1
|
Li Y, Kim MH, Xie Z, Min J, Li Y. Microelectrodes for Battery Materials. ACS NANO 2024; 18:35119-35129. [PMID: 39688558 DOI: 10.1021/acsnano.4c12573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The ability to measure current and voltage is core to both fundamental study and engineering of electrochemical systems, including batteries for energy storage. Electrochemical measurements have traditionally been conducted on macroscopic electrodes on the order of 1 cm or larger. In this Perspective, we review recent developments in using microscopic electrodes (<100 μm) for the study of battery materials. Microelectrodes allow us to explore spatiotemporal regimes that are not accessible with macroscopic electrodes. Temporally, microelectrodes can generate ultrahigh current densities, enabling the distinction between solid electrolyte interphase (SEI) kinetics and metal deposition kinetics. Spatially, they confine electrochemistry to single particles, allowing us to study their intrinsic properties. We outline future opportunities for the use of microelectrodes for future studies of battery systems. We propose their use for analyzing the electrochemistry of other reactive metals and exploring the potential of combining them with in situ imaging techniques.
Collapse
Affiliation(s)
- Yiyang Li
- Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Min-Ho Kim
- Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Zhangdi Xie
- Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Jinhong Min
- Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuzhang Li
- Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Kim KJ, Han Y, Kwon SJ. Exploring single-entity electrochemistry beyond conventional potential windows: mechanistic insights into hydrazine/hydrazinium ion oxidation. NANOSCALE 2024; 16:18488-18493. [PMID: 39264321 DOI: 10.1039/d4nr02942a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Single-entity electrochemistry (SEE) enables research into the electrochemical properties of nanoparticles (NPs) at the individual NP level. Recent studies on active particle-active electrode systems have expanded the scope of SEE measurements, moving beyond the limitations of inert electrode-based methods that rely on distinct NP-electrode catalytic differences, thereby enhancing mechanistic understanding of catalytic reactions. In this study, we investigated SEE signals from Pt NPs colliding with Au ultramicroelectrodes (UME) at elevated potentials where both Pt and Au UME exhibit electrocatalytic activity. Under conditions where Au UME is activated for hydrazine oxidation, distinctive combined spike and staircase current responses were observed. SEE signals exhibited varied shapes depending on pH and hydrazine concentration. Analyzing these variations provided insights into changes in reaction mechanisms according to pH and hydrazine concentration.
Collapse
Affiliation(s)
- Ki Jun Kim
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea.
| | - Yujin Han
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea.
| | - Seong Jung Kwon
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Korea.
| |
Collapse
|
3
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Singletary T, Drazer G, Marschilok AC, Takeuchi ES, Takeuchi KJ, Colosqui CE. Kinetic trapping of nanoparticles by solvent-induced interactions. NANOSCALE 2024; 16:5374-5382. [PMID: 38375739 DOI: 10.1039/d3nr06469g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Theoretical analysis based on mean field theory indicates that solvent-induced interactions (i.e. structural forces due to the rearrangement of wetting solvent molecules) not considered in DLVO theory can induce the kinetic trapping of nanoparticles at finite nanoscale separations from a well-wetted surface, under a range of ubiquitous physicochemical conditions for inorganic nanoparticles of common materials (e.g., metal oxides) in water or simple molecular solvents. This work proposes a simple analytical model that is applicable to arbitrary materials and simple solvents to determine the conditions for direct particle-surface contact or kinetic trapping at finite separations, by using experimentally measurable properties (e.g., Hamaker constants, interfacial free energies, and nanoparticle size) as input parameters. Analytical predictions of the proposed model are verified by molecular dynamics simulations and numerical solution of the Smoluchowski diffusion equation.
Collapse
Affiliation(s)
- Troy Singletary
- Mechanical Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA.
| | - German Drazer
- Mechanical and Aerospace Engineering Department, Rutgers University, NJ 08854, USA
| | - Amy C Marschilok
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| | - Esther S Takeuchi
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| | - Kenneth J Takeuchi
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| | - Carlos E Colosqui
- Mechanical Engineering Department, Stony Brook University, Stony Brook, NY 11794, USA.
- The Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, NY 11794, USA
| |
Collapse
|
5
|
Liu EZ, Popescu SR, Eden A, Chung J, Roehrich B, Sepunaru L. The role of applied potential on particle sizing precision in single-entity blocking electrochemistry. Electrochim Acta 2023; 472:143397. [PMID: 39070043 PMCID: PMC11283758 DOI: 10.1016/j.electacta.2023.143397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Blocking electrochemistry, a subfield of single-entity electrochemistry, enables in-situ sizing of redox-inactive particles. This method exploits the adsorptive impact of individual insulating particles on a microelectrode, which decreases the electrochemically active surface area of the electrode. Against the background of an electroactive redox reaction in solution, each individual impacting particle results in a discrete current drop, with the magnitude of the drop corresponding to the size of the blocking particle. One significant limitation of this technique is "edge effects", resulting from the inhomogeneous flux of the redox species' diffusion due to increased mass transport to the edge of the disk electrode surface. "Edge effects" cause increased errors in size detection, resulting in poor analytical precision. Here, we use computational simulations to demonstrate that inhomogeneous diffusional edge flux of quasi-reversible redox species is mitigated at lowered overpotentials. This phenomenon is further illustrated experimentally by lowering the applied potential such that the system is operating under a kinetically-controlled regime instead of a diffusion-limited regime, which mitigates edge effects and increases particle sizing precision significantly. In addition, we found this method to be generalizable, as the precision enhancement is not limited to geometrically spherical particles but also occurs for cubic particles. This work presents a simple, novel methodology for edge effect mitigation with general applicability across different particle types.
Collapse
Affiliation(s)
- Eric Z. Liu
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Sofia Rivalta Popescu
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Alexander Eden
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Julia Chung
- Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Brian Roehrich
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, United States
| |
Collapse
|
6
|
Guo J, Zhu Y, Miao P. Nano-Impact Electrochemical Biosensing Based on a CRISPR-Responsive DNA Hydrogel. NANO LETTERS 2023; 23:11099-11104. [PMID: 37966867 DOI: 10.1021/acs.nanolett.3c03448] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Nano-impact electrochemistry (NIE) enables simple, rapid, and high-throughput biocoupling and biomolecular recognition. However, the low effective collision frequency limits the sensitivity. In this study, we propose a novel NIE sensing strategy amplified by the CRISPR-responsive DNA hydrogel and cascade DNA assembly. By controlling the phase transition of DNA hydrogel and the self-electrolysis of silver nanoparticles, we can obtain significant electrochemical responses. The whole process includes target miRNA-induced strand displacement amplification, catalytic hairpin assembly, and CRISPR/Cas trans-cutting. Thus, ultrahigh sensitivity is promised. This NIE biosensing strategy achieves a limit of detection as low as 4.21 aM for miR-141 and demonstrates a high specificity for practical applications. It may have wide applicability in nucleic acid sensing and shows great potential in disease diagnosis.
Collapse
Affiliation(s)
- Jiarong Guo
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yulin Zhu
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Peng Miao
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
7
|
Zheng J, Li J, Fu Q, Zhang L, Zhu X, Liao Q. Boosting Carbon Dioxide Reduction in a Photocatalytic Fuel Cell with a Bubbling Fluidized Cathode: Dual Function of Titanium Carbide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16182-16190. [PMID: 37906836 DOI: 10.1021/acs.langmuir.3c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Photoelectrochemical reduction of carbon dioxide (CO2) is a promising avenue to realize resourceful utilization of carbon dioxide and mitigate the energy shortage. Herein, a photocatalytic fuel cell with a bubbling fluidized cathode (PFC-BFC) is proposed to increase the performance of the photocatalytic CO2 reduction reaction (CO2RR). Titanium carbide (Ti3C2) is first used as a fluidized cathode catalyst with the dual features of superior capacitance and high CO2RR catalytic activity. Compared with the conventional PFC system, the as-proposed PFC-BFC system exhibits a higher gas production performance. Particularly, the generation rate and Faraday efficiency for CH4 production reach to 37.2 μmol g-1 h-1 and 72%, which are 10.9 and 6.5 times higher than that of the conventional PFC system, respectively. The bubbling fluidized cathode allows a rapid electron transfer between catalysts and the current collector and an efficient diffusion of catalysts in the whole solution, thus remarkably increasing the effective reaction area of the CO2RR. In addition, the fluidized reaction mechanism of charging/discharging-coupled CO2RR is investigated. Significantly, a magnified PFC-BFC system is designed and exhibits a similar gas generation rate compared to that of the small-scale system, indicating a good potential of scaling up in the industry applications. These results demonstrated that the proposed PFC-BFC system can maximize the utilization of catalyst active sites and enhance the reaction kinetics, providing an alternative design for the application of CO2RR.
