1
|
Bague D, Wang R, Hodge D, Mikati MO, Roma JS, Boshoff HI, Dailey AL, Girma M, Couch RD, Odom John AR, Dowd CS. Inhibition of DXR in the MEP pathway with lipophilic N-alkoxyaryl FR900098 analogs. RSC Med Chem 2024; 15:2422-2439. [PMID: 39026652 PMCID: PMC11253873 DOI: 10.1039/d3md00642e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
In Mycobacterium tuberculosis (Mtb) and Plasmodium falciparum (Pf), the methylerythritol phosphate (MEP) pathway is responsible for isoprene synthesis. This pathway and its products are vital to bacterial/parasitic metabolism and survival, and represent an attractive set of drug targets due to their essentiality in these pathogens but absence in humans. The second step in the MEP pathway is the conversion of 1-deoxy-d-xylulose-5-phosphate (DXP) to MEP and is catalyzed by 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR). Natural products fosmidomycin and FR900098 inhibit DXR, but are too polar to reach the desired target inside some cells, such as Mtb. Synthesized FR900098 analogs with lipophilic substitution in the position α to the phosphorous atom showed promise, resulting in increased activity against Mtb and Pf. Here, an α substitution, consisting of a 3,4-dichlorophenyl substituent, in combination with various O-linked alkylaryl substituents on the hydroxamate moiety is utilized in the synthesis of a novel series of FR900098 analogs. The purpose of the O-linked alkylaryl substituents is to further enhance DXR inhibition by extending the structure into the adjacent NADPH binding pocket, blocking the binding of both DXP and NADPH. Of the initial O-linked alkylaryl substituted analogs, compound 6e showed most potent activity against Pf parasites at 3.60 μM. Additional compounds varying the phenyl ring of 6e were synthesized. The most potent phosphonic acids, 6l and 6n, display nM activity against PfDXR and low μM activity against Pf parasites. Prodrugs of these compounds were less effective against Pf parasites but showed modest activity against Mtb cells. Data from this series of compounds suggests that this combination of substituents can be advantageous in designing a new generation of antimicrobials.
Collapse
Affiliation(s)
- Darean Bague
- Department of Chemistry, George Washington University Washington D.C. 20052 USA
| | - Ruiqin Wang
- Department of Chemistry, George Washington University Washington D.C. 20052 USA
| | - Dana Hodge
- Division of Infectious Diseases, Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Marwa O Mikati
- Department of Molecular Microbiology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Jose S Roma
- Tuberculosis Research Section, LCIM, NIAID/NIH Bethesda MD 20892 USA
| | - Helena I Boshoff
- Tuberculosis Research Section, LCIM, NIAID/NIH Bethesda MD 20892 USA
| | - Allyson L Dailey
- Department of Chemistry and Biochemistry, George Mason University Fairfax VA 22030 USA
| | - Misgina Girma
- Department of Chemistry and Biochemistry, George Mason University Fairfax VA 22030 USA
| | - Robin D Couch
- Department of Chemistry and Biochemistry, George Mason University Fairfax VA 22030 USA
| | - Audrey R Odom John
- Division of Infectious Diseases, Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Molecular Microbiology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University Washington D.C. 20052 USA
| |
Collapse
|
2
|
Vyas VK, Shukla T, Sharma M. Medicinal chemistry approaches for the discovery of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors as antimalarial agents. Future Med Chem 2023; 15:1295-1321. [PMID: 37551689 DOI: 10.4155/fmc-2023-0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Malaria is a severe human disease and a global health problem because of drug-resistant strains. Drugs reported to prevent the growth of Plasmodium parasites target various phases of the parasites' life cycle. Antimalarial drugs can inhibit key enzymes that are responsible for the cellular growth and development of parasites. Plasmodium falciparum dihydroorotate dehydrogenase is one such enzyme that is necessary for de novo pyrimidine biosynthesis. This review focuses on various medicinal chemistry approaches used for the discovery and identification of selective P. falciparum dihydroorotate dehydrogenase inhibitors as antimalarial agents. This comprehensive review discusses recent advances in the selective therapeutic activity of distinct chemical classes of compounds as P. falciparum dihydroorotate dehydrogenase inhibitors and antimalarial drugs.
