1
|
Zhao Y, Xu C, Chen X, Jin H, Li H. Structural basis for hygromycin B inhibition of yeast pseudouridine-deficient ribosomes. SCIENCE ADVANCES 2025; 11:eadu0151. [PMID: 40173234 PMCID: PMC11963973 DOI: 10.1126/sciadv.adu0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Eukaryotic ribosomes are enriched with pseudouridine, particularly at the functional centers targeted by antibiotics. Here, we investigated the roles of pseudouridine in aminoglycoside-mediated translation inhibition by comparing the structural and functional properties of the yeast wild-type and the pseudouridine-free ribosomes. We showed that the pseudouridine-free ribosomes have decreased thermostability and high sensitivity to aminoglycosides. When presented with a model internal ribosomal entry site RNA, elongation factor eEF2, GTP (guanosine triphosphate), and sordarin, hygromycin B preferentially binds to the pseudouridine-free ribosomes during initiation by blocking eEF2 binding, stalling ribosomes in a nonrotated conformation. The structures captured hygromycin B bound at the intersubunit bridge B2a enriched with pseudouridine and a deformed codon-anticodon duplex, revealing a functional link between pseudouridine and aminoglycoside inhibition. Our results suggest that pseudouridine enhances both thermostability and conformational fitness of the ribosomes, thereby influencing their susceptibility to aminoglycosides.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Chong Xu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Hong Jin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
2
|
He Z, Qiu W, Zhou H. Promoted read-through and mutation against pseudouridine-CMC by an evolved reverse transcriptase. Commun Biol 2025; 8:40. [PMID: 39799263 PMCID: PMC11724883 DOI: 10.1038/s42003-025-07467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Pseudouridine (Ψ) is an abundant RNA chemical modification that plays critical biological functions. Current Ψ detection methods are limited in identifying Ψs at base-resolution in U-rich sequence contexts, where Ψ occurs frequently. Here we report "Mut-Ψ-seq" that utilizes the classic N-cyclohexyl N'-(2-morpholinoethyl)carbodiimide (CMC) agent and an evolved reverse transcriptase ("RT-1306") for Ψ mapping at base-resolution. CMC selectively labels Ψs in RNA forming the CMC-Ψ adduct and we show that RT-1306 presents promoted read-through and mutation against the CMC-Ψ. We report a high-confidence list of Ψ sites in polyA-enriched RNAs from HEK-293T cells identified by orthogonal chemical treatments (CMC and bisulfite). The mutation signatures resolve the position of Ψ in UU-containing sequences, revealing diverse occurrence of Ψs in such sequences. This work provides methods and datasets for biological research of Ψ, and expands the toolkit for epitranscriptomic studies by combining the reverse transcriptase engineering and selective chemical labeling strategies.
Collapse
Affiliation(s)
- Zhiyong He
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Weiqi Qiu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Huiqing Zhou
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
3
|
Zhao Y, Xu C, Chen X, Jin H, Li H. Unveil the Molecular Interplay between Aminoglycosides and Pseudouridine in IRES Translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614200. [PMID: 39345397 PMCID: PMC11429969 DOI: 10.1101/2024.09.20.614200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Eukaryotic ribosomes are enriched with pseudouridine, particularly at the functional centers targeted by antibiotics. Here we investigated the roles of pseudouridine in aminoglycoside-mediated translation inhibition by comparing the structural and functional properties of the wild-type ribosomes and those lacking pseudouridine ( cbf5 -D95A). We showed that the cbf5 -D95A ribosomes have decreased thermostability and high sensitivity to aminoglycosides. When presented with an internal ribosome entry site (IRES) RNA, elongation factor eEF2, GTP, sordarin, hygromycin B preferentially binds to the cbf5 -D95A ribosomes during initiation by blocking eEF2 binding and stalls the ribosomes in a non-rotated conformation, further hindering translocation. Hygromycin B binds to the inter-subunit bridge B2a that is known to be sensitive to pseudouridine, revealing a functional link between pseudouridine and aminoglycoside inhibition. Our results suggest that pseudouridine enhances both thermostability and conformational fitness of the ribosomes, thereby influencing their susceptibility to aminoglycosides. Highlights Loss of pseudouridine increases cell sensitivity to aminoglycosidesPseudouridine enhances ribosome thermostabilityHygromycin B competes with eEF2 for the non-rotated ribosomeHygromycin B deforms the codon-anticodon duplex.