Collapse
Affiliation(s)
- Jili Zheng
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Jun Li
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Qian Fu
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Liang Zhang
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Xun Zhu
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Qiang Liao
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| |
Collapse
|
8
|
Qiu X, Dai Q, Tang H, Li Y. Multiplex Assays of MicroRNAs by Using Single Particle Electrochemical Collision in a Single Run. Anal Chem 2023; 95:13376-13384. [PMID: 37603691 DOI: 10.1021/acs.analchem.3c02892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
It is important to quantify multiple biomarkers in a single run due to the advantages of precious samples and diagnostic accuracy. Based on the distinguishability of two types of current signals from single particle electrochemical collision (SPEC), step-type current transients produced by Pt nanoparticles (PtNPs) catalyzed hydrazine oxidation and peak-type current transients produced by Ag nanoparticles (AgNPs) oxidation, a kind of multiplex immunoassay of target microRNAs (miRNA-21 and Let-7a) have been established during SPEC in a single run. When the single-stranded DNA (ssDNA1) that was perfectly complementary to miRNA-21 was coupled to the surface of PtNPs, the SPEC of PtNPs electrocatalysis was inhibited and the step-type current transients disappeared, while the single-stranded DNA (ssDNA2) that was perfectly complementary to Let-7a was coupled to the surface of AgNPs, the SPEC of AgNPs oxidation was inhibited, and the peak-type current transients disappeared, thus the signals were in the "off" state at this time. After that, miRNA-21 and Let-7a were added into solution, complementary base pairing disrupted the weak DNA-NP interaction and restored the electrocatalysis of PtNPs and the electrooxidation of AgNPs, and the step-type current signals and peak-type current signals were in the "on" state. Moreover, the frequencies from two different recovered signals (PtNPs catalysis and AgNPs oxidation) corresponded to the amount of added miRNA-21 and Let-7a, thus a multiplex immunoassay method for dual quantification of miRNA-21 and Let-7a in a single run was established.
Collapse
Affiliation(s)
- Xia Qiu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Qingshan Dai
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, People's Republic of China
| |
Collapse
|
9
|
Chung J, Plaxco KW, Sepunaru L. Precise Electrochemical Sizing of Individual Electro-Inactive Particles. J Vis Exp 2023:10.3791/65116. [PMID: 37590554 PMCID: PMC11332252 DOI: 10.3791/65116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Nanoimpact electrochemistry enables the time-resolved in situ characterization (e.g., size, catalytic activity) of single nanomaterial units, providing a means of elucidating heterogeneities that would be masked in ensemble studies. To implement this technique with redox inactive particles, a solution-phase redox reaction is used to produce a steady-state background current on a disk ultramicroelectrode. When a particle adsorbs onto the electrode, it produces a stepwise reduction in the exposed electrode area, which produces, in turn, a stepwise decrease in the current commensurate with the size of the adsorbing species. Historically, however, nanoimpact electrochemistry has suffered from "edge effects," in which the radial diffusion layer formed at the circumference of the ultramicroelectrodes renders the step size dependent not only on the size of the particle but also on where it lands on the electrode. The introduction of electrocatalytic current generation, however, mitigates the heterogeneity caused by edge effects, thus improving the measurement precision. In this approach, termed "electrocatalytic interruption," a substrate that regenerates the redox probe at the diffusion layer is introduced. This shifts the rate-limiting step of the current generation from diffusion to the homogeneous reaction rate constant, thus reducing flux heterogeneity and increasing the precision of particle sizing by an order of magnitude. The protocol described here explains the set-up and data collection employed in nanoimpact experiments implementing this effect for improved precision in the sizing of redox in-active materials.
Collapse
Affiliation(s)
- Julia Chung
- Interdepartmental Program in Biomedical Science and Engineering, University of California at Santa Barbara
| | - Kevin W Plaxco
- Interdepartmental Program in Biomedical Science and Engineering, University of California at Santa Barbara; Department of Chemistry and Biochemistry, University of California at Santa Barbara
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California at Santa Barbara;
| |
Collapse
|
10
|
Wu J, Gao Y, Pan N, Lu L, Wang X. An isolated single-particle-based SECM tip interface for single-cell NO sensing. Biosens Bioelectron 2023; 223:115048. [PMID: 36587444 DOI: 10.1016/j.bios.2022.115048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/10/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
As a key factor in cellular metabolic processes, nitric oxide (NO) is a challenging target for in situ real-time monitoring due to its transient property and short diffusion distance. Scanning electrochemical microscopy (SECM) has unique advantages in single-cell analysis, which can obtain the electrochemical current by scanning the cell surface with a tip microelectrode. In particular, it can further improved the electrochemical response by enhancing the interface properties of its tip. Here, an interface design strategy based on platinum single nanoparticle (Pt NP) was developed, and fluorinated self-assembled monolayers (SAMs) were used to further improve its performance. This modified tip was used as an SECM probe for NO concentration monitoring and morphological imaging of single MCF-7 cells. It has the high sensitivity (164.7 μA/μM·cm2) and good selectivity for NO detection, which benefits from the efficient catalytic properties of Pt NPs and high mass transport and hydrophobic antifouling properties of the interface. Notably, it shows a superior performance in detecting the fluctuation of NO released by a single MCF-7-cell under the stimulation of cadmium (Cd), which demonstrates a promising method for using a single-particle-based tip in SECM applications.
Collapse
Affiliation(s)
- Jiening Wu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Yafang Gao
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Na Pan
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, PR China; Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry and Biology, Beijing University of Technology, Beijing, 100124, PR China.
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry and Biology, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
11
|
Lu SM, Chen JF, Wang HF, Hu P, Long YT. Mass Transport and Electron Transfer at the Electrochemical-Confined Interface. J Phys Chem Lett 2023; 14:1113-1123. [PMID: 36705310 DOI: 10.1021/acs.jpclett.2c03479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single entity measurements based on the stochastic collision electrochemistry provide a promising and versatile means to study single molecules, single particles, single droplets, etc. Conceptually, mass transport and electron transfer are the two main processes at the electrochemically confined interface that underpin the most transient electrochemical responses resulting from the stochastic and discrete behaviors of single entities at the microscopic scale. This perspective demonstrates how to achieve controllable stochastic collision electrochemistry by effectively altering the two processes. Future challenges and opportunities for stochastic collision electrochemistry are also highlighted.
Collapse
Affiliation(s)
- Si-Min Lu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023P. R. China
| | - Jian-Fu Chen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Hai-Feng Wang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Peijun Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, BelfastBT9 5AG, U.K
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023P. R. China
| |
Collapse
|
12
|
Gao H, Xu J, Liu C, Wang F, Sun H, Wang Q, Zhou M. Precise Polishing and Electrochemical Applications of Quartz Nanopipette-Based Carbon Nanoelectrodes. Anal Chem 2022; 94:14092-14098. [PMID: 36191159 DOI: 10.1021/acs.analchem.2c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quartz nanopipette-based carbon nanoelectrodes (CNEs) have attracted extensive attention in nanoscale electrochemistry due to their simple and efficient fabrication, chemically inert materials, flexible size (down to a few nanometers), and ultrathin insulating encapsulation. However, these pristine CNEs usually have significantly irregular morphology on the surface, which greatly limits the applications where inlaid nanodisks are urgently needed. To address this critical issue, we have developed a new precise polishing strategy using paraffin coating protection (i.e., avoiding breakage of quartz materials) and real-time monitoring with a high impedance meter (i.e., indicating electrode exposure) to produce flat carbon nanodisk electrodes. The surface flatness of polished CNEs has been confirmed by a combination of scanning electron microscopy, fast-scan cyclic voltammetry, and scanning electrochemical microscopy. As compared to the expensive focused ion beam processing, this strategy is competitive in terms of the low cost and availability of the equipment and enables the preparation of polished CNEs with sufficiently small size. The flattened CNEs have been exemplified for grafting molecular catalysts to achieve the durable catalysis of reactive molecules or for immobilizing single-particle electrocatalysts to measure the intrinsic activity under sufficient mass-transfer rates.
