1
|
Singh S, Datta S, Manna S, Pathak B, Mukherjee TK. Unraveling the Hidden Pathway of Catalyst-Free Direct Photochemical Conversion of Sulfides to Sulfoxides: A Universal Pathway under UVA Radiation. J Phys Chem Lett 2025:6106-6115. [PMID: 40490921 DOI: 10.1021/acs.jpclett.5c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Selective conversion of sulfides to sulfoxides is an important class of chemical transformation that has enormous potential in medicinal chemistry. However, the primary process associated with photoexcitation during the direct photochemical conversion of sulfides to sulfoxides is poorly understood and misrepresented in the literature. Herein, we discover a hidden pathway responsible for the direct photochemical conversion of sulfides to sulfoxides in the absence of any catalysts under UVA illumination (λex = 370 nm). We show that this hidden pathway directly generates singlet oxygen (a1Δg,1O2) via solvent-oxygen (X3∑g-,3O2) charge transfer (CT) excitation in neat solvents under ambient conditions. Our findings reveal efficient and selective oxidation of sulfides to sulfoxides in the presence of 1O2 through the generation of persulfoxide intermediates. In addition, we found that the presence of a marginal amount of water favors faster kinetics and prevents overoxidation to sulfones due to the stabilization of the sulfoxide products via specific hydrogen-bonding interactions.
Collapse
Affiliation(s)
- Shivendra Singh
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Supritam Datta
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Souvik Manna
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore, Madhya Pradesh 453552, India
| | - Tushar Kanti Mukherjee
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
2
|
Godoy-Ortega G, Rodríguez-Muñiz GM, Lhiaubet-Vallet V, Lorente C, Thomas AH. Pterin-Thymidine Adducts: From Their Photochemical Synthesis to Their Photosensitizing Properties. J Phys Chem B 2025; 129:3334-3344. [PMID: 40130631 DOI: 10.1021/acs.jpcb.5c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Pterin (Ptr) is the model compound of aromatic pterins, which are efficient photosensitizers present in human skin and are able to oxidize biomolecules upon UVA irradiation. Photosensitization involves chemical alteration of a biomolecule as a result of the initial absorption of radiation by another chemical species, the photosensitizer. Under anaerobic conditions, Ptr reacts with thymine (T) to form photoadducts (T-Ptr). In this work, we present a method to prepare and purify T-Ptr adducts, using 2'-deoxythymidine 5'-monophosphate (dTMP) and single stranded oligonucleotide 5'-d(TTTTT)-3' (dT5), and investigate their photosensitizing properties. Interestingly, the Ptr moiety, when attached to T, retains its photophysical properties. The adduct dTMP-Ptr, upon excitation, forms singlet and triplet excited states, the latter being capable of transferring energy to dissolved O2 and generating singlet oxygen, with an efficiency similar to Ptr. In air-equilibrated solutions, both dTMP-Ptr and dT5-Ptr adducts can photosensitize the oxidation of tryptophan and 2'-deoxyguanosine 5'-monophosphate, two of the main targets of photosensitization in biological systems, with efficiencies close to that of free Ptr. The mechanisms involved in the oxidation of biomolecules can be either type I (electron transfer) or type II (singlet oxygen).
Collapse
Affiliation(s)
- Gricelda Godoy-Ortega
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Diagonal 113 y 64, S/N, La Plata 1900, Argentina
| | - Gemma M Rodríguez-Muñiz
- Instituto Universitario Mixto de Tecnología Química, Universitat Politècnica de València -Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, Valencia 46022, Spain
| | - Virginie Lhiaubet-Vallet
- Instituto Universitario Mixto de Tecnología Química, Universitat Politècnica de València -Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, Valencia 46022, Spain
| | - Carolina Lorente
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Diagonal 113 y 64, S/N, La Plata 1900, Argentina
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Diagonal 113 y 64, S/N, La Plata 1900, Argentina
| |
Collapse
|
3
|
Zheng F, Li C, Huang Y, Lu Z, Hou X, Luo Y. Recent advances in optical heavy water sensors. Chem Commun (Camb) 2025; 61:3283-3300. [PMID: 39868706 DOI: 10.1039/d4cc06277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
D2O and H2O, as two important solvents with very similar properties, play a pivotal role in nuclear industrial production, life and scientific research. Unfortunately, D2O and H2O are highly susceptible to contamination by each other, so effective qualitative and quantitative analyses of both are necessary. This review comprehensively discusses the progress in optical sensing for the detection of a trace amount of H2O in heavy water or vice versa, mainly including five types of analytical systems: inorganic nanocrystals, carbon-based nanomaterials, lanthanide complexes, organic polymers, and organic small molecules. The whole article is divided into several sub-sections based on multiple mechanisms underlying the design of heavy water optical sensors, i.e., the difference in binding energy, the difference in quenching efficacy of oscillator types and the difference in acid-base of H2O and D2O. The working mechanism, advantages and disadvantages, analytical performance and applications of the reported sensors in recent years were analyzed in detail, and the future development is envisioned for the optical sensors towards distinguishing D2O and H2O.