Collapse
Affiliation(s)
- Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Tanvi Shukla
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| |
Collapse
|
3
|
Gehlot P, Vyas VK. Recent advances on patents of Plasmodium falciparum dihydroorotate dehydrogenase ( PfDHODH) inhibitors as antimalarial agents. Expert Opin Ther Pat 2023; 33:579-596. [PMID: 37942637 DOI: 10.1080/13543776.2023.2280596] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION Pyrimidine nucleotides are essential for the parasite's growth and replication. Parasites have only a de novo pathway for the biosynthesis of pyrimidine nucleotides. Dihydroorotate dehydrogenase (DHODH) enzyme is involved in the rate-limiting step of the pyrimidine biosynthesis pathway. DHODH is a biochemical target for the discovery of new antimalarial agents. AREA COVERED This review discussed the development of patented PfDHODH inhibitors published between 2007 and 2023 along with their chemical structures and activities. EXPERT OPINION PfDHODH enzyme is involved in the rate-limiting fourth step of the pyrimidine biosynthesis pathway. Thus, inhibition of PfDHODH using species-selective inhibitors has drawn much attention for treating malaria because they inhibit parasite growth without affecting normal human functions. Looking at the current scenario of antimalarial drug resistance with most of the available antimalarial drugs, there is a huge need for targeted newer agents. Newer agents with unique mechanisms of action may be devoid of drug toxicity, adverse effects, and the ability of parasites to quickly gain resistance, and PfDHODH inhibitors can be those newer agents. Many PfDHODH inhibitors were patented in the past, and the dependency of Plasmodium on de novo pyrimidine provided a new approach for the development of novel antimalarial agents.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
4
|
Naidu A, Nayak SS, Lulu S S, Sundararajan V. Advances in computational frameworks in the fight against TB: The way forward. Front Pharmacol 2023; 14:1152915. [PMID: 37077815 PMCID: PMC10106641 DOI: 10.3389/fphar.2023.1152915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Around 1.6 million people lost their life to Tuberculosis in 2021 according to WHO estimates. Although an intensive treatment plan exists against the causal agent, Mycobacterium Tuberculosis, evolution of multi-drug resistant strains of the pathogen puts a large number of global populations at risk. Vaccine which can induce long-term protection is still in the making with many candidates currently in different phases of clinical trials. The COVID-19 pandemic has further aggravated the adversities by affecting early TB diagnosis and treatment. Yet, WHO remains adamant on its "End TB" strategy and aims to substantially reduce TB incidence and deaths by the year 2035. Such an ambitious goal would require a multi-sectoral approach which would greatly benefit from the latest computational advancements. To highlight the progress of these tools against TB, through this review, we summarize recent studies which have used advanced computational tools and algorithms for-early TB diagnosis, anti-mycobacterium drug discovery and in the designing of the next-generation of TB vaccines. At the end, we give an insight on other computational tools and Machine Learning approaches which have successfully been applied in biomedical research and discuss their prospects and applications against TB.
Collapse
Affiliation(s)
| | | | | | - Vino Sundararajan
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, India
| |
Collapse
|
5
|
Guerra F, Winzeler EA. New targets for antimalarial drug discovery. Curr Opin Microbiol 2022; 70:102220. [PMID: 36228458 PMCID: PMC9934905 DOI: 10.1016/j.mib.2022.102220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/22/2022] [Accepted: 09/10/2022] [Indexed: 01/25/2023]
Abstract
Phenotypic screening methods have placed numerous preclinical candidates into the antimalarial drug-discovery pipeline. As more chemically validated targets become available, efforts are shifting to target-based drug discovery. Here, we briefly review some of the most attractive targets that have been identified in recent years.