Collapse
Affiliation(s)
- Han Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianan Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Chen Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fei Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Haotian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Qian Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing 100190, China
| | - Min Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
13
|
Jiang B, Gu W, Jiang W, Lv M, Niu B, Wu X, Wang W, Wang H. Directly Imaging Dynamic Electronic Coupling during Electrochemical Oxidation of Single Silver Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202209964. [DOI: 10.1002/anie.202209964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Bo Jiang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Wenjie Gu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications Nanjing Jiangsu 210023 China
| | - Wenxuan Jiang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Mengqi Lv
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Ben Niu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Xue‐Jun Wu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
14
|
Jiang B, Gu W, Jiang W, Lv M, Niu B, Wu XJ, Wang W, Wang H. Directly Imaging Dynamic Electronic Coupling during Electrochemical Oxidation of Single Silver Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bo Jiang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Wenjie Gu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Wenxuan Jiang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Mengqi Lv
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Ben Niu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Xue-Jun Wu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Wei Wang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hui Wang
- Nanjing University Nanjing Xianlin road No. 163 CHINA
| |
Collapse
|
15
|
Tufa LT, Tran VT, Jeong KJ, Gicha BB, Gonfa BA, Lee J. Electrochemical Investigation of Porosity in Core-Shell Magnetoplasmonic Nanoparticles. J Phys Chem Lett 2022; 13:6085-6092. [PMID: 35759217 DOI: 10.1021/acs.jpclett.2c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Porous core-shell nanoparticles (NPs) have emerged as a promising material for broad ranges of applications in catalysts, material chemistry, biology, and optical sensors. Using a typical Ag core-Fe3O4 shell NP, a.k.a., magnetoplasmonic (MagPlas) NP, two porous shell models were prepared: i.e., Ag@Fe3O4 NPs and its SiO2-covered NPs (Ag@Fe3O4@SiO2). We suggested using cyclic voltammetry (CV) to provide unprecedented insight into the porosity of the core-shell NPs caused by the applied potential, resulting in the selective redox activities of the core and porous shell components of Ag@Fe3O4 NPs and Ag@Fe3O4@SiO2 NPs at different cycles of CV. The porous and nonporous core-shell nanostructures were qualitatively and quantitatively determined by the electrochemical method. The ratio of the oxidation current peak (μA) of Ag to Ag+ in the porous shell to that in the SiO2 coated (nonporous) shell was 400:3.2. The suggested approach and theoretical background could be extended to other types of multicomponent NP complexes.
Collapse
Affiliation(s)
- Lemma Teshome Tufa
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Van Tan Tran
- Faculty of Biotechnology, Chemistry, and Environmental Engineering, Phenikaa University, Hanoi 10000, Vietnam
| | - Ki-Jae Jeong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Birhanu Bayissa Gicha
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
- Environmental Science Program, Haramaya University, P.O. Box 138, Dire Dawa, Ethiopia
| | - Bedasa Abdisa Gonfa
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
16
|
Qiu X, Tang H, Dong J, Wang C, Li Y. Stochastic Collision Electrochemistry from Single Pt Nanoparticles: Electrocatalytic Amplification and MicroRNA Sensing. Anal Chem 2022; 94:8202-8208. [PMID: 35642339 DOI: 10.1021/acs.analchem.2c00116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-particle collisions have made many achievements in basic research, but challenges still exist due to their low collision frequency and selectivity in complex samples. In this work, we developed an "on-off-on" strategy based on Pt nanoparticles (PtNPs) that catalyze N2H4 collision signals on the surface of carbon ultramicroelectrodes and established a new method for the detection of miRNA21 with high selectivity and sensitivity. PtNPs catalyze the reduction of N2H4 on the surface of carbon ultramicroelectrodes to generate a stepped collision signal, which is in the "on" state. The single-stranded DNA paired with miRNA21 is coupled with PtNPs to form the complex DNA/PtNPs. Because PtNPs are covered by DNA, the electrocatalytic collision of N2H4 oxidation is inhibited. At this time, the signal is in the "off" state. When miRNA21 is added, the strong complementary pairing between miRNA21 and DNA destroys the electrostatic adsorption of DNA/PtNP conjugates and restores the electrocatalytic performance of PtNPs, and the signal is in the "on" state again. Based on this, a new method for detecting miRNA21 was established. It provides a new way for small-molecule sensing and has a wide range of applications in electroanalysis, electrocatalysis, and biosensing.
Collapse
Affiliation(s)
- Xia Qiu
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Jingyi Dong
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Chaohui Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| |
Collapse
|
17
|
Shan Y, Deng X, Lu X, Gao C, Li Y, Chen Q. Surface facets dependent oxygen evolution reaction of single Cu2O nanoparticles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Huang K, Crooks RM. Enhanced electrocatalytic activity of Cu-modified, high-index single Pt NPs for formic acid oxidation. Chem Sci 2022; 13:12479-12490. [PMID: 36349269 PMCID: PMC9628932 DOI: 10.1039/d2sc03433f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
A key goal of nanoparticle-based catalysis research is to correlate the structure of nanoparticles (NPs) to their catalytic function. The most common approach for achieving this goal is to synthesize ensembles of NPs, characterize the ensemble, and then evaluate its catalytic properties. This approach is effective, but it excludes the certainty of structural heterogeneity in the NP ensemble. One means of addressing this shortcoming is to carry out analyses on individual NPs. This approach makes it possible to establish direct correlations between structures of single NPs and, in the case reported here, their electrocatalytic properties. Accordingly, we report on enhanced electrocatalytic formic acid oxidation (FAO) activity using individual Cu-modified, high-indexed Pt NPs. The results show that the Cu-modified Pt NPs exhibit significantly higher currents for FAO than the Pt-only analogs. The increased activity is enabled by the Cu submonolayer on the highly stepped Pt surface, which enhances the direct FAO pathway but not the indirect pathway which proceeds via surface-absorbed CO*. Single-crystal Pt nanoparticles with a diameter of ∼200 nm were electrosynthesized, covered with a single monolayer of Cu, and then fully characterized. The resulting materials exhibit excellent electrocatalytic properties for formic acid oxidation.![]()
Collapse
Affiliation(s)
- Ke Huang
- Department of Chemistry, Texas Materials Institute, The University of Texas at Austin, 100 E. 24th St., Stop A1590, Austin, Texas, 78712, USA
| | - Richard M. Crooks
- Department of Chemistry, Texas Materials Institute, The University of Texas at Austin, 100 E. 24th St., Stop A1590, Austin, Texas, 78712, USA
| |
Collapse
|
19
|
Alpuche‐Aviles MA. Particle Impact Electrochemistry. ENCYCLOPEDIA OF ELECTROCHEMISTRY 2021:1-30. [DOI: 10.1002/9783527610426.bard030110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Experiments involving collisions between a single entity and the electrode surface have become an active area of research. The electrochemical contribution of individual nanoparticles (NPs), enzymes, and other entities, such as aggregates or agglomerates, can be determined using particle impact experiments. Destructive nanoimpact experiments of materials, such as Ag, and the electrocatalytic amplification (ECA) are used to detect the NP/electrode interactions. This review covers the seminal work, critical theoretical studies, and some recent applications. The applications to electrocatalysis include measurements of electron transfer rate constants on individual nanoparticles. Applications in analytical chemistry have allowed the detection of nonelectroactive species by detecting the collisions of soft materials, e.g. micellar suspensions and proteins have increased the technique's analytical possibilities. With ECA, NPs can be used as tags for the electrochemical detection of bioanalytes such as DNA, proteins, and liposomes. The theory of ECA collisions, including frequency of collision and the size of the electrochemical current transients, are also covered. For nanoimpacts, the charge measured during a NP electrolysis, such as Ag NP, is used to detect the NP. Measurements of NP diameter are possible, but limitations to this analysis are covered. The electron transfer studies to the electrolysis of Ag and of metal oxides are discussed. Finally, key experimental instrumentations are discussed, including instrumentation techniques for the small currents inherent to single NP measurement. The effect of filtering, instrumentations rise time, and sampling frequency are also covered.