Collapse
|
4
|
Cui L, Zheng J, Lin Y, Lin P, Lu Y, Zheng Y, Guo B, Zhao X. Decoding the ribosome's hidden language: rRNA modifications as key players in cancer dynamics and targeted therapies. Clin Transl Med 2024; 14:e1705. [PMID: 38797935 PMCID: PMC11128715 DOI: 10.1002/ctm2.1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Ribosomal RNA (rRNA) modifications, essential components of ribosome structure and function, significantly impact cellular proteomics and cancer biology. These chemical modifications transcend structural roles, critically shaping ribosome functionality and influencing cellular protein profiles. In this review, the mechanisms by which rRNA modifications regulate both rRNA functions and broader cellular physiological processes are critically discussed. Importantly, by altering the translational output, rRNA modifications can shift the cellular equilibrium towards oncogenesis, thus playing a key role in cancer development and progression. Moreover, a special focus is placed on the functions of mitochondrial rRNA modifications and their aberrant expression in cancer, an area with profound implications yet largely uncharted. Dysregulation in these modifications can lead to metabolic dysfunction and apoptosis resistance, hallmark traits of cancer cells. Furthermore, the current challenges and future perspectives in targeting rRNA modifications are highlighted as a therapeutic approach for cancer treatment. In conclusion, rRNA modifications represent a frontier in cancer research, offering novel insights and therapeutic possibilities. Understanding and harnessing these modifications can pave the way for breakthroughs in cancer treatment, potentially transforming the approach to combating this complex disease.
Collapse
Affiliation(s)
- Li Cui
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdongChina
- Division of Oral Biology and Medicine, School of DentistryUniversity of
California, Los AngelesLos AngelesUSA
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Yunfan Lin
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdongChina
| | - Pei Lin
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdongChina
| | - Ye Lu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdongChina
| | - Yucheng Zheng
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdongChina
| | - Bing Guo
- Department of Dentistry, The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Xinyuan Zhao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
5
|
Direct Electrochemistry & Enzyme Characterization of Fresh Tobacco RNA. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
D'Ascenzo L, Popova AM, Abernathy S, Sheng K, Limbach PA, Williamson JR. Pytheas: a software package for the automated analysis of RNA sequences and modifications via tandem mass spectrometry. Nat Commun 2022; 13:2424. [PMID: 35505047 PMCID: PMC9065004 DOI: 10.1038/s41467-022-30057-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/12/2022] [Indexed: 12/23/2022] Open
Abstract
Mass spectrometry is an important method for analysis of modified nucleosides ubiquitously present in cellular RNAs, in particular for ribosomal and transfer RNAs that play crucial roles in mRNA translation and decoding. Furthermore, modifications have effect on the lifetimes of nucleic acids in plasma and cells and are consequently incorporated into RNA therapeutics. To provide an analytical tool for sequence characterization of modified RNAs, we developed Pytheas, an open-source software package for automated analysis of tandem MS data for RNA. The main features of Pytheas are flexible handling of isotope labeling and RNA modifications, with false discovery rate statistical validation based on sequence decoys. We demonstrate bottom-up mass spectrometry characterization of diverse RNA sequences, with broad applications in the biology of stable RNAs, and quality control of RNA therapeutics and mRNA vaccines.
Collapse
Affiliation(s)
- Luigi D'Ascenzo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.
| | - Anna M Popova
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Scott Abernathy
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH, USA
| | - Kai Sheng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
7
|
Tang XM, Ye TT, You XJ, Yin XM, Ding JH, Shao WX, Chen MY, Yuan BF, Feng YQ. Mass spectrometry profiling analysis enables the identification of new modifications in ribosomal RNA. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Zhao Y, Rai J, Yu H, Li H. CryoEM structures of pseudouridine-free ribosome suggest impacts of chemical modifications on ribosome conformations. Structure 2022; 30:983-992.e5. [PMID: 35489333 DOI: 10.1016/j.str.2022.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/07/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Pseudouridine, the most abundant form of RNA modification, is known to play important roles in ribosome function. Mutations in human DKC1, the pseudouridine synthase responsible for catalyzing the ribosome RNA modification, cause translation deficiencies and are associated with a complex cancer predisposition. The structural basis for how pseudouridine impacts ribosome function remains uncharacterized. Here, we characterized structures and conformations of a fully modified and a pseudouridine-free ribosome from Saccharomyces cerevisiae in the absence of ligands or when bound with translocation inhibitor cycloheximide by electron cryomicroscopy. In the modified ribosome, the rearranged N1 atom of pseudouridine is observed to stabilize key functional motifs by establishing predominately water-mediated close contacts with the phosphate backbone. The pseudouridine-free ribosome, however, is devoid of such interactions and displays conformations reflective of abnormal inter-subunit movements. The erroneous motions of the pseudouridine-free ribosome may explain its observed deficiencies in translation.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Jay Rai
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Hongguo Yu
- Biological Science Department, Florida State University, Tallahassee, FL 32306, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
9
|
Abstract
SignificanceThe presence of RNA chemical modifications has long been known, but their precise molecular consequences remain unknown. 2'-O-methylation is an abundant modification that exists in RNA in all domains of life. Ribosomal RNA (rRNA) represents a functionally important RNA that is heavily modified by 2'-O-methylations. Although abundant at functionally important regions of the rRNA, the contribution of 2'-O-methylations to ribosome activities is unknown. By establishing a method to disturb rRNA 2'-O-methylation patterns, we show that rRNA 2'-O-methylations affect the function and fidelity of the ribosome and change the balance between different ribosome conformational states. Our work links 2'-O-methylation to ribosome dynamics and defines a set of critical rRNA 2'-O-methylations required for ribosome biogenesis and others that are dispensable.