Collapse
Affiliation(s)
- Francisco Guerra
- Department of Pediatrics MC 0760, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics MC 0760, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| |
Collapse
|
6
|
Mee-udorn P, Nutho B, Chootrakool R, Maenpuen S, Leartsakulpanich U, Chitnumsub P, Rungrotmongkol T. Structural dynamics and in silico design of pyrazolopyran-based inhibitors against Plasmodium serine hydroxymethyltransferases. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Fostering drug discovery and development in Africa. Nat Med 2022; 28:1523-1526. [PMID: 35840729 DOI: 10.1038/s41591-022-01885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Oliveira FA, Pinto ACS, Duarte CL, Taranto AG, Lorenzato Junior E, Cordeiro CF, Carvalho DT, Varotti FP, Fonseca AL. Evaluation of antiplasmodial activity in silico and in vitro of N-acylhydrazone derivatives. BMC Chem 2022; 16:50. [PMID: 35810303 PMCID: PMC9271247 DOI: 10.1186/s13065-022-00843-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
N-acylhydrazones are considered privileged structures in medicinal chemistry, being part of antimicrobial compounds (for example). In this study we show the activity of N-acylhydrazone compounds, namely AH1, AH2, AH4, AH5 in in vitro tests against the chloroquine-resistant strain of Plasmodium falciparum (W2) and against WI26 VA-4 human cell lines. All compounds showed low cytotoxicity (LC50 > 100 µM). The AH5 compound was the most active against Plasmodium falciparum, with an IC50 value of 0.07 μM. AH4 and AH5 were selected among the tested compounds for molecular docking calculations to elucidate possible targets involved in their mechanism of action and the SwissADME analysis to predict their pharmacokinetic profile. The AH5 compound showed affinity for 12 targets with low selectivity, while the AH4 compound had greater affinity for only one target (3PHC). These compounds met Lipinski's standards in the ADME in silico tests, indicating good bioavailability results. These results demonstrate that these N-acylhydrazone compounds are good candidates for future preclinical studies against malaria.
Collapse
Affiliation(s)
- Fernanda A Oliveira
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil
| | - Ana Claudia S Pinto
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil.
| | - Caique L Duarte
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil
| | - Alex G Taranto
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil
| | - Eder Lorenzato Junior
- Laboratório de Pesquisa Em Química Farmacêutica, Universidade Federal de Alfenas, Campus Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Cleydson Finotti Cordeiro
- Laboratório de Pesquisa Em Química Farmacêutica, Universidade Federal de Alfenas, Campus Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Diogo T Carvalho
- Laboratório de Pesquisa Em Química Farmacêutica, Universidade Federal de Alfenas, Campus Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Fernando P Varotti
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil
| | - Amanda L Fonseca
- Núcleo de Pesquisa Em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro Oeste, Divinópolis, MG, 35501-296, Brazil.
| |
Collapse
|
9
|
Murithi JM, Deni I, Pasaje CFA, Okombo J, Bridgford JL, Gnädig NF, Edwards RL, Yeo T, Mok S, Burkhard AY, Coburn-Flynn O, Istvan ES, Sakata-Kato T, Gomez-Lorenzo MG, Cowell AN, Wicht KJ, Le Manach C, Kalantarov GF, Dey S, Duffey M, Laleu B, Lukens AK, Ottilie S, Vanaerschot M, Trakht IN, Gamo FJ, Wirth DF, Goldberg DE, Odom John AR, Chibale K, Winzeler EA, Niles JC, Fidock DA. The Plasmodium falciparum ABC transporter ABCI3 confers parasite strain-dependent pleiotropic antimalarial drug resistance. Cell Chem Biol 2022; 29:824-839.e6. [PMID: 34233174 PMCID: PMC8727639 DOI: 10.1016/j.chembiol.2021.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023]
Abstract
Widespread Plasmodium falciparum resistance to first-line antimalarials underscores the vital need to develop compounds with novel modes of action and identify new druggable targets. Here, we profile five compounds that potently inhibit P. falciparum asexual blood stages. Resistance selection studies with three carboxamide-containing compounds, confirmed by gene editing and conditional knockdowns, identify point mutations in the parasite transporter ABCI3 as the primary mediator of resistance. Selection studies with imidazopyridine or quinoline-carboxamide compounds also yield changes in ABCI3, this time through gene amplification. Imidazopyridine mode of action is attributed to inhibition of heme detoxification, as evidenced by cellular accumulation and heme fractionation assays. For the copy-number variation-selecting imidazopyridine and quinoline-carboxamide compounds, we find that resistance, manifesting as a biphasic concentration-response curve, can independently be mediated by mutations in the chloroquine resistance transporter PfCRT. These studies reveal the interconnectedness of P. falciparum transporters in overcoming drug pressure in different parasite strains.