Collapse
|
20
|
Chung J, Hertler P, Plaxco KW, Sepunaru L. Catalytic Interruption Mitigates Edge Effects in the Characterization of Heterogeneous, Insulating Nanoparticles. J Am Chem Soc 2021; 143:18888-18898. [PMID: 34735140 DOI: 10.1021/jacs.1c04971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blocking electrochemistry, a subfield of nanochemistry, enables nondestructive, in situ measurement of the concentration, size, and size heterogeneity of highly dilute, nanometer-scale materials. This approach, in which the adsorptive impact of individual particles on a microelectrode prevents charge exchange with a freely diffusing electroactive redox mediator, has expanded the scope of electrochemistry to the study of redox-inert materials. A limitation, however, remains: inhomogeneous current fluxes associated with enhanced mass transfer occurring at the edges of planar microelectrodes confound the relationship between the size of the impacting particle and the signal it generates. These "edge effects" lead to the overestimation of size heterogeneity and, thus, poor sample characterization. In response, we demonstrate here the ability of catalytic current amplification (EC') to reduce this problem, an effect we term "electrocatalytic interruption". Specifically, we show that the increase in mass transport produced by a coupled chemical reaction significantly mitigates edge effects, returning estimated particle size distributions much closer to those observed using ex situ electron microscopy. In parallel, electrocatalytic interruption enhances the signal observed from individual particles, enabling the detection of particles significantly smaller than is possible via conventional blocking electrochemistry. Finite element simulations indicate that the rapid chemical kinetics created by this approach contributes to the amplification of the electronic signal to restore analytical precision and reliably detect and characterize the heterogeneity of nanoscale electro-inactive materials.
Collapse
Affiliation(s)
- Julia Chung
- Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Phoebe Hertler
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Kevin W Plaxco
- Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, California 93106, United States.,Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
21
|
Pan S, Li X, Yadav J. Single-nanoparticle spectroelectrochemistry studies enabled by localized surface plasmon resonance. Phys Chem Chem Phys 2021; 23:19120-19129. [PMID: 34524292 DOI: 10.1039/d1cp02801d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review describes recent progress of spectroelectrochemistry (SEC) analysis of single metallic nanoparticles (NPs) which have strong surface plasmon resonance properties. Dark-field scattering (DFS), photoluminescence (PL), and electrogenerated chemiluminescence (ECL) are three commonly used optical methods to detect individual NPs and investigate their local redox activities in an electrochemical cell. These SEC methods are highly dependent on a strong light-scattering cross-section of plasmonic metals and their electrocatalytic characteristics. The surface chemistry and the catalyzed reaction mechanism of single NPs and their chemical transformations can be studied using these SEC methods. Recent progress in the experimental design and fundamental understanding of single-NP electrochemistry and catalyzed reactions using DFS, PL, and ECL is described along with selected examples from recent publications in this field. Perspectives on the challenges and possible solutions for these SEC methods and potential new directions are discussed.
Collapse
Affiliation(s)
- Shanlin Pan
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Xiao Li
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Jeetika Yadav
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
22
|
Saha P, Rahman MM, Hill CM. Borohydride oxidation electrocatalysis at individual, shape‐controlled Au nanoparticles. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Partha Saha
- Department of Chemistry University of Wyoming Laramie Wyoming USA
| | | | - Caleb M. Hill
- Department of Chemistry University of Wyoming Laramie Wyoming USA
| |
Collapse
|
23
|
Zhao H, Ma J, Zuo X, Li F. Electrochemical Analysis for Multiscale Single Entities on the Confined Interface
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Haipei Zhao
- School of Chemistry and Chemical Engineering, and Institute of Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Jinliang Ma
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, and Institute of Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
24
|
Jiang W, Wei W, Yuan T, Liu S, Niu B, Wang H, Wang W. Tracking the optical mass centroid of single electroactive nanoparticles reveals the electrochemically inactive zone. Chem Sci 2021; 12:8556-8562. [PMID: 34221337 PMCID: PMC8221172 DOI: 10.1039/d1sc01623g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The inevitable microstructural defects, including cracks, grain boundaries and cavities, make a portion of the material inaccessible to electrons and ions, becoming the incentives for electrochemically inactive zones in single entity. Herein, we introduced dark field microscopy to study the variation of scattering spectrum and optical mass centroid (OMC) of single Prussian blue nanoparticles during electrochemical reaction. The "dark zone" embedded in a single electroactive nanoparticle resulted in the incomplete reaction, and consequently led to the misalignment of OMC for different electrochemical intermediate states. We further revealed the dark zones such as lattice defects in the same entity, which were externally manifested as the fixed pathway for OMC for the migration of potassium ions. This method opens up enormous potentiality to optically access the heterogeneous intraparticle dark zones, with implications for evaluating the crystallinity and electrochemical recyclability of single electroactive nano-objects.
Collapse
Affiliation(s)
- Wenxuan Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Wei Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Tinglian Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Shasha Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Ben Niu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University 210023 China
| |
Collapse
|
25
|
Deng H, Peljo P, Huang X, Smirnov E, Sarkar S, Maye S, Girault HH, Mandler D. Ionosomes: Observation of Ionic Bilayer Water Clusters. J Am Chem Soc 2021; 143:7671-7680. [PMID: 33978400 DOI: 10.1021/jacs.0c12250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Emulsification of immiscible two-phase fluids, i.e., one condensed phase dispersed homogeneously as tiny droplets in an outer continuous medium, plays a key role in medicine, food, chemical separations, cosmetics, fabrication of micro- and nanoparticles and capsules, and dynamic optics. Herein, we demonstrate that water clusters/droplets can be formed in an organic phase via the spontaneous assembling of ionic bilayers. We term these clusters ionosomes, by analogy with liposomes where water clusters are encapsulated in a bilayer of lipid molecules. The driving force for the generation of ionosomes is a unique asymmetrical electrostatic attraction at the water/oil interface: small and more mobile hydrated ions reside in the inner aqueous side, which correlate tightly with the lipophilic bulky counterions in the adjacent outer oil side. These ionosomes can be formed through electrochemical (using an external power source) or chemical (by salt distribution) polarization at the liquid-liquid interface. The charge density of the cations, the organic solvent, and the synergistic effects between tetraethylammonium and lithium cations, all affecting the formation of ionosomes, were investigated. These results clearly prove that a new emulsification strategy is developed providing an alternative and generic platform, besides the canonical emulsification procedure with either ionic or nonionic surfactants as emulsifiers. Finally, we also demonstrate the detection of individual ionosomes via single-entity electrochemistry.
