya Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology,
Nanyang Technological University, Singapore 637371, Singapore
| | - Tingting Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| |
Collapse
|
22
|
Zhang H, Wen W, Lu ZX, Wu ZL, Cai T, Guo QX. Core Structure-Oriented Asymmetric α-Allenylic Alkylation of Amino Acid Esters Enabled by Chiral Aldehyde/Palladium Catalysis. Org Lett 2024; 26:153-159. [PMID: 38133484 DOI: 10.1021/acs.orglett.3c03762] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Aiming at the reported chiral synthons leading to manzacidins A and D, here we report a highly efficient catalytic asymmetric α-allenylic alkylation reaction of NH2-unprotected amino acid esters that is promoted by combined chiral aldehyde/palladium catalysis. Fifty examples of unnatural α,α-disubstituted amino acid esters are reported with good-to-excellent yields and stereoselectivities. Based on this methodology, a key intermediate leading to manzacidin C and its other three stereoisomers is prepared accordingly.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ze-Xi Lu
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
23
|
Zhang C. Bisphospholane Josiphos-type Ligands in Rhodium Asymmetric Catalysis. Chem Asian J 2023; 18:e202300912. [PMID: 37843429 DOI: 10.1002/asia.202300912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
Asymmetric catalysis has become a universal and powerful method for constructing chiral compounds. In rhodium asymmetric catalysis, bisphospholane Josiphos-type ligands and their rhodium complexes are receiving increasing attention. This review provides comprehensive information on the bisphospholane Josiphos-type ligands in rhodium asymmetric catalysis. The scope of the literature covers from 2013 to now. The application of bisphospholane Josiphos-type ligands in rhodium asymmetric catalysis is summarized as follows: (i) asymmetric addition to C(sp2 )-C(sp2 ) bonds, (ii) asymmetric addition to C(sp2 )-C(sp) bonds of allenes, (iii) asymmetric hydrogenation of C(sp2 )-N bonds, C(sp2 )-O bonds and pyridinium salts, and (iv) asymmetric silanization of C-H and O-H bonds.
Collapse
Affiliation(s)
- Cai Zhang
- Department of Safety Supervision and Management, Chongqing Vocational Institute of Safety Technology, 583 Anqing road, Wanzhou district, Chongqing, 404020, China
| |
Collapse
|
24
|
Zhou Q, Yin ZW, Wu ZL, Cai T, Wen W, Huang YM, Guo QX. Asymmetric α-Allylation of N-Unprotected Amino Acid Esters with 1,3-Disubstituted Allyl Acetates Enabled by Chiral-Aldehyde/Palladium Catalysis. Org Lett 2023; 25:5790-5794. [PMID: 37523673 DOI: 10.1021/acs.orglett.3c02027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
A chiral aldehyde/palladium catalysis-enabled asymmetric α-allylation of NH2-unprotected amino acid esters with 1,3-disubstituted allyl acetates is described in this work. With the utilization of different chiral phosphine ligands, both the anti- and syn-selective allylation reactions are achieved enantioselectively. A series of α,α-disubstituted amino acid esters bearing two adjacent chiral centers are produced in moderate-to-excellent yields, diastereoselectivities, and enantioselectivities.
Collapse
Affiliation(s)
- Qing Zhou
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zhi-Wei Yin
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yan-Min Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|