Collapse
Affiliation(s)
- James M. Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jessica L. Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nina F. Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rachel L. Edwards
- Division of Infectious Diseases, Allergy and Immunology, Center for Vaccine Development, St. Louis University, St. Louis, MO 63104, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anna Y. Burkhard
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Olivia Coburn-Flynn
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eva S. Istvan
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tomoyo Sakata-Kato
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | | | - Annie N. Cowell
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Kathryn J. Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA,Drug Discovery and Development Center (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Claire Le Manach
- Drug Discovery and Development Center (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Gavreel F. Kalantarov
- Division of Experimental Therapeutics, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maëlle Duffey
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Benoît Laleu
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Amanda K. Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Sabine Ottilie
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ilya N. Trakht
- Division of Experimental Therapeutics, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francisco-Javier Gamo
- Global Health Pharma Research Unit, GlaxoSmithKline, 28760 Tres Cantos, Madrid, Spain
| | - Dyann F. Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Daniel E. Goldberg
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Kelly Chibale
- Drug Discovery and Development Center (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Elizabeth A. Winzeler
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA,Corresponding author
| |
Collapse
|
10
|
Perveen S, Sharma R. Screening approaches and therapeutic targets: The two driving wheels of tuberculosis drug discovery. Biochem Pharmacol 2022; 197:114906. [PMID: 34990594 DOI: 10.1016/j.bcp.2021.114906] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) is an infectious disease, infecting a quarter of world's population. Drug resistant TB further exacerbates the grim scenario of the drying TB drug discovery pipeline. The limited arsenal to fight TB presses the need for thorough efforts for identifying promising hits to combat the disease. The review highlights the efforts in the field of tuberculosis drug discovery, with an emphasis on massive drug screening campaigns for identifying novel hits against Mtb in both industry and academia. As an intracellular pathogen, mycobacteria reside in a complicated intracellular environment with multiple factors at play. Here, we outline various strategies employed in an effort to mimic the intracellular milieu for bringing the screening models closer to the actual settings. The review also focuses on the novel targets and pathways that could aid in target-based drug discovery in TB. The recent high throughput screening efforts resulting in the identification of potent hits against Mtb has been summarized in this article. There is a pressing need for effective screening strategies and approaches employing innovative tools and recent technologies; including nanotechnology, gene-editing tools such as CRISPR-cas system, host-directed bacterial killing and high content screening to augment the TB drug discovery pipeline with safer and shorter drug regimens.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Pereira GR, Ferreira ACG, Neves PHDAS, Gomes EBS, Nascimento MFAD, Sousa JAC, Santos JDO, Brandão GC, Oliveira ABD. Quinolinotriazole antiplasmodials via click chemistry: synthesis and in vitro studies of 7-Chloroquinoline-based compounds. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-979020200004181086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Cheviet T, Wein S, Bourchenin G, Lagacherie M, Périgaud C, Cerdan R, Peyrottes S. β-Hydroxy- and β-Aminophosphonate Acyclonucleosides as Potent Inhibitors of Plasmodium falciparum Growth. J Med Chem 2020; 63:8069-8087. [PMID: 32687714 DOI: 10.1021/acs.jmedchem.0c00131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Malaria is an infectious disease caused by a parasite of the genus Plasmodium, and the emergence of parasites resistant to all current antimalarial drugs highlights the urgency of having new classes of molecules. We developed an effective method for the synthesis of a series of β-modified acyclonucleoside phosphonate (ANP) derivatives, using commercially available and inexpensive materials (i.e., aspartic acid and purine heterocycles). Their biological evaluation in cell culture experiments and SAR revealed that the compounds' effectiveness depends on the presence of a hydroxyl group, the chain length (four carbons), and the nature of the nucleobase (guanine). The most active derivative inhibits the growth of Plasmodium falciparum in vitro in the nanomolar range (IC50 = 74 nM) with high selectivity index (SI > 1350). This compound also showed remarkable in vivo activity in P. berghei-infected mice (ED50 ∼ 0.5 mg/kg) when administered by the ip route and is, although less efficient, still active via the oral route. It is the first ANP derivative with such potent antimalarial activity and therefore has considerable potential for development as a new antimalarial drug.