Collapse
Affiliation(s)
- Haiqiang Deng
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, People's Republic of China
| | - Pekka Peljo
- Research Group of Physical Electrochemistry and Electrochemical Physics, Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, PO Box 16100, 00076 Aalto, Finland.,Laboratoire d'Electrochimie Physique et Analytique, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Rue de I'Industrie, 17, 1951 Sion, Switzerland.,Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, 20014 Turun Yliopisto, Finland
| | - Xinjian Huang
- Institute of Intelligent Perception, Midea Corporate Research Center, Foshan 528311, People's Republic of China
| | - Evgeny Smirnov
- Laboratoire d'Electrochimie Physique et Analytique, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Rue de I'Industrie, 17, 1951 Sion, Switzerland.,Laboratory of Bioanalytical Methods and Optical Sensor Systems, Department of Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Sujoy Sarkar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Sunny Maye
- Laboratoire d'Electrochimie Physique et Analytique, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Rue de I'Industrie, 17, 1951 Sion, Switzerland
| | - Hubert H Girault
- Laboratoire d'Electrochimie Physique et Analytique, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Rue de I'Industrie, 17, 1951 Sion, Switzerland
| | - Daniel Mandler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
26
|
Lee J, Lee J, Song S, Kim B. Single Microcystis Detection Through Electrochemical Collision Events on Ultramicroelectrodes. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jeeho Lee
- Department of Chemistry Sookmyung Women's University Seoul 04310 South Korea
| | - Jungeun Lee
- Department of Chemistry Sookmyung Women's University Seoul 04310 South Korea
| | - Sua Song
- Department of Chemistry Sookmyung Women's University Seoul 04310 South Korea
| | - Byung‐Kwon Kim
- Department of Chemistry Sookmyung Women's University Seoul 04310 South Korea
| |
Collapse
|
27
|
Lin M, Zhou Y, Bu L, Bai C, Tariq M, Wang H, Han J, Huang X, Zhou X. Single-Nanoparticle Coulometry Method with High Sensitivity and High Throughput to Study the Electrochemical Activity and Oscillation of Single Nanocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007302. [PMID: 33719172 DOI: 10.1002/smll.202007302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/16/2021] [Indexed: 06/12/2023]
Abstract
To explore nanocatalysts with high electro-catalytic performance and less loading of precious metals, efforts have been made to develop electrochemical methods with high spatial resolution at the single nanoparticle level. Herein, a highly sensitive single-nanoparticle coulometry method is successfully developed to study the electrochemical activity and oscillation of single PtTe nanocatalysts. Based on microbattery reactions involving the formic acid electro-oxidation and the deposition of Ag on the single PtTe nanocatalyst surface, this method enables the transition from the undetectable sub-fA electric signal of the formic acid electro-oxidation into strong localized surface plasmon resonance scattering signal of Ag detected by dark-field microscopy. The lowest limiting current for a single nanocatalyst is found to be as low as 25.8 aA. Different trends of activity versus the formic acid concentration and types of activity of the single nanocatalyst have been discovered. Unveiled frequency-amplitude graph shows that the two electrochemical oscillation modes of low frequency with high amplitude and vice versa coexist in a single PtTe nanocatalyst, indicating the abundantly smooth surfaces and defects of nanocatalysts. This conducted study will open up the new avenue for further behavioral and mechanistic investigation of more types of nanocatalysts in the electrochemistry community.
Collapse
Affiliation(s)
- Mohan Lin
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou, 215123, China
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yingke Zhou
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Materials Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lingzheng Bu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chuang Bai
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou, 215123, China
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Muhammad Tariq
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Huihui Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou, 215123, China
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jinli Han
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoqing Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaochun Zhou
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou, 215123, China
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
28
|
Sodium de-insertion processes in single Na TMO2 particles studied by an electrochemical collision method: O3 phases versus P2 phases. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
29
|
Luo F, Chen F, Xiong Y, Wu Z, Zhang X, Wen W, Wang S. Single-Particle Electrochemical Biosensor with DNA Walker Amplification for Ultrasensitive HIV-DNA Counting. Anal Chem 2021; 93:4506-4512. [PMID: 33677958 DOI: 10.1021/acs.analchem.0c04861] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Single-particle electrochemical collision has gained great achievements in fundamental research, but it is challenging to use in practice on account of its low collision frequency and the interference of the complex matrix in actual samples. Here, magnetic separation and DNA walker amplification were integrated to build a robust and sensitive single-particle electrochemical biosensor. Magnetic nanobeads (MBs) can specifically capture and separate targets from complex samples, which not only ensures the anti-interference capability of this method but also avoids the aggregation of platinum nanoparticles (Pt NPs) caused by numerous coexisting substances. A low amount of targets can lead to the release of more Pt NPs and the generation of more collision current transients, realizing cyclic amplification. Compared with simple hybridization, a DNA walker can improve the collision frequency by about 3-fold, greatly enhancing detection sensitivity, and a relationship between collision frequency and target concentration is used to realize quantification. The biosensor realized an ultrasensitive detection of 4.86 fM human immunodeficiency virus DNA (HIV-DNA), which is 1-4 orders of magnitude lower than that of traditional methods. The successful HIV-DNA detection in complex systems (serum and urine) demonstrated a great promising application in real samples and in the development of new single-entity biosensors.
Collapse
Affiliation(s)
- Fanwei Luo
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Fei Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yi Xiong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
30
|
Wang H, Yang C, Tang H, Li Y. Stochastic Collision Electrochemistry from Single G-Quadruplex/Hemin: Electrochemical Amplification and MicroRNA Sensing. Anal Chem 2021; 93:4593-4600. [PMID: 33660976 DOI: 10.1021/acs.analchem.0c05055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stochastic collision electrochemistry is a hot topic in single molecule/particle research, which provides an opportunity to investigate the details of the single molecule/particle reaction mechanism that is always masked in ensemble-averaged measurements. In this work, we develop an electrochemical amplification strategy to monitor the electrocatalytic behavior of single G-quadruplex/hemin (GQH) for the reaction between hydrogen peroxide and hydroquinone (HQ) through the collision upon a gold nanoelectrode. The intrinsic peroxidase activities of single GQH were investigated by stochastic collision electrochemical measurements, giving further insights into understanding biocatalytic processes. Based on the unique catalytic activity of GQH, we have also designed a hybridization chain reaction strategy to detect miRNA-15 with good selectivity and sensitivity. This work provided a meaningful strategy to investigate the electrochemical amplification and the broad application for nucleic acid sensing at the single molecule/particle level.
Collapse
Affiliation(s)
- Hao Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Cheng Yang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
31
|
Li XR, Zhou YG. Electrochemical detection of circulating tumor cells: A mini review. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
32
|
Yu RJ, Xu SW, Paul S, Ying YL, Cui LF, Daiguji H, Hsu WL, Long YT. Nanoconfined Electrochemical Sensing of Single Silver Nanoparticles with a Wireless Nanopore Electrode. ACS Sens 2021; 6:335-339. [PMID: 33373192 DOI: 10.1021/acssensors.0c02327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Single entity electrochemistry (SEE) has emerged as a promising method for precise measurement and fundamental understanding of the heterogeneity of single entities. Herein, we propose the dual responsive SEE sensing of the silver nanoparticles (AgNPs) collisions through a wireless nanopore electrode (WNE). Given the high temporal resolution and low background noise features, the Faradaic and capacitive currents provide the AgNPs' collision response. The electron transfer between the AgNPs and the electrode surface is identified under a bipolar electrochemical mechanism. Compared to the ultramicroelectrode, multistep oxidation of 30 nm AgNPs is observed due to the decreased interaction of the nanoparticles to the electrode. Moreover, the nanoconfinement of WNE plays a vital role in the repeated capturing of nanoparticles from the nontunneling region into the tunneling region until a complete oxidation. As a comparison, the collision of 5 nm AgNPs with higher interaction at the electrode surface shows great decrease in the multistep events. Thus, we propose a nanoconfined interaction based SEE method which could be used for simultaneously capturing the Faradaic and capacitive response. The nanoconfined interaction based SEE method holds great promise in the better understanding of heterogeneity of single particles.