Collapse
|
10
|
Feng YJ, You XJ, Ding JH, Zhang YF, Yuan BF, Feng YQ. Identification of Inosine and 2'- O-Methylinosine Modifications in Yeast Messenger RNA by Liquid Chromatography-Tandem Mass Spectrometry Analysis. Anal Chem 2022; 94:4747-4755. [PMID: 35266699 DOI: 10.1021/acs.analchem.1c05292] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The discovery of reversible modifications in messenger RNA (mRNA) opens new research directions in RNA modification-mediated epigenetic regulation. Yeast is an extensively used model organism in molecular biology. Systematic investigation and profiling of modifications in yeast mRNA would promote our understanding of the physiological regulation mechanisms in yeast. However, due to the high abundance of ribosomal RNA (rRNA) and transfer RNA (tRNA) in total RNA, isolation of low abundance of mRNA frequently suffers from the contamination of rRNA and tRNA, which will lead to the false-positive determination and inaccurate quantification of modifications in mRNA. Therefore, obtaining high-purity mRNA is critical for precise determination and accurate quantification of modifications in mRNA, especially for studies that focus on discovering new ones. Herein, we proposed a successive orthogonal isolation method by combining polyT-based purification and agarose gel electrophoresis purification for extracting high-purity mRNA. With the extracted high-purity yeast mRNA, we systemically explored the modifications in yeast mRNA by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. The results showed that in addition to the previously reported eight kinds of modifications, two novel modifications of inosine (Ino) and 2'-O-methylinosine (Im) were identified to be prevalent in yeast mRNA. It is worth noting that Im was reported for the first time, to the best of our knowledge, to exist in living organisms in the three domains of life. Moreover, we observed that the levels of 10 kinds of modifications including Ino and Im in yeast mRNA exhibited dynamic change at different growth stages of yeast cells. Furthermore, Im in mRNA showed a significant decrease while in response to H2O2 treatment. These results indicated that the two newly identified modifications in yeast mRNA were involved in yeast cell growth and response to environmental stress. Taken together, we reported two new modifications of Ino and Im in yeast mRNA, which expends the diversity of RNA modifications in yeast and also suggests new regulators for modulating yeast physiological functions.
Collapse
Affiliation(s)
- Ya-Jing Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xue-Jiao You
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jiang-Hui Ding
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yu-Fan Zhang
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Public Health, Wuhan University, Wuhan 430071, China
| |
Collapse
|
11
|
Abstract
Modifications are present on many classes of RNA, including tRNA, rRNA, and mRNA. These modifications modulate diverse biological processes such as genetic recoding and mRNA export and folding. In addition, modifications can be introduced to RNA molecules using chemical probing strategies that reveal RNA structure and dynamics. Many methods exist to detect RNA modifications by short-read sequencing; however, limitations on read length inherent to short-read-based methods dissociate modifications from their native context, preventing single-molecule modification analysis. Here, we demonstrate direct RNA nanopore sequencing to detect endogenous and exogenous RNA modifications on long RNAs at the single-molecule level. We detect endogenous 2'-O-methyl and base modifications across E. coli and S. cerevisiae ribosomal RNAs as shifts in current signal and dwell times distally through interactions with the helicase motor protein. We further use the 2'-hydroxyl reactive SHAPE reagent acetylimidazole to probe RNA structure at the single-molecule level with readout by direct nanopore sequencing. Stephenson et al. employ direct RNA nanopore sequencing to detect endogenous and exogenous modifications on single RNA molecules. The authors demonstrate detection of endogenous 2'-O-methylation (Nm) on native ribosomal RNAs, confirming known modification patterns. They describe the development of nanoSHAPE, a method that involves exogenously labeling RNA with a small-adduct-generating chemical probe that can reveal RNA structure using long-read sequencing.