Collapse
Affiliation(s)
- Thomas Cheviet
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM, Université de Montpellier, Place E. Bataillon, cc 1704, 34095 Montpellier, France
| | - Sharon Wein
- Laboratory of Pathogen Host Interactions (LPHI), UMR 5235 UM-CNRS, Université de Montpellier, Place E. Bataillon, 34095 Montpellier, France
| | - Gabriel Bourchenin
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM, Université de Montpellier, Place E. Bataillon, cc 1704, 34095 Montpellier, France
| | - Manon Lagacherie
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM, Université de Montpellier, Place E. Bataillon, cc 1704, 34095 Montpellier, France
| | - Christian Périgaud
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM, Université de Montpellier, Place E. Bataillon, cc 1704, 34095 Montpellier, France
| | - Rachel Cerdan
- Laboratory of Pathogen Host Interactions (LPHI), UMR 5235 UM-CNRS, Université de Montpellier, Place E. Bataillon, 34095 Montpellier, France
| | - Suzanne Peyrottes
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM, Université de Montpellier, Place E. Bataillon, cc 1704, 34095 Montpellier, France
| |
Collapse
|
13
|
Dorababu A. Pharmacology Profile of Recently Developed Multi‐Functional Azoles; SAR‐Based Predictive Structural Modification. ChemistrySelect 2020. [DOI: 10.1002/slct.202000294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Atukuri Dorababu
- Department of Studies in ChemistrySRMPP Govt. First Grade College Huvinahadagali 583219, Karnataka India
| |
Collapse
|
14
|
Veale CGL, Müller R. Recent Highlights in Anti-infective Medicinal Chemistry from South Africa. ChemMedChem 2020; 15:809-826. [PMID: 32149446 DOI: 10.1002/cmdc.202000086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/17/2022]
Abstract
Global advancements in biological technologies have vastly increased the variety of and accessibility to bioassay platforms, while simultaneously improving our understanding of druggable chemical space. In the South African context, this has resulted in a rapid expansion in the number of medicinal chemistry programmes currently operating, particularly on university campuses. Furthermore, the modern medicinal chemist has the advantage of being able to incorporate data from numerous related disciplines into the medicinal chemistry process, allowing for informed molecular design to play a far greater role than previously possible. Accordingly, this review focusses on recent highlights in drug-discovery programmes, in which South African medicinal chemistry groups have played a substantive role in the design and optimisation of biologically active compounds which contribute to the search for promising agents for infectious disease.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Ronel Müller
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
15
|
Murithi JM, Owen ES, Istvan ES, Lee MCS, Ottilie S, Chibale K, Goldberg DE, Winzeler EA, Llinás M, Fidock DA, Vanaerschot M. Combining Stage Specificity and Metabolomic Profiling to Advance Antimalarial Drug Discovery. Cell Chem Biol 2019; 27:158-171.e3. [PMID: 31813848 PMCID: PMC7031696 DOI: 10.1016/j.chembiol.2019.11.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/18/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
Abstract
We report detailed susceptibility profiling of asexual blood stages of the malaria parasite Plasmodium falciparum to clinical and experimental antimalarials, combined with metabolomic fingerprinting. Results revealed a variety of stage-specific and metabolic profiles that differentiated the modes of action of clinical antimalarials including chloroquine, piperaquine, lumefantrine, and mefloquine, and identified late trophozoite-specific peak activity and stage-specific biphasic dose-responses for the mitochondrial inhibitors DSM265 and atovaquone. We also identified experimental antimalarials hitting previously unexplored druggable pathways as reflected by their unique stage specificity and/or metabolic profiles. These included several ring-active compounds, ones affecting hemoglobin catabolism through distinct pathways, and mitochondrial inhibitors with lower propensities for resistance than either DSM265 or atovaquone. This approach, also applicable to other microbes that undergo multiple differentiation steps, provides an effective tool to prioritize compounds for further development within the context of combination therapies.