Collapse
Affiliation(s)
- Ru-Jia Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Su-Wen Xu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Soumyadeep Paul
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Ling-Fei Cui
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Hirofumi Daiguji
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Wei-Lun Hsu
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
33
|
Yuan T, Wei W, Jiang W, Wang W. Vertical Diffusion of Ions within Single Particles during Electrochemical Charging. ACS NANO 2021; 15:3522-3528. [PMID: 33560133 DOI: 10.1021/acsnano.1c00431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Determining the trajectory of ionic transport and diffusion within single electroactive nanomaterials is critical for understanding the charging kinetics and capacity fading associated with ion batteries, with implications for rational design of excellent-performance electrode materials. While the horizontal pathway of mass transport has been feasibly investigated by optical superlocalization methods and electron microscopes, determination on the vertical trajectory has proven a more challenging task. Herein, we developed dual-angle total internal reflection microscopy by simultaneously introducing different angle-dependent illumination depths to trace the optical centroid shifts of nano-objects in the vertical dimension. We first demonstrated the proof of concept by resolving the vertical moving trails of a nanosphere doing Brownian motion and subsequently explored the picture of mass transport in the interior of single Prussian blue (PB) particles during electrochemical cycling. The results indicated that the vertical centroids of single PB particles remained unchanged when ions were inserted or extracted, suggesting an outside-in ionic transport pathway instead of bottom-up trajectory that one would intuitively expect.
Collapse
Affiliation(s)
- Tinglian Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenxuan Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
34
|
Gao L, Sun J, Wang L, Fan Q, Zhu G, Guo H, Sun X. Highly sensitive real-time detection of intracellular oxidative stress and application in mycotoxin toxicity evaluation based on living single-cell electrochemical sensors. Analyst 2021; 146:1444-1454. [PMID: 33410840 DOI: 10.1039/d0an02015j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Single-cell electrochemical sensor is widely used in the local selective detection of single living cells because of its high spatial-temporal resolution and sensitivity, as well as its ability to obtain comprehensive cellular physiological states and processes with increased accuracy. Functionalized nanoprobes can detect the oxidative stress response of cells in single-cell electrochemical sensors. Moreover, the T-2 toxin is one of the most toxic mycotoxins and widely occurs in field crops. T-2 toxin can cause mitochondrial damage in cells and increase intracellular reactive oxygen species (ROS) in various cells. As the most representative free radical of intracellular ROS, H2O2 can effectively reflect the toxic effects of intracellular T-2 toxin. In this study, a functionalized gold nanoprobe was used to dynamically monitor the production of H2O2 in a single live human hepatoma cell HepG2 stimulated by mycotoxin T-2. The concentration of H2O2 produced by HepG2 cells stimulated by T-2 toxin at 1 ppb-1 ppm was linearly correlated, R2 = 0.99055, and LOD = 0.13807 ng mL-1. Sample spiking experiments were conducted, and the recovery rate of spiking was 81.19%-130.17%. A comparative analysis of differences in the current produced by multiple toxins, HT-29 cells, as well as single cells in cell populations, was performed. This method can be applied in real-time monitoring of mycotoxin toxicity during food processing in living cells and provides a novel idea for enhancing food quality and safety in a nanoenvironment.
Collapse
Affiliation(s)
- Lu Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Pendergast AD, Deng Z, Maroun F, Renault C, Dick JE. Revealing Dynamic Rotation of Single Graphene Nanoplatelets on Electrified Microinterfaces. ACS NANO 2021; 15:1250-1258. [PMID: 33325229 DOI: 10.1021/acsnano.0c08406] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoparticles interact with a variety of interfaces, from cell walls for medicinal applications to conductive interfaces for energy storage and conversion applications. Unfortunately, quantifying dynamic changes of nanoparticles near interfaces is difficult. While optical techniques exist to study nanoparticle dynamics, motions smaller than the diffraction limit are difficult to quantify. Single-entity electrochemistry has high sensitivity, but the technique suffers from ambiguity in the entity's size, morphology, and collision location. Here, we combine optical microscopy, single-entity electrochemistry, and numerical simulations to elucidate the dynamic motion of graphene nanoplatelets at a gold ultramicroelectrode (radius ∼5 μm). The approach of conductive graphene nanoplatelets, suspended in 10 μM NaOH, to an ultramicroelectrode surface was tracked optically during the continuous oxidation of ferrocenemethanol. Optical microscopy confirmed the nanoplatelet size, morphology, and collision location on the ultramicroelectrode. Nanoplatelets collided on the ultramicroelectrode at an angle, θ, enhancing the electroactive area, resulting in a sharp increase in current. After the collision, the nanoplatelets reoriented to lay flat on the electrode surface, which manifested as a return to the baseline current in the amperometric current-time response. Through correlated finite element simulations, we extracted single nanoplatelet angular velocities on the order of 0.5-2°/ms. These results are a necessary step forward in understanding nanoparticle dynamics at the nanoscale.
Collapse
Affiliation(s)
- Andrew D Pendergast
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zejun Deng
- Physique de la Matière Condensée, CNRS, Ecole Polytechnique, 91128 Palaiseau, France
| | - Fouad Maroun
- Physique de la Matière Condensée, CNRS, Ecole Polytechnique, 91128 Palaiseau, France
| | - Christophe Renault
- Physique de la Matière Condensée, CNRS, Ecole Polytechnique, 91128 Palaiseau, France
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
36
|
Pendergast AD, Renault C, Dick JE. Correlated Optical-Electrochemical Measurements Reveal Bidirectional Current Steps for Graphene Nanoplatelet Collisions at Ultramicroelectrodes. Anal Chem 2021; 93:2898-2906. [PMID: 33491447 DOI: 10.1021/acs.analchem.0c04409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Single-entity electrochemistry has emerged as a powerful tool to study the adsorption behavior of single nanoscale entities one-at-a-time on an ultramicroelectrode surface. Classical single-entity collision studies have focused on the behavior of spherical nanoparticles or entities where the orientation of the colliding entity does not impact the electrochemical response. Here, we report a detailed study of the collision of asymmetric single graphene nanoplatelets onto ultramicroelectrodes. The collision of conductive graphene nanoplatelets on biased ultramicroelectrode surfaces can be observed in an amperometric i-t trace, revealing a variety of current transients (both positive and negative steps). To elucidate the dynamics of nanoplatelet adsorption processes and probe response heterogeneity, we correlated the collision events with optical microscopy. We show that positive steps are due to nanoplatelets coming into contact with the ultramicroelectrode, making an electrical connection, and adsorbing partly on the glass surrounding the ultramicroelectrode. Negative steps occur when nanoplatelets adsorb onto the glass without an electrical connection, effectively blocking flux of ferrocenemethanol to the ultramicroelectrode surface. These measurements allow rigorous quantification of current transients and detailed insights into the adsorption dynamics of asymmetric objects at the nanoscale.
Collapse
Affiliation(s)
- Andrew D Pendergast
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christophe Renault
- Physique de la Matière Condensée, CNRS, Ecole Polytechnique, 91128 Palaiseau, France
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
37
|
Liu X, Chen X, Chen T, Xu Y, Zeng X. Time-Resolved Selective Electrochemical Sensing of Carbon Particles. Anal Chem 2021; 93:761-768. [PMID: 33290045 DOI: 10.1021/acs.analchem.0c02958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work demonstrated a new method for electrochemical detection of carbon black particles based on impact electrochemistry that was capable of selective detection of carbon black from the insulating oxide particles. We systematically studied the electrochemical collision events with carbon black particle suspension solution (pH 7.0 phosphate buffer) at varying carbon black concentrations using a convective condition and a gold microelectrode. We evaluated the effect of bias potential on the number and magnitude of collision spikes by changing the applied potential in chronoamperometry experiments. Our results showed that the biased potential of +0.4 V was the most suitable potential among the tested potential biases. Current blips were observed in the amperometric i-t response, and the spike numbers scaled linearly with the concentration of carbon black particles in the range of 2.5-20 μM (i.e., mass/volume concentration of 0.03 to 0.24 mg L-1) with the lowest detection limit of 0.396 μM (i.e., mass/volume concentration of 0.00475 mg L-1). The selective detection of carbon particles in the presence of representative poorly conductive oxide particles in our experimental conditions was achieved. The sensing mechanism of the sensitive and selective detection of carbon black particles is proposed. This work provides the basis for the development of powerful electroanalytical methods and technologies for the detection and classification of carbon particles in varying environmental conditions such as coalmines, engineered carbon particle factories, and coal power plants.