Collapse
|
12
|
Georgeson J, Schwartz S. The ribosome epitranscriptome: inert-or a platform for functional plasticity? RNA (NEW YORK, N.Y.) 2021; 27:1293-1301. [PMID: 34312287 PMCID: PMC8522695 DOI: 10.1261/rna.078859.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A universal property of all rRNAs explored to date is the prevalence of post-transcriptional ("epitranscriptional") modifications, which expand the chemical and topological properties of the four standard nucleosides. Are these modifications an inert, constitutive part of the ribosome? Or could they, in part, also regulate the structure or function of the ribosome? In this review, we summarize emerging evidence that rRNA modifications are more heterogeneous than previously thought, and that they can also vary from one condition to another, such as in the context of a cellular response or a developmental trajectory. We discuss the implications of these results and key open questions on the path toward connecting such heterogeneity with function.
Collapse
Affiliation(s)
- Joseph Georgeson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
13
|
Martinez-Seidel F, Beine-Golovchuk O, Hsieh YC, Eshraky KE, Gorka M, Cheong BE, Jimenez-Posada EV, Walther D, Skirycz A, Roessner U, Kopka J, Pereira Firmino AA. Spatially Enriched Paralog Rearrangements Argue Functionally Diverse Ribosomes Arise during Cold Acclimation in Arabidopsis. Int J Mol Sci 2021; 22:6160. [PMID: 34200446 PMCID: PMC8201131 DOI: 10.3390/ijms22116160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Ribosome biogenesis is essential for plants to successfully acclimate to low temperature. Without dedicated steps supervising the 60S large subunits (LSUs) maturation in the cytosol, e.g., Rei-like (REIL) factors, plants fail to accumulate dry weight and fail to grow at suboptimal low temperatures. Around REIL, the final 60S cytosolic maturation steps include proofreading and assembly of functional ribosomal centers such as the polypeptide exit tunnel and the P-Stalk, respectively. In consequence, these ribosomal substructures and their assembly, especially during low temperatures, might be changed and provoke the need for dedicated quality controls. To test this, we blocked ribosome maturation during cold acclimation using two independent reil double mutant genotypes and tested changes in their ribosomal proteomes. Additionally, we normalized our mutant datasets using as a blank the cold responsiveness of a wild-type Arabidopsis genotype. This allowed us to neglect any reil-specific effects that may happen due to the presence or absence of the factor during LSU cytosolic maturation, thus allowing us to test for cold-induced changes that happen in the early nucleolar biogenesis. As a result, we report that cold acclimation triggers a reprogramming in the structural ribosomal proteome. The reprogramming alters the abundance of specific RP families and/or paralogs in non-translational LSU and translational polysome fractions, a phenomenon known as substoichiometry. Next, we tested whether the cold-substoichiometry was spatially confined to specific regions of the complex. In terms of RP proteoforms, we report that remodeling of ribosomes after a cold stimulus is significantly constrained to the polypeptide exit tunnel (PET), i.e., REIL factor binding and functional site. In terms of RP transcripts, cold acclimation induces changes in RP families or paralogs that are significantly constrained to the P-Stalk and the ribosomal head. The three modulated substructures represent possible targets of mechanisms that may constrain translation by controlled ribosome heterogeneity. We propose that non-random ribosome heterogeneity controlled by specialized biogenesis mechanisms may contribute to a preferential or ultimately even rigorous selection of transcripts needed for rapid proteome shifts and successful acclimation.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Olga Beine-Golovchuk
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- Heidelberg University, Biochemie-Zentrum, Nuclear Pore Complex and Ribosome Assembly, 69120 Heidelberg, Germany
| | - Yin-Chen Hsieh
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- Institute for Arctic and Marine Biology, UiT Arctic University of Norway, 9037 Tromsø, Norway
| | - Kheloud El Eshraky
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Michal Gorka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Bo-Eng Cheong
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Malaysia
| | - Erika V. Jimenez-Posada
- Grupo de Biotecnología-Productos Naturales, Universidad Tecnológica de Pereira, Pereira 660003, Colombia;
- Emerging Infectious Diseases and Tropical Medicine Research Group—Sci-Help, Pereira 660009, Colombia
| | - Dirk Walther
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Aleksandra Skirycz
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Joachim Kopka
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| | - Alexandre Augusto Pereira Firmino
- Willmitzer Department, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (O.B.-G.); (Y.-C.H.); (K.E.E.); (M.G.); (B.-E.C.); (D.W.); (A.S.); (J.K.); (A.A.P.F.)
