1
|
Meredith R, Carmichael I, Serianni AS. Geminal 13C- 1H NMR Spin-Coupling Constants in Furanose Rings: New Empirical Correlations with Conformation. ACS OMEGA 2025; 10:15309-15320. [PMID: 40290917 PMCID: PMC12019742 DOI: 10.1021/acsomega.4c11358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
Density functional theory (DFT) calculations have been used to develop a new approach to interpreting geminal (two-bond) 2 J CCH NMR spin-coupling constants in saccharides containing aldofuranosyl (five-membered) rings. In the biologically important β-d-ribofuranosyl and 2-deoxy-β-d-ribofuranosyl (2-deoxy-β-d-erythro-pentofuranosyl) rings that were used as models, many of the 2 J CCH values associated with coupling pathways involving an endocyclic C-C bond depend linearly on P/π, a measure of ring conformation. In most cases, the endocyclic C-C bond is present in the coupling pathway. In other cases, the 2 J CCH value depends linearly on either an adjacent C-C bond torsion angle or shows no systematic relationship with any endocyclic C-C bond torsion angle. In the latter case, secondary (remote) structural effects, defined as those that primarily affect C-C or C-H bond lengths in the C-C-H coupling pathway, cause the 2 J CCH value to behave with less predictability. These effects apparently cancel and lead to linearity involving an adjacent C-C bond in some cases. These findings provide a new conceptual framework to understand and exploit the dependencies of geminal 13C-1H NMR spin-couplings on furanose ring conformation. They also reveal the effect of exocyclic C-O bond torsion angles on the magnitudes and signs of 2 J CCH values in saccharides, a complication that remains to be addressed before 2 J CCH values can be used quantitatively in single- and multi-state MA'AT modeling of redundant NMR J-values in furanosyl rings.
Collapse
Affiliation(s)
- Reagan
J. Meredith
- Texas
Biomedical Research Institute, San Antonio, Texas 78227-0549, United States
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556-5670, United States
| | - Ian Carmichael
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556-5670, United States
- Radiation
Laboratory, University of Notre Dame, Notre Dame, Indiana 46556-5670, United
States
| | - Anthony S. Serianni
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556-5670, United States
| |
Collapse
|
2
|
Zhang W, Meredith RJ, Yoon MK, Carmichael I, Serianni AS. Context Effects on Human Milk Oligosaccharide Linkage Conformation and Dynamics Revealed by MA'AT Analysis. Biochemistry 2024; 63:2729-2739. [PMID: 39438253 DOI: 10.1021/acs.biochem.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
An emerging NMR method, MA'AT analysis, has been applied to investigate context effects on the conformational properties of several human milk oligosaccharides (HMOs). The MA'AT model of the β-(1→4) linkage in the disaccharide, methyl β-lactoside (MeL), was compared to those obtained for the same linkage in the HMO trisaccharides, methyl 2'-fucosyllactoside (Me2'FL) and methyl 3-fucosyllactoside (Me3FL), and in the tetrasaccharide, methyl 2',3-difucosyllactoside (Me2',3DFL). MA'AT analysis revealed significant context effects on the mean values and circular standard deviations (CSDs) of the psi (ψ) torsion angles in these linkages. α-Fucosylation at both O2'Gal and O3Glc of MeL to give Me2',3DFL significantly constrained librational motion about ψ (70% reduction in the CSD) and shifted its mean value by ∼18°. α-Fucosylation at the O3Glc of MeL to give Me3FL constrained ψ more than α-fucosylation at the O2Gal to give Me2'FL. These effects can be explained by the expected solution conformation of Me3FL, which closely resembles the Lewisx trisaccharide. Comparisons of MA'AT models of ψ to those obtained by 1 μs aqueous molecular dynamics simulation (GLYCAM06) revealed identical trends, that is, MA'AT analysis was able to recapitulate molecular behavior in solution that was heretofore only available from MD simulation. The results highlight the capabilities of MA'AT analysis to determine probability distributions of molecular torsion angles in solution as well as degrees of librational averaging of these angles.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
- Omicron Biochemicals, Inc., South Bend, Indiana 46617-2701, United States
| | - Reagan J Meredith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
- Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | - Mi-Kyung Yoon
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
- Omicron Biochemicals, Inc., South Bend, Indiana 46617-2701, United States
| | - Ian Carmichael
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| | - Anthony S Serianni
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
3
|
Angulo J, Ardá A, Bertuzzi S, Canales A, Ereño-Orbea J, Gimeno A, Gomez-Redondo M, Muñoz-García JC, Oquist P, Monaco S, Poveda A, Unione L, Jiménez-Barbero J. NMR investigations of glycan conformation, dynamics, and interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:97-152. [PMID: 39645352 DOI: 10.1016/j.pnmrs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/09/2024]
Abstract
Glycans are ubiquitous in nature, decorating our cells and serving as the initial points of contact with any visiting entities. These glycan interactions are fundamental to host-pathogen recognition and are related to various diseases, including inflammation and cancer. Therefore, understanding the conformations and dynamics of glycans, as well as the key features that regulate their interactions with proteins, is crucial for designing new therapeutics. Due to the intrinsic flexibility of glycans, NMR is an essential tool for unravelling these properties. In this review, we describe the key NMR parameters that can be extracted from the different experiments, and which allow us to deduce the necessary geometry and molecular motion information, with a special emphasis on assessing the internal motions of the glycosidic linkages. We specifically address the NMR peculiarities of various natural glycans, from histo-blood group antigens to glycosaminoglycans, and also consider the special characteristics of their synthetic analogues (glycomimetics). Finally, we discuss the application of NMR protocols to study glycan-related molecular recognition events, both from the carbohydrate and receptor perspectives, including the use of stable isotopes and paramagnetic NMR methods to overcome the inherent degeneracy of glycan chemical shifts.