Collapse
Affiliation(s)
- Xiaojun Liu
- Department of Chemistry, Oakland University, Rochester Hills, Michigan 48309, United States
| | - Xiaoyu Chen
- Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Tongtong Chen
- Department of Chemistry, Oakland University, Rochester Hills, Michigan 48309, United States
| | - Yong Xu
- Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Xiangqun Zeng
- Department of Chemistry, Oakland University, Rochester Hills, Michigan 48309, United States
| |
Collapse
|
38
|
Roehrich B, Sepunaru L. Nanoimpacts at Active and Partially Active Electrodes: Insights and Limitations. Angew Chem Int Ed Engl 2020; 59:19184-19192. [PMID: 32745310 DOI: 10.1002/anie.202007148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/31/2020] [Indexed: 11/08/2022]
Abstract
While the electrochemical nanoimpact technique has recently emerged as a method of studying single entities, it is limited by requirement of a catalytically active particle impacting an inert electrode. We show that an active particle-active electrode can provide mechanistic insight into electrochemical reactions. When an individual Pt electrocatalyst adsorbs to the surface of a partially active electrode, further reduction of electrode-produced species can proceed on the nanocatalyst. Current transients obtained during hydrogen evolution allow simultaneous measurement of the Pt catalyst over different length scales, size dependency suggests H atom intercalation as a catalytic deactivation mechanism. Although results show that outer-sphere redox probes are unproductive for particle characterization, the breadth of inner-sphere electrochemical reactions makes this a promising method for understanding the properties of catalytic nanomaterials, one at a time.
Collapse
Affiliation(s)
- Brian Roehrich
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Building 232, Santa Barbara, CA, 93106, USA
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Building 232, Santa Barbara, CA, 93106, USA
| |
Collapse
|
39
|
Roehrich B, Sepunaru L. Nanoimpacts at Active and Partially Active Electrodes: Insights and Limitations. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Brian Roehrich
- Department of Chemistry and Biochemistry University of California Santa Barbara, Building 232 Santa Barbara CA 93106 USA
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry University of California Santa Barbara, Building 232 Santa Barbara CA 93106 USA
| |
Collapse
|
40
|
Brunet Cabré M, Djekic D, Romano T, Hanna N, Anders J, McKelvey K. Microscale Electrochemical Cell on a Custom CMOS Transimpedance Amplifier for High Temporal Resolution Single Entity Electrochemistry**. ChemElectroChem 2020. [DOI: 10.1002/celc.202001083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Denis Djekic
- Institute of Smart Sensors University of Stuttgart Keplerstraße 7 70174 Stuttgart Germany
| | | | - Nadim Hanna
- Institute of Smart Sensors University of Stuttgart Keplerstraße 7 70174 Stuttgart Germany
| | - Jens Anders
- Institute of Smart Sensors University of Stuttgart Keplerstraße 7 70174 Stuttgart Germany
| | - Kim McKelvey
- School of Chemistry Trinity College Dublin Dublin Ireland
- School of Chemical and Physical Sciences Victoria University of Wellington Kelburn, Wellington 6012 New Zealand
| |
Collapse
|
41
|
Chung HJ, Lee J, Hwang J, Seol KH, Kim KM, Song J, Chang J. Stochastic Particle Approach Electrochemistry (SPAE): Estimating Size, Drift Velocity, and Electric Force of Insulating Particles. Anal Chem 2020; 92:12226-12234. [PMID: 32786447 DOI: 10.1021/acs.analchem.0c01532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stochastic particle impact electrochemistry (SPIE) is considered one of the most important electro-analytical methods to understand the physicochemical properties of single entities. SPIE of individual insulating particles (IPs) has been particularly crucial for analyses of bioparticles. In this article, we introduce stochastic particle approach electrochemistry (SPAE) for electrochemical analyses of IPs, which is the advanced version of SPIE; SPAE is analogous to SPIE but focuses on deciphering a sudden current drop (SCD) by an IP-approach toward the edge of an ultramicroelectrode (UME). Polystyrene particles (PSPs) with and without different surface functionalities (-COOH and - NH3) as well as fixed human platelets (F-HPs) were used as model IPs. From theory based on finite element analysis, a sudden current drop (SCD) induced by an IP during electro-oxidation (or reduction) of a redox mediator on a UME can represent the rapid approach of an IP toward an edge of a UME, where a strong electric field is generated. It is also found that the amount of current drop, idrop, of an SCD depends strongly on both the size of an IP and the concentration of redox electrolyte. From simulations based on the SPAE model that fit the experimentally obtained SCDs of three types of PSPs or F-HP dispersed in solutions with two redox electrolytes, their size distribution histograms are estimated, from which their average radii determined by SPAE are compared to those from scanning electron microscopic images. In addition, the drift velocity and corresponding electric force of the PSPs and F-HPs during their approach toward an edge of a Pt UME are estimated, which cannot be addressed currently with SPIE. We further learned that the estimated drift velocity and the corresponding electric force could provide a relative order of the number of excess surface charges on the IPs.
Collapse
Affiliation(s)
- Hee Jung Chung
- Department of Chemistry and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jihye Lee
- Department of Chemistry and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jiseon Hwang
- Department of Chemistry and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Kang Hee Seol
- Department of Chemistry and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Kyung Mi Kim
- Department of Chemistry, Sungshin W. University, 55 Dobong-ro, 76ga-gil, Gangbuk-gu, Seoul 01133, Republic of Korea
| | - Jaewoo Song
- Department of Laboratory Medicine, Yonsei University College of Medicine, Yonsei-ro 50-1, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jinho Chang
- Department of Chemistry and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
42
|
Wei W, Yuan T, Jiang W, Gao J, Chen HY, Wang W. Accessing the Electrochemical Activity of Single Nanoparticles by Eliminating the Heterogeneous Electrical Contacts. J Am Chem Soc 2020; 142:14307-14313. [PMID: 32787250 DOI: 10.1021/jacs.0c06171] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While single nanoparticle electrochemistry holds great promise for establishing the structure-activity relationship (SAR) of electroactive nanomaterials, as it removes the heterogeneity among individuals, successful SAR studies remain rare. When one nanoparticle is seen to exhibit better performance than the others, it is often simply attributed to better activity of the particular individual. By taking the ion insertion reaction of Prussian blue nanoparticles as an example, here we show that the electrical contact between nanoparticles and electrode, a previously overlooked factor, was greatly distinct from one nanoparticle to another and significantly contributed to the apparent heterogeneity in the reactivity and cyclability. An individual nanoparticle with intrinsically perfect structure (size, facet, crystallinity, and so on) could be completely inactive, simply due to poor electrical contacts, which blurred the SAR and likely caused failures. We further proposed a sputter-coating method to enhance the electrical contacts by depositing an ultrathin platinum layer onto the sample. Such an approach was routinely adopted in scanning electron microscopy to improve the electron mobility between nanoparticles and substrate. Elimination of heterogeneous contacts ensured that the electrochemical activity of single nanoparticles can be accessed and further correlated with their structural features, thus paving the way for single nanoparticle electrochemistry to deliver on its promises in SAR.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tinglian Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenxuan Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia Gao
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
43
|
Gutierrez-Portocarrero S, Sauer K, Karunathilake N, Subedi P, Alpuche-Aviles MA. Digital Processing for Single Nanoparticle Electrochemical Transient Measurements. Anal Chem 2020; 92:8704-8714. [PMID: 32510201 DOI: 10.1021/acs.analchem.9b05238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We demonstrate the use of digital frequency analysis in single nanoparticle electrochemical detection. The method uses fast Fourier transforms (FFT) of single entity electrochemical transients and digital filters. These filters effectively remove noise with the Butterworth filter preserving the amplitude of the fundamental processes in comparison with the rectangle filter. Filtering was done in three different types of experiments: single nanoparticle electrocatalytic amplification, photocatalytic amplification, and nanoimpacts of single entities. In the individual nanoparticle stepwise transients, low-pass filters maintain the step height. Furthermore, a Butterworth band-stop filter preserves the peak height in blip transients if the band-stop cutoff frequencies are compatible with the nanoparticle/electrode transient interactions. In hydrazine oxidation by single Au nanoparticles, digital filtering does not complicate the analysis of the step signal because the stepwise change of the particle-by-particle current is preserved with the rectangle, Bessel and Butterworth low pass filters, with the later minimizing time shifts. In the photocurrent single entity transients, we demonstrate resolving a step smaller than the noise. In photoelectrochemical setups, the background processes are stochastic and appear at distinct frequencies that do not necessarily correlate with the detection frequency (fp), of TiO2 nanoparticles. This lack of correlation indicates that background signals have their characteristic frequencies and that it is advantageous to perform filtering a posteriori. We also discuss selecting the filtering frequencies based on sampling rates and fp. In experiments electrolyzing ZnO, that model nanoimpacts, a band-stop filter can remove environmental noise within the sampling spectral region while preserving relevant information on the current transient. We discuss the limits of Bessel and Butterworth filters for resolving consecutive transients.