| |
Collapse
|
14
|
Cheng MY, Tao WB, Yuan BF, Feng YQ. Methods for isolation of messenger RNA from biological samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:289-298. [PMID: 33300893 DOI: 10.1039/d0ay01912g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
RNA molecules contain many chemical modifications that can regulate a variety of biological processes. Messenger RNA (mRNA) molecules are critical components in the central dogma of molecular biology. The discovery of reversible chemical modifications in eukaryotic mRNA brings forward a new research field in RNA modification-mediated regulation of gene expression. The modifications in mRNA generally exist in low abundance. The use of highly pure mRNA is critical for the confident identification of new modifications as well as for the accurate quantification of existing modifications in mRNA. In addition, isolation of highly pure mRNA is the first step in many biological research studies. Therefore, the methods for isolating highly pure mRNA are important for mRNA-based downstream studies. A variety of methods for isolating mRNA have been developed in the past few decades and new methods continuously emerge. This review focuses on the methodologies and protocols for isolating mRNA populations. In addition, we discuss the advantages and limitations of these methods. We hope this paper will provide a general view of mRNA isolation strategies and facilitate studies that involve mRNA modifications and functions.
Collapse
Affiliation(s)
- Ming-Yu Cheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | | | | | | |
Collapse
|
15
|
Detecting Internal N7-Methylguanosine mRNA Modifications by Differential Enzymatic Digestion Coupled with Mass Spectrometry Analysis. Methods Mol Biol 2021; 2298:247-259. [PMID: 34085250 DOI: 10.1007/978-1-0716-1374-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recent discovery of reversible chemical modifications on mRNA has opened a new era of post-transcriptional gene regulation in eukaryotes. Among these modifications identified in eukaryotic mRNA, N7-methylguanosine (m7G) is unique owing to its presence in the 5' cap structure. Recently, it has been reported that m7G also exists internally in mRNA. Here, we describe a protocol of combining differential enzymatic digestion with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis to detect internal m7G modification in mRNA. This protocol can also be used to quantify the level of m7G at both the 5' cap and internal positions of mRNA.
Collapse
|
16
|
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Naturally occurring modified ribonucleosides. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1595. [PMID: 32301288 PMCID: PMC7694415 DOI: 10.1002/wrna.1595] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Phillip J. McCown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Agnieszka Ruszkowska
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Charlotte N. Kunkler
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Kurtis Breger
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jacob P. Hulewicz
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew C. Wang
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Noah A. Springer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jessica A. Brown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
17
|
Cheng QY, Xiong J, Ma CJ, Dai Y, Ding JH, Liu FL, Yuan BF, Feng YQ. Chemical tagging for sensitive determination of uridine modifications in RNA. Chem Sci 2020; 11:1878-1891. [PMID: 34123281 PMCID: PMC8148390 DOI: 10.1039/c9sc05094a] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The discovery of dynamic and reversible modifications in messenger RNA (mRNA) is opening new directions in RNA modification-mediated regulation of biological processes. Methylation is the most prevalent modification occurring in mRNA and the methyl group is mainly decorated in the adenine, cytosine, and guanine base or in the 2′-hydroxyl group of ribose. However, methylation of the uracil base (5-methyluridine, m5U) has not been discovered in mRNA of eukaryotes. In the current study, we established a method of N-cyclohexyl-N′-β-(4-methylmorpholinium) ethylcarbodiimide p-toluenesulfonate (CMCT) labelling coupled with liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) analysis for the sensitive determination of uridine modifications in RNA. Our results demonstrated that the detection sensitivities of uridine modifications in RNA increased up to 1408 fold upon CMCT labelling. Using the developed method, we identified the distinct existence of m5U in mRNA of various mammalian cells and tissues. In addition, the stable isotope tracing monitored by mass spectrometry revealed that the methyl group of m5U originated from S-adenosyl-l-methionine (SAM). Our study expanded the list of modifications occurring in mRNA of mammals. Future work on transcriptome-wide mapping of m5U will further uncover the functional roles of m5U in mRNA of mammals. The discovery of dynamic and reversible modifications in messenger RNA is opening new directions in RNA modification-mediated regulation of biological processes.![]()