Collapse
Affiliation(s)
- Jesús Angulo
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Sara Bertuzzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Angeles Canales
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - June Ereño-Orbea
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ana Gimeno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Marcos Gomez-Redondo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Juan C Muñoz-García
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Paola Oquist
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ Norwich, UK
| | - Ana Poveda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luca Unione
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain; Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| |
Collapse
|
4
|
Franz AH, Bromley KS, Aung ET, Do SQL, Rosenblatt HM, Watson AJ. NMR Coupling Constants, Karplus Equations, and Adjusted MD Statistics: Detecting Diagnostic Torsion Angles for the Solution Geometry of 6-[α-d-Mannopyranosyl]-d-Mannopyranose (Mannobiose). MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024. [PMID: 39415469 DOI: 10.1002/mrc.5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024]
Abstract
The quantitative solution conformations of 2-(hydroxymethyl)-tetrahydropyran, α-methyl-d-mannopyranoside, and 6-[α-d-mannopyranosyl]-d-mannopyranose (mannobiose) are described. Parametrized Karplus equations for redundant spin pairs across the terminal ω-torsion and the glycosidic ω-torsion for mannobiose are developed, including ω/θ-hypersurfaces for the terminal hydroxymethylene group. Experimental NMR data, algorithmic spectral simulation (clustered Hamiltonian method), molecular dynamics (MD) simulations (GLYCAM06), energy minimizations by DFT, and adjusted torsion angle populations weighted over the Karplus-type equations are used. We demonstrate that spectral simulation is a powerful tool in the refinement of initial J values obtained from static GAIO DFT calculations. We also show that only as few as one of multiple redundant torsions can be diagnostic for conformational analysis of the disaccharide.
Collapse
Affiliation(s)
- Andreas H Franz
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Kendall S Bromley
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Ei T Aung
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Stephen Q L Do
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Hana M Rosenblatt
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Amelia J Watson
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| |
Collapse
|
5
|
Meredith RJ, Zhang W, Yoon MK, Hu X, Carmichael I, Serianni AS. MA'AT analysis of the O-glycosidic linkages of oligosaccharides using nonconventional NMR J-couplings: MA'AT and MD models of phi. RSC Adv 2024; 14:30286-30294. [PMID: 39315028 PMCID: PMC11418834 DOI: 10.1039/d4ra06062h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
MA'AT analysis (Meredith et al., J. Chem. Inf. Model. 2022, 62, 3135-3141) is a new NMR-based method to treat ensembles of redundant NMR spin-coupling constants (J-couplings) to obtain experiment-based probability distributions of molecular torsion angles in solution. Work reported to date on modeling the conformations of O-glycosidic linkages of oligosaccharides using three conventional J-coupling constraints (2 J COC, 3 J COCH, 3 J COCC) has shown that the method gives mean torsion angles and circular standard deviations (CSDs) for psi in very good agreement with those obtained by MD simulation. On the other hand, CSDs for phi determined by MA'AT analysis have consistently been much larger than those determined by MD, calling into question either the reliability of MA'AT analysis or MD to accurately predict this behavior. Prior work has shown that this discrepancy does not stem from the limitations of DFT-based J-coupling equation parameterization where secondary conformational dependencies can introduce uncertainties. The present work re-visits this problem by incorporating a new nonconventional J-coupling constraint into MA'AT analyses of phi, namely, a geminal (two-bond) 2 J CCH J-value that exhibits a strong primary dependence on phi. The latter property pertains explicitly to linkages contributed by GlcNAc pyranosyl rings and pyranosyl rings devoid of substituents at C2 (i.e., deoxy residues) where known secondary contributions to 2 J CCH magnitude caused by C-O bond rotation involving the coupled carbon are negligible or absent. The results show that when 2 J CCH values are added to the analysis, phi CSDs reduce considerably, bringing them into better alignment with those obtained by MD simulation. The cause of the discrepancy when only three conventional J-couplings are used to treat phi appears to be associated with the two-bond 2 J COC, which has properties that make it less effective than the non-conventional 2 J CCH as a discriminator of different conformational models of phi.