Collapse
Affiliation(s)
- James M Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Edward S Owen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Eva S Istvan
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis MO 63130, USA
| | - Marcus C S Lee
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Sabine Ottilie
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry & Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Daniel E Goldberg
- Department of Medicine, Division of Infectious Diseases, and Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis MO 63130, USA
| | - Elizabeth A Winzeler
- School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
16
|
Arez F, Rebelo SP, Fontinha D, Simão D, Martins TR, Machado M, Fischli C, Oeuvray C, Badolo L, Carrondo MJT, Rottmann M, Spangenberg T, Brito C, Greco B, Prudêncio M, Alves PM. Flexible 3D Cell-Based Platforms for the Discovery and Profiling of Novel Drugs Targeting Plasmodium Hepatic Infection. ACS Infect Dis 2019; 5:1831-1842. [PMID: 31479238 DOI: 10.1021/acsinfecdis.9b00144] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The restricted pipeline of drugs targeting the liver stage of Plasmodium infection reflects the scarcity of cell models that mimic the human hepatic phenotype and drug metabolism, as well as Plasmodium hepatic infection. Using stirred-tank culture systems, spheroids of human hepatic cell lines were generated, sustaining a stable hepatic phenotype over 4 weeks of culture. Spheroids were employed in the establishment of 3D Plasmodium berghei infection platforms that relied on static or dynamic culture conditions. P. berghei invasion and development were recapitulated in the hepatic spheroids, yielding blood-infective merozoites. The translational potential of the 3D platforms was demonstrated by comparing the in vitro minimum inhibitory concentration of M5717, a compound under clinical development, with in vivo plasma concentrations that clear liver stage P. berghei in mice. Our results show that the 3D platforms are flexible and scalable and can predict the efficacy of antiplasmodial therapies, constituting a powerful tool for integration in drug discovery programs.
Collapse
Affiliation(s)
- Francisca Arez
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Sofia P. Rebelo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Daniel Simão
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Tatiana R. Martins
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Marta Machado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Christoph Fischli
- Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4003, Switzerland
| | - Claude Oeuvray
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA, Darmstadt, Germany, 1262 Eysins, Switzerland
| | - Lassina Badolo
- Discovery and Development Technologies, Merck Healthcare KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Manuel J. T. Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4003, Switzerland
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA, Darmstadt, Germany, 1262 Eysins, Switzerland
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Beatrice Greco
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA, Darmstadt, Germany, 1262 Eysins, Switzerland
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
17
|
Affiliation(s)
- Clinton G. L. Veale
- School of Chemistry and Physics University of KwaZulu-Natal, Pietermaritzburg Campus Private Bag X01 Scottsville 3209 South Africa
| |
Collapse
|
18
|
Marvadi SK, Krishna VS, Sinegubova EO, Volobueva AS, Esaulkova YL, Muryleva AA, Tentler DG, Sriram D, Zarubaev VV, Kantevari S. 5-Chloro-2-thiophenyl-1,2,3-triazolylmethyldihydroquinolines as dual inhibitors of Mycobacterium tuberculosis and influenza virus: Synthesis and evaluation. Bioorg Med Chem Lett 2019; 29:2664-2669. [DOI: 10.1016/j.bmcl.2019.07.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 02/03/2023]
|
19
|
Zhang J, Ba Y, Wang S, Yang H, Hou X, Xu Z. Nitroimidazole-containing compounds and their antibacterial and antitubercular activities. Eur J Med Chem 2019; 179:376-388. [PMID: 31260891 DOI: 10.1016/j.ejmech.2019.06.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 11/24/2022]
Abstract
Infections especially tuberculosis caused by various bacteria including mycobacteria result in millions of lives every year, but the control of bacterial infections is challenged by the limitation of effective pharmaceuticals against drug-resistant pathogens. Nitroimidazoles belong to a group of nitroheterocyclic compounds that have broad-spectrum activity against a series of organisms such as mycobacteria, anaerobic Gram-positive and Gram-negative bacteria, and some of them have already been used in clinics or under clinical trials for the treatment of infectious diseases. In this review, we made an overview of the recent advances in nitroimidazole-containing compounds with antibacterial and antitubercular activity in the recent 20 years.