Collapse
Affiliation(s)
- Qing-Yun Cheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P.R. China +86-27-68755595 +86-27-68755595
| | - Jun Xiong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P.R. China +86-27-68755595 +86-27-68755595
| | - Cheng-Jie Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P.R. China +86-27-68755595 +86-27-68755595
| | - Yi Dai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P.R. China +86-27-68755595 +86-27-68755595
| | - Jiang-Hui Ding
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P.R. China +86-27-68755595 +86-27-68755595
| | - Fei-Long Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P.R. China +86-27-68755595 +86-27-68755595
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P.R. China +86-27-68755595 +86-27-68755595
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P.R. China +86-27-68755595 +86-27-68755595
| |
Collapse
|
18
|
Computational and NMR studies of RNA duplexes with an internal pseudouridine-adenosine base pair. Sci Rep 2019; 9:16278. [PMID: 31700156 PMCID: PMC6838189 DOI: 10.1038/s41598-019-52637-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 10/03/2019] [Indexed: 01/28/2023] Open
Abstract
Pseudouridine (Ψ) is the most common chemical modification present in RNA. In general, Ψ increases the thermodynamic stability of RNA. However, the degree of stabilization depends on the sequence and structural context. To explain experimentally observed sequence dependence of the effect of Ψ on the thermodynamic stability of RNA duplexes, we investigated the structure, dynamics and hydration of RNA duplexes with an internal Ψ-A base pair in different nearest-neighbor sequence contexts. The structures of two RNA duplexes containing 5′-GΨC/3′-CAG and 5′-CΨG/3′-GAC motifs were determined using NMR spectroscopy. To gain insight into the effect of Ψ on duplex dynamics and hydration, we performed molecular dynamics (MD) simulations of RNA duplexes with 5′-GΨC/3′-CAG, 5′-CΨG/3′-GAC, 5′-AΨU/3′-UAA and 5′-UΨA/3′-AAU motifs and their unmodified counterparts. Our results showed a subtle impact from Ψ modification on the structure and dynamics of the RNA duplexes studied. The MD simulations confirmed the change in hydration pattern when U is replaced with Ψ. Quantum chemical calculations showed that the replacement of U with Ψ affected the intrinsic stacking energies at the base pair steps depending on the sequence context. The calculated intrinsic stacking energies help to explain the experimentally observed sequence dependent changes in the duplex stability from Ψ modification.
Collapse
|
19
|
Fleming AM, Alenko A, Kitt JP, Orendt AM, Flynn PF, Harris JM, Burrows CJ. Structural Elucidation of Bisulfite Adducts to Pseudouridine That Result in Deletion Signatures during Reverse Transcription of RNA. J Am Chem Soc 2019; 141:16450-16460. [PMID: 31538776 DOI: 10.1021/jacs.9b08630] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent report of RBS-Seq to map simultaneously the epitranscriptomic modifications N1-methyladenosine, 5-methylcytosine, and pseudouridine (Ψ) via bisulfite treatment of RNA provides a key advance to locate these important modifications. The locations of Ψ were found by a deletion signature generated during cDNA synthesis after bisulfite treatment for which the chemical details of the reaction are poorly understood. In the present work, the bisulfite reaction with Ψ was explored to identify six isomers of bisulfite adducted to Ψ. We found four of these adducts involved the heterocyclic ring, similar to the reaction with other pyrimidines. The remaining two adducts were bonded to the 1' carbon, which resulted in opening of the ribose ring. The utilization of complementary 1D- and 2D-NMR, Raman, and electronic circular dichroism spectroscopies led to the assignment of the two ribose adducts being the constitutional isomers of an S- and an O-adduct of bisulfite to the ribose, and these are the final products after heating. A mechanistic proposal is provided to rationalize chemically the formation and stereochemistries of all six isomeric bisulfite adducts to Ψ; conversion of intermediate adducts to the two final products is proposed to involve E2, SN2', and [2,3]-sigmatropic shift reactions. Lastly, a synthetic RNA template with Ψ at a known location was treated with bisulfite, leading to a deletion signature after reverse transcription, supporting the RBS-Seq report. This classical bisulfite reaction used for epigenomic and epitranscriptomic sequencing diverges from the C nucleoside Ψ to form stable bisulfite end products that yield signatures for next-generation sequencing.