Collapse
Affiliation(s)
- Reagan J Meredith
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame IN 46556 USA
- Texas Biomedical Research Institute San Antonio TX 78227 USA
| | - Wenhui Zhang
- Omicron Biochemicals, Inc. South Bend IN 46617 USA
| | - Mi-Kyung Yoon
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame IN 46556 USA
- Omicron Biochemicals, Inc. South Bend IN 46617 USA
| | - Xiaosong Hu
- Department of Chemistry, Wuhan University of Technology Wuhan 430070 China
| | - Ian Carmichael
- Radiation Laboratory, University of Notre Dame Notre Dame IN 46556 USA
| | - Anthony S Serianni
- Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame IN 46556 USA
| |
Collapse
|
6
|
Meredith R, Zhu Y, Yoon MK, Tetrault T, Lin J, Zhang W, McGurn M, Cook E, Popp R, Shit P, Carmichael I, Serianni AS. Methyl α-D-galactopyranosyl-(1→3)-β-D-galactopyranoside and methyl β-D-galactopyranosyl-(1→3)-β-D-galactopyranoside: Glycosidic linkage conformation determined from MA'AT analysis. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:544-555. [PMID: 38414300 DOI: 10.1002/mrc.5424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 02/29/2024]
Abstract
MA'AT analysis has been applied to two biologically-important O-glycosidic linkages in two disaccharides, α-D-Galp-(1→3)-β-D-GalpOMe (3) and β-D-Galp-(1→3)-β-D-GalpOMe (4). Using density functional theory (DFT) to obtain parameterized equations relating a group of trans-O-glycosidic NMR spin-couplings to either phi (ϕ') or psi (ψ'), and experimental 3JCOCH, 2JCOC, and 3JCOCC spin-couplings measured in aqueous solution in 13C-labeled isotopomers, probability distributions of ϕ' and ψ' in each linkage were determined and compared to those determined by aqueous 1-μs molecular dynamics (MD) simulation. Good agreement was found between the MA'AT and single-state MD conformational models of these linkages for the most part, with modest (approximately <15°) differences in the mean values of ϕ' and ψ', although the envelope of allowed angles (encoded in circular standard deviations or CSDs) is consistently larger for ϕ' determined from MA'AT analysis than from MD for both linkages. The MA'AT model of the α-Galp-(1→3)-β-Galp linkage agrees well with those determined previously using conventional NMR methods (3JCOCH values and/or 1H-1H NOEs), but some discrepancy was observed for the β-Galp-(1→3)-β-Galp linkage, which may arise from errors in the conventions used to describe the linkage torsion angles. Statistical analyses of X-ray crystal structures show ranges of ϕ' and ψ' for both linkages that include the mean angles determined from MA'AT analyses, although both angles adopt a wide range of values in the crystalline state, with ϕ' in β-Galp-(1→3)-β-Galp linkages showing greater-than-expected conformational variability.
Collapse
Affiliation(s)
- Reagan Meredith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yuping Zhu
- Discovery Chemistry, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Mi-Kyung Yoon
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Timothy Tetrault
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jieye Lin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Wenhui Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Margaret McGurn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Evan Cook
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Reed Popp
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Pradip Shit
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Ian Carmichael
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana, USA
| | - Anthony S Serianni
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
7
|
Zhang W, Meredith RJ, Wang X, Woods RJ, Carmichael I, Serianni AS. Does Inter-Residue Hydrogen Bonding in β-(1→4)-Linked Disaccharides Influence Linkage Conformation in Aqueous Solution? J Phys Chem B 2024; 128:2317-2325. [PMID: 38482666 DOI: 10.1021/acs.jpcb.3c07448] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Two disaccharides, methyl β-d-galactopyranosyl-(1→4)-α-d-glucopyranoside (1) and methyl β-d-galactopyranosyl-(1→4)-3-deoxy-α-d-ribo-hexopyranoside (3), were prepared with selective 13C-enrichment to allow measurement of six trans-O-glycosidic J-couplings (2JCOC, 3JCOCH, and 3JCOCC) in each compound. Density functional theory (DFT) was used to parameterize Karplus-like equations that relate these J-couplings to either ϕ or ψ. MA'AT analysis was applied to both linkages to determine mean values of ϕ and ψ in each disaccharide and their associated circular standard deviations (CSDs). Results show that deoxygenation at C3 of 1 has little effect on both the mean values and librational motions of the linkage torsion angles. This finding implies that, if inter-residue hydrogen bonding between O3H and O5' of 1 is present in aqueous solution and persistent, it plays little if any role in dictating preferred linkage conformation. Hydrogen bonding may lower the energy of the preferred linkage geometry but does not determine it to any appreciable extent. Aqueous 1-μs MD simulation supports this conclusion and also indicates greater conformational flexibility in deoxydisaccharide 3 in terms of sampling several, conformationally distinct, higher-energy conformers in solution. The populations of these latter conformers are low (3-14%) and could not be validated by MA'AT analysis. If the MD model is correct, however, C3 deoxygenation does enable conformational sampling over a wider range of ϕ/ψ values, but linkage conformation in the predominant conformer is essentially identical in both 1 and 3.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Reagan J Meredith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Xiaocong Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Ian Carmichael