Collapse
Affiliation(s)
| | - Kiley Sauer
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Nelum Karunathilake
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Pradeep Subedi
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | | |
Collapse
|
44
|
Chen R, Alanis K, Welle TM, Shen M. Nanoelectrochemistry in the study of single-cell signaling. Anal Bioanal Chem 2020; 412:6121-6132. [PMID: 32424795 DOI: 10.1007/s00216-020-02655-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 12/28/2022]
Abstract
Label-free biosensing has been the dream of scientists and biotechnologists as reported by Vollmer and Arnold (Nat Methods 5:591-596, 2008). The ability of examining living cells is crucial to cell biology as noted by Fang (Int J Electrochem 2011:460850, 2011). Chemical measurement with electrodes is label-free and has demonstrated capability of studying living cells. In recent years, nanoelectrodes of different functionality have been developed. These nanometer-sized electrodes, coupled with scanning electrochemical microscopy (SECM), have further enabled nanometer spatial resolution study in aqueous environments. Developments in the field of nanoelectrochemistry have allowed measurement of signaling species at single cells, contributing to better understanding of cell biology. Leading studies using nanoelectrochemistry of a variety of cellular signaling molecules, including redox-active neurotransmitter (e.g., dopamine), non-redox-active neurotransmitter (e.g., acetylcholine), reactive oxygen species (ROS), and reactive nitrogen species (RNS), are reviewed here.
Collapse
Affiliation(s)
- Ran Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Kristen Alanis
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Theresa M Welle
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA
| | - Mei Shen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
45
|
Fereja TH, Du F, Wang C, Snizhko D, Guan Y, Xu G. Electrochemiluminescence Imaging Techniques for Analysis and Visualizing. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00128-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Fu K, Kwon SR, Han D, Bohn PW. Single Entity Electrochemistry in Nanopore Electrode Arrays: Ion Transport Meets Electron Transfer in Confined Geometries. Acc Chem Res 2020; 53:719-728. [PMID: 31990518 PMCID: PMC8020881 DOI: 10.1021/acs.accounts.9b00543] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Electrochemical measurements conducted in confined volumes provide a powerful and direct means to address scientific questions at the nexus of nanoscience, biotechnology, and chemical analysis. How are electron transfer and ion transport coupled in confined volumes and how does understanding them require moving beyond macroscopic theories? Also, how do these coupled processes impact electrochemical detection and processing? We address these questions by studying a special type of confined-volume architecture, the nanopore electrode array, or NEA, which is designed to be commensurate in size with physical scaling lengths, such as the Debye length, a concordance that offers performance characteristics not available in larger scale structures.The experiments described here depend critically on carefully constructed nanoscale architectures that can usefully control molecular transport and electrochemical reactivity. We begin by considering the experimental constraints that guide the design and fabrication of zero-dimensional nanopore arrays with multiple embedded electrodes. These zero-dimensional structures are nearly ideal for exploring how permselectivity and unscreened ion migration can be combined to amplify signals and improve selectivity by enabling highly efficient redox cycling. Our studies also highlight the benefits of arrays, in that molecules escaping from a single nanopore are efficiently captured by neighboring pores and returned to the population of active redox species being measured, benefits that arise from coupling ion accumulation and migration. These tools for manipulating redox species are well-positioned to explore single molecule and single particle electron transfer events through spectroelectrochemistry, studies which are enabled by the electrochemical zero-mode waveguide (ZMW), a special hybrid nanophotonic/nanoelectronic architecture in which the lower ring electrode of an NEA nanopore functions both as a working electrode to initiate electron transfer reactions and as the optical cladding layer of a ZMW. While the work described here is largely exploratory and fundamental, we believe that the development of NEAs will enable important applications that emerge directly from the unique coupled transport and electron-transfer capabilities of NEAs, including in situ molecular separation and detection with external stimuli, redox-based electrochemical rectification in individually encapsulated nanopores, and coupled sorters and analyzers for nanoparticles.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department of Radiology, Stanford University, Stanford, CA, 94306
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94306
| | - Seung-Ryong Kwon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Donghoon Han
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662 Republic of Korea
| | - Paul W. Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
47
|
Wang Q, Bae JH, Nepomnyashchii AB, Jia R, Zhang S, Mirkin MV. Light-Controlled Nanoparticle Collision Experiments. J Phys Chem Lett 2020; 11:2972-2976. [PMID: 32216279 DOI: 10.1021/acs.jpclett.0c00585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemical monitoring of catalytically amplified collisions of individual metal nanoparticles (NP) with ultramicroelectrodes (UME) has been extensively used to study electrocatalysis, mass-transport, and charge-transfer processes at the single NP level. More recently, photoelectrochemical collision experiments were carried out with semiconductive NPs. Here, we introduce two new types of light-controlled nanoimpact experiments. The first experiment involves localized photodeposition of catalyst (Pt) on TiO2 NPs with a glass-sheathed carbon fiber simultaneously serving as the light guide and collector UME. The collisions of in situ prepared Pt@TiO2 NPs with the carbon surface produced blips of water oxidation current, while the activity of pristine TiO2 NPs was too low to yield measurable signal. In another experiment, collisions of catalytic (Ir oxide) NPs with the semiconductor (Nb doped n-type TiO2 rutile single crystal) electrode are monitored by measuring the photocurrent of water oxidation.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Je Hyun Bae
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | | | - Rui Jia
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center, CUNY, New York, New York 10016, United States
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center, CUNY, New York, New York 10016, United States
| |
Collapse
|
48
|
Ying YL, Wang J, Leach AR, Jiang Y, Gao R, Xu C, Edwards MA, Pendergast AD, Ren H, Weatherly CKT, Wang W, Actis P, Mao L, White HS, Long YT. Single-entity electrochemistry at confined sensing interfaces. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9716-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
|
50
|
Pandey P, Garcia J, Guo J, Wang X, Yang D, He J. Differentiation of metallic and dielectric nanoparticles in solution by single-nanoparticle collision events at the nanoelectrode. NANOTECHNOLOGY 2020; 31:015503. [PMID: 31519013 DOI: 10.1088/1361-6528/ab4445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this work, we demonstrate a highly effective method to generate and detect single-nanoparticle (NP) collision events on a nanoelectrode in aqueous solutions. The nanoelectrode of a nanopore-nanoelectrode nanopipette is first employed to accumulate NPs in solution by dielectrophoresis (DEP). Instead of using amperometric methods, the continuous individual NP collision events on the nanoelectrode are sensitively detected by monitoring the open-circuit potential changes of the nanoelectrode. Metallic gold NPs (GNPs) and insulating polystyrene (PS) NPs with various sizes are used as the model NPs. Due to the higher conductivity and polarizability of GNPs, the collision motion of a GNP is different from that of a PS NP. The difference is distinct in the shape of the transient potential change and its first time derivative detected by the nanoelectrode. Therefore, the collision events by metallic and insulating NPs on a nanoelectrode can be differentiated based on their polarizability. DEP induced NP separation and cluster formation can also be probed in detail in the concentrated mixture of PS NPs and GNPs.
Collapse
Affiliation(s)
- Popular Pandey
- Physics Department, biomolecular Science Institute, Florida International University, Miami, 33199, United States of America
| | | | | | | | | | | |
Collapse
|