Collapse
|
20
|
Chen B, Xiong J, Ding JH, Yuan BF, Feng YQ. Analysis of the Effects of Cr(VI) Exposure on mRNA Modifications. Chem Res Toxicol 2019; 32:2078-2085. [DOI: 10.1021/acs.chemrestox.9b00249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Ma CJ, Ding JH, Ye TT, Yuan BF, Feng YQ. AlkB Homologue 1 Demethylates N3-Methylcytidine in mRNA of Mammals. ACS Chem Biol 2019; 14:1418-1425. [PMID: 31188562 DOI: 10.1021/acschembio.8b01001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RNA contains diverse modifications that exert important influences in a variety of cellular processes. So far more than 150 modifications have been identified in various RNA species, mainly in rRNA and tRNA. Recent research advances in RNA modifications have been sparked by the discovery of dynamic and reversible modifications in mRNA. Moving beyond the abundant tRNA and rRNA to mRNA is opening new directions in understanding RNA modification-mediated regulation of gene expression. Recently, it was reported that N3-methylcytidine (m3C) existed in mRNA of mammalian cells, and methyltransferase-like 8 (METTL8) was identified to be the writer enzyme of m3C. However, little is known about the eraser enzyme of m3C in mRNA. In the current study, we found that the AlkB homologue 1 (ALKBH1) was capable of demethylating m3C in mRNA of mammalian cells in vitro. Overexpression and knockdown of ALKBH1 in cultured human cells can induce decrease and increase of the level of m3C in mRNA, respectively, revealing the eraser enzyme property of ALKBH1 on m3C in mRNA. In addition, we observed significant decrease of the level of m3C in mRNA in hepatocellular carcinoma (HCC) tissues compared to tumor-adjacent normal tissues, which could be attributed to the increased expression of ALKBH1 as well as the decreased expression of METTL8 in HCC tissues. These results indicated that m3C in mRNA may play certain roles in tumorigenesis. Our study shed light on understanding the demethylation of m3C in mRNA.
Collapse
Affiliation(s)
- Cheng-Jie Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Jiang-Hui Ding
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Tian-Tian Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
- Sauvage Center for Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
22
|
Waduge P, Sakakibara Y, Chow CS. Chemical probing for examining the structure of modified RNAs and ligand binding to RNA. Methods 2019; 156:110-120. [DOI: 10.1016/j.ymeth.2018.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/04/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022] Open
|
23
|
Affiliation(s)
- Bei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
24
|
Lan MD, Xiong J, You XJ, Weng XC, Zhou X, Yuan BF, Feng YQ. Existence of Diverse Modifications in Small-RNA Species Composed of 16-28 Nucleotides. Chemistry 2018; 24:9949-9956. [PMID: 29756662 DOI: 10.1002/chem.201801640] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 11/11/2022]
Abstract
RNA contains diverse modifications that exert an important influence in a variety of cellular processes. So far, more than 150 modifications have been identified in various RNA species, mainly in ribosomal RNA (rRNA), transfer RNA (tRNA), and messenger RNA (mRNA). In contrast to rRNA, tRNA, and mRNA, the known modifications in small RNA species have been primarily limited to 2'-O-ribose methylation in plants and inosine in mammals. The methylation of small RNAs in mammals is still unclear. Current methods widely used in the characterization of small RNAs are mainly based on the strategy of nucleic acid hybridization and sequencing, which cannot characterize modifications in small RNAs. Herein, we have systematically investigated modifications in small RNAs composed of 16-28 nucleotides (nt) by establishing an effective isolation and neutral enzymatic digestion of small RNAs in combination with liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). This method allowed us to simultaneously detect 57 different types of nucleoside modification. By using this approach, we revealed 24 modifications in small RNAs comprising 16-28 nt from human cells. In addition, we found that the obesity-associated protein (FTO) may demethylate N6 -methyladenosine (m6 A) and N6 ,2'-O-dimethyladenosine (m6 Am) in small RNAs of 16-28 nt. Our study demonstrates the existence of diverse modifications in small RNAs composed of 16-28 nt, which may promote in-depth understanding of the regulatory roles of noncoding RNAs.