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Anthony S Serianni
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
8
|
Meredith RJ, Yoon MK, Carmichael I, Serianni AS. MA'AT Analysis: Unbiased Multi-State Conformational Modeling of Exocyclic Hydroxymethyl Group Conformation in Methyl Aldohexopyranosides. J Phys Chem B 2024. [PMID: 38442069 DOI: 10.1021/acs.jpcb.3c08136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
MA'AT analysis (J. Chem. Inf. Model. 2022, 62, 3135-3141) has been applied to model exocyclic hydroxymethyl group conformation in methyl β-D-glucopyranoside (βGlcOMe), methyl β-D-galactopyranoside (βGalOMe), and methyl β-D-mannopyranoside (βManOMe) in an unbiased manner. Using up to eight NMR J-couplings sensitive to rotation about the C5-C6 bond (torsion angle ω), two-state models of ω were obtained that are qualitatively consistent with the relative populations of the gg, gt, and tg rotamers reported previously. MA'AT analysis gave consistent unbiased gt ⇌ tg models of ω in βGalOMe, with gt more populated than tg and mean values of ω for each population similar to those obtained from aqueous 1-μs MD simulation. Using different combinations of J-couplings had little effect on the βGalOMe model in terms of the mean values of ω and circular standard deviations (CSDs). In contrast, MA'AT analysis of ω in βGlcOMe and βManOMe produced more than one two-state model independent of the ensemble of J-values used in the analyses. These models were characterized by gg ⇌ gt conformer exchange as expected, but the mean values of ω in both conformers varied significantly in the different fits, especially for the gg rotamer. Constrained (biased) MA'AT analyses in which only staggered geometries about ω were allowed gave RMSDs slightly larger than those obtained from the unbiased fits, precluding an assignment of an unbiased model. It is unclear why MA'AT analysis gives consistent and predictable unbiased models of ω in βGalOMe but not in βGlcOMe and βManOMe. One possibility is that the distribution of ω in one or both of the gg and gt conformers in the latter does not conform to a von Mises function (i.e., is not Gaussian-like), but rather to a broad and/or flat distribution that cannot be fit by the current version of MA'AT. Nevertheless, the results of this study provide new evidence of the ability of MA'AT analysis to treat multi-state conformational exchange using only experimental NMR data, extending recent MA'AT applications to furanosyl ring pseudorotation (Biochemistry 2022, 61, 239-251).
Collapse
Affiliation(s)
- Reagan J Meredith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 ,United States
| | - Mi-Kyung Yoon
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 ,United States
| | - Ian Carmichael
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Anthony S Serianni
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 ,United States
| |
Collapse
|
9
|
Widmalm G. Glycan Shape, Motions, and Interactions Explored by NMR Spectroscopy. JACS AU 2024; 4:20-39. [PMID: 38274261 PMCID: PMC10807006 DOI: 10.1021/jacsau.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Glycans in the form of oligosaccharides, polysaccharides, and glycoconjugates are ubiquitous in nature, and their structures range from linear assemblies to highly branched and decorated constructs. Solution state NMR spectroscopy facilitates elucidation of preferred conformations and shapes of the saccharides, motions, and dynamic aspects related to processes over time as well as the study of transient interactions with proteins. Identification of intermolecular networks at the atomic level of detail in recognition events by carbohydrate-binding proteins known as lectins, unraveling interactions with antibodies, and revealing substrate scope and action of glycosyl transferases employed for synthesis of oligo- and polysaccharides may efficiently be analyzed by NMR spectroscopy. By utilizing NMR active nuclei present in glycans and derivatives thereof, including isotopically enriched compounds, highly detailed information can be obtained by the experiments. Subsequent analysis may be aided by quantum chemical calculations of NMR parameters, machine learning-based methodologies and artificial intelligence. Interpretation of the results from NMR experiments can be complemented by extensive molecular dynamics simulations to obtain three-dimensional dynamic models, thereby clarifying molecular recognition processes involving the glycans.
Collapse
Affiliation(s)
- Göran Widmalm
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|