Collapse
Affiliation(s)
- Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Yanyan Ba
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Su Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Xuehui Hou
- Faculty of Science, Henan University of Animal Husbandry and Economy, 450046, Zhengzhou, PR China.
| | - Zhi Xu
- Huanghuai University, College of Chemistry and Pharmaceutical Engineering, Zhumadian, PR China.
| |
Collapse
|
20
|
Marvadi SK, Krishna VS, Sriram D, Kantevari S. Synthesis and evaluation of novel substituted 1,2,3-triazolyldihydroquinolines as promising antitubercular agents. Bioorg Med Chem Lett 2019; 29:529-533. [DOI: 10.1016/j.bmcl.2019.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 11/24/2022]
|
21
|
Mori G, Orena BS, Franch C, Mitchenall LA, Godbole AA, Rodrigues L, Aguilar-Pérez C, Zemanová J, Huszár S, Forbak M, Lane TR, Sabbah M, Deboosere N, Frita R, Vandeputte A, Hoffmann E, Russo R, Connell N, Veilleux C, Jha RK, Kumar P, Freundlich JS, Brodin P, Aínsa JA, Nagaraja V, Maxwell A, Mikušová K, Pasca MR, Ekins S. The EU approved antimalarial pyronaridine shows antitubercular activity and synergy with rifampicin, targeting RNA polymerase. Tuberculosis (Edinb) 2018; 112:98-109. [PMID: 30205975 DOI: 10.1016/j.tube.2018.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/19/2022]
Abstract
The search for compounds with biological activity for many diseases is turning increasingly to drug repurposing. In this study, we have focused on the European Union-approved antimalarial pyronaridine which was found to have in vitro activity against Mycobacterium tuberculosis (MIC 5 μg/mL). In macromolecular synthesis assays, pyronaridine resulted in a severe decrease in incorporation of 14C-uracil and 14C-leucine similar to the effect of rifampicin, a known inhibitor of M. tuberculosis RNA polymerase. Surprisingly, the co-administration of pyronaridine (2.5 μg/ml) and rifampicin resulted in in vitro synergy with an MIC 0.0019-0.0009 μg/mL. This was mirrored in a THP-1 macrophage infection model, with a 16-fold MIC reduction for rifampicin when the two compounds were co-administered versus rifampicin alone. Docking pyronaridine in M. tuberculosis RNA polymerase suggested the potential for it to bind outside of the RNA polymerase rifampicin binding pocket. Pyronaridine was also found to have activity against a M. tuberculosis clinical isolate resistant to rifampicin, and when combined with rifampicin (10% MIC) was able to inhibit M. tuberculosis RNA polymerase in vitro. All these findings, and in particular the synergistic behavior with the antitubercular rifampicin, inhibition of RNA polymerase in combination in vitro and its current use as a treatment for malaria, may suggest that pyronaridine could also be used as an adjunct for treatment against M. tuberculosis infection. Future studies will test potential for in vivo synergy, clinical utility and attempt to develop pyronaridine analogs with improved potency against M. tuberculosis RNA polymerase when combined with rifampicin.
Collapse
Affiliation(s)
- Giorgia Mori
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Beatrice Silvia Orena
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Clara Franch
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lesley A Mitchenall
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Adwait Anand Godbole
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Liliana Rodrigues
- Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, and IIS-Aragón, 50009 Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain; Fundación ARAID, Zaragoza, Spain
| | - Clara Aguilar-Pérez
- Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, and IIS-Aragón, 50009 Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Júlia Zemanová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Stanislav Huszár
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Martin Forbak
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Mohamad Sabbah
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK
| | - Nathalie Deboosere
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Rosangela Frita
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Alexandre Vandeputte
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Eik Hoffmann
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Riccardo Russo
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Nancy Connell
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Courtney Veilleux
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Rajiv K Jha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Pradeep Kumar
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA
| | - Joel S Freundlich
- Division of Infectious Disease, Department of Medicine and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University - New Jersey Medical School, Newark, NJ 07103, USA; Department of Pharmacology, Physiology, and Neuroscience, Rutgers University - New Jersey Medical School, Newark, NJ, 07103, USA
| | - Priscille Brodin
- Univ Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, 1 rue du Professeur Calmette, 59000 Lille, France
| | - Jose Antonio Aínsa
- Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, and IIS-Aragón, 50009 Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Spain
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Katarína Mikušová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA; Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94403, USA.
| |
Collapse
|