Collapse
Affiliation(s)
- Meng-Dan Lan
- Key Laboratory of Analytical Chemistry for, Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Jun Xiong
- Key Laboratory of Analytical Chemistry for, Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Xue-Jiao You
- Key Laboratory of Analytical Chemistry for, Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Xiao-Cheng Weng
- Key Laboratory of Analytical Chemistry for, Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Xiang Zhou
- Key Laboratory of Analytical Chemistry for, Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for, Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for, Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| |
Collapse
|
25
|
|
26
|
Sakakibara Y, Chow CS. Pseudouridine modifications influence binding of aminoglycosides to helix 69 of bacterial ribosomes. Org Biomol Chem 2017; 15:8535-8543. [PMID: 28959821 PMCID: PMC5663508 DOI: 10.1039/c7ob02147j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Development of antibiotics that target new regions of functionality is a possible way to overcome antibiotic resistance. In this study, the interactions of aminoglycoside antibiotics with helix 69 of the E. coli 23S rRNA in the context of complete 70S ribosomes or the isolated 50S subunit were investigated by using chemical probing and footprinting analysis. Helix 69 is a dynamic RNA motif that plays major roles in bacterial ribosome activity. Neomycin, paromomycin, and gentamicin interact with the stem region of helix 69 in complete 70S ribosomes, but have diminished binding to the isolated 50S subunit. Pseudouridine modifications in helix 69 were shown to impact the aminoglycoside interactions. These results suggest a requirement for a specific conformational state of helix 69 for efficient aminoglycoside binding, and imply that this motif may be a suitable target for mechanism-based therapeutics.
Collapse
Affiliation(s)
- Yogo Sakakibara
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | | |
Collapse
|
27
|
Small methyltransferase RlmH assembles a composite active site to methylate a ribosomal pseudouridine. Sci Rep 2017; 7:969. [PMID: 28428565 PMCID: PMC5430550 DOI: 10.1038/s41598-017-01186-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/23/2017] [Indexed: 11/24/2022] Open
Abstract
Eubacterial ribosomal large-subunit methyltransferase H (RlmH) methylates 23S ribosomal RNA pseudouridine 1915 (Ψ1915), which lies near the ribosomal decoding center. The smallest member of the SPOUT superfamily of methyltransferases, RlmH lacks the RNA recognition domain found in larger methyltransferases. The catalytic mechanism of RlmH enzyme is unknown. Here, we describe the structures of RlmH bound to S-adenosyl-methionine (SAM) and the methyltransferase inhibitor sinefungin. Our structural and biochemical studies reveal catalytically essential residues in the dimer-mediated asymmetrical active site. One monomer provides the SAM-binding site, whereas the conserved C-terminal tail of the second monomer provides residues essential for catalysis. Our findings elucidate the mechanism by which a small protein dimer assembles a functionally asymmetric architecture.
Collapse
|
28
|
The importance of being (slightly) modified: The role of rRNA editing on gene expression control and its connections with cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:330-338. [PMID: 27815156 DOI: 10.1016/j.bbcan.2016.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/12/2016] [Accepted: 10/30/2016] [Indexed: 12/22/2022]
Abstract
In human ribosomal RNAs, over 200 residues are modified by specific, RNA-driven enzymatic complexes or stand-alone, RNA-independent enzymes. In most cases, modification sites are placed in specific positions within important functional areas of the ribosome. Some evidence indicates that the altered control in ribosomal RNA modifications may affect ribosomal function during mRNA translation. Here we provide an overview of the connections linking ribosomal RNA modifications to ribosome function, and suggest how aberrant modifications may affect the control of the expression of key cancer genes, thus contributing to tumor development. In addition, the future perspectives in this field are discussed.
Collapse
|
29
|
Grosjean H, Westhof E. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res 2016; 44:8020-40. [PMID: 27448410 PMCID: PMC5041475 DOI: 10.1093/nar/gkw608] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/11/2016] [Accepted: 06/17/2016] [Indexed: 12/25/2022] Open
Abstract
The principles of mRNA decoding are conserved among all extant life forms. We present an integrative view of all the interaction networks between mRNA, tRNA and rRNA: the intrinsic stability of codon-anticodon duplex, the conformation of the anticodon hairpin, the presence of modified nucleotides, the occurrence of non-Watson-Crick pairs in the codon-anticodon helix and the interactions with bases of rRNA at the A-site decoding site. We derive a more information-rich, alternative representation of the genetic code, that is circular with an unsymmetrical distribution of codons leading to a clear segregation between GC-rich 4-codon boxes and AU-rich 2:2-codon and 3:1-codon boxes. All tRNA sequence variations can be visualized, within an internal structural and energy framework, for each organism, and each anticodon of the sense codons. The multiplicity and complexity of nucleotide modifications at positions 34 and 37 of the anticodon loop segregate meaningfully, and correlate well with the necessity to stabilize AU-rich codon-anticodon pairs and to avoid miscoding in split codon boxes. The evolution and expansion of the genetic code is viewed as being originally based on GC content with progressive introduction of A/U together with tRNA modifications. The representation we present should help the engineering of the genetic code to include non-natural amino acids.
Collapse
Affiliation(s)
- Henri Grosjean
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 15 rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|