Collapse
Affiliation(s)
- Fei Zheng
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Chenghui Li
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yan Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Zhiyun Lu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yanju Luo
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
4
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
5
|
Yang ZS, Gao S, Zhang JL. Magnetic manipulation of the reactivity of singlet oxygen: from test tubes to living cells. Natl Sci Rev 2024; 11:nwae069. [PMID: 39144743 PMCID: PMC11321247 DOI: 10.1093/nsr/nwae069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 01/14/2024] [Accepted: 02/17/2024] [Indexed: 08/16/2024] Open
Abstract
Although magnetism undoubtedly influences life on Earth, the science behind biological magnetic sensing is largely a mystery, and it has proved challenging, especially in the life sciences, to harness the interactions of magnetic fields (MFs) with matter to achieve specific ends. Using the well-established radical pair (RP) mechanism, we here demonstrate a bottom-up strategy for the exploitation of MF effects in living cells by translating knowledge from studies of RP reactions performed in vitro. We found an unprecedented MF dependence of the reactivity of singlet oxygen (1O2) towards electron-rich substrates (S) such as anthracene, lipids and iodide, in which [S ˙+ O2 ˙-] RPs are formed as a basis for MFs influencing molecular redox events in biological systems. The close similarity of the observed MF effects on the biologically relevant process of lipid peroxidation in solution, in membrane mimics and in living cells, shows that MFs can reliably be used to manipulate 1O2-induced cytotoxicity and cell-apoptosis-related protein expression. These findings led to a 'proof-of-concept' study on MF-assisted photodynamic therapy in vivo, highlighting the potential of MFs as a non-invasive tool for controlling cellular events.
Collapse
Affiliation(s)
- Zi-Shu Yang
- Institute of Inorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Song Gao
- Institute of Inorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Spin-X Institute and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, China
- Institute of Inorganic and Material Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Jun-Long Zhang
- Institute of Inorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
6
|
Singh S, Mukherjee TK. Photosensitizer-free singlet oxygen generation via a charge transfer transition involving molecular O 2 toward highly efficient oxidative coupling of arylamines to azoaromatics. Chem Sci 2024:d4sc04115a. [PMID: 39144455 PMCID: PMC11320377 DOI: 10.1039/d4sc04115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
Photosensitizer (PS)-mediated generation of singlet oxygen, O2 (a1Δg) is a well-explored phenomenon in chemistry and biology. However, the requirement of appropriate PSs with optimum excited state properties is a prerequisite for this approach which limits its widespread application. Herein, we report the generation of O2 (a1Δg) via direct charge-transfer (CT) excitation of the solvent-O2 (X3Σg -) collision complex without any PS and utilize it for the catalyst-free oxidative coupling of arylamines to azoaromatics under ambient conditions in aqueous medium. Electron paramagnetic resonance (EPR) spectroscopy revealed the formation of O2 (a1Δg) upon direct excitation with 370 nm light. The present approach shows broad substrate scope, remarkably fast reaction kinetics (90 and 40 min under an open and O2 atm, respectively), high selectivity (100%), and excellent yields (up to 100%), and works well for both homo- and hetero-coupling of arylamines. The oxidative coupling of arylamines was found to proceed through the generation of amine radicals via electron transfer (ET) from amines to O2 (a1Δg). Notably, electron-rich amines show higher yields of azo products compared to electron-deficient amines. Detailed mechanistic investigations using various spectroscopic tools revealed the formation of hydrazobenzene as an intermediate along with superoxide radicals which subsequently transform to hydrogen peroxide. The present study is unique in the way that molecular O2 simultaneously acts as a light-absorbing chromophore (solvent-O2 complex) as well as an efficient oxidant (O2 (a1Δg)) in the same reaction. This is the first report on the efficient, selective, and sustainable synthesis of azo compounds in aqueous medium under an ambient atmosphere without any PCs/PSs and paves the way for further in-depth understanding of the chemical reactivity of O2 (a1Δg) generated directly via CT excitation of the solvent-O2 complex toward various photochemical and photobiological transformations.
Collapse
Affiliation(s)
- Shivendra Singh
- Department of Chemistry, Indian Institute of Technology Indore Indore 453552 Madhya Pradesh India
| | - Tushar Kanti Mukherjee
- Department of Chemistry, Indian Institute of Technology Indore Indore 453552 Madhya Pradesh India
| |
Collapse
|
7
|
Liu Y, Li Z, Gao Y, Wang C, Wang X, Wang X, Xue X, Wang K, Cui W, Gao F, He S, Wu Z, Qi F, Gan J, Wang Y, Zheng W, Yang Y, Chen J, Pan H. Recent Advances in Understanding of the Singlet Oxygen in Energy Storage and Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311500. [PMID: 38372501 DOI: 10.1002/smll.202311500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Singlet oxygen (term symbol 1Δg, hereafter 1O2), a reactive oxygen species, has recently attracted increasing interest in the field of rechargeable batteries and electrocatalysis and photocatalysis. These sustainable energy conversion and storage technologies are of vital significance to replace fossil fuels and promote carbon neutrality and finally tackle the energy crisis and climate change. Herein, the recent progresses of 1O2 for energy storage and conversion is summarized, including physical and chemical properties, formation mechanisms, detection technologies, side reactions in rechargeable batteries and corresponding inhibition strategies, and applications in electrocatalysis and photocatalysis. The formation mechanisms and inhibition strategies of 1O2 in particular aprotic lithium-oxygen (Li-O2) batteries are highlighted, and the applications of 1O2 in photocatalysis and electrocatalysis is also emphasized. Moreover, the confronting challenges and promising directions of 1O2 in energy conversion and storage systems are discussed.
Collapse
Affiliation(s)
- Yanxia Liu
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhenglong Li
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yong Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Chenxing Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xin Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xu Xue
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Ke Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wengang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhijun Wu
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Fulai Qi
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Jiantuo Gan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yujing Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenjun Zheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
8
|
Ansari IM, Heller ER, Trenins G, Richardson JO. Heavy-atom tunnelling in singlet oxygen deactivation predicted by instanton theory with branch-point singularities. Nat Commun 2024; 15:4335. [PMID: 38773078 PMCID: PMC11522392 DOI: 10.1038/s41467-024-48463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/29/2024] [Indexed: 05/23/2024] Open
Abstract
The reactive singlet state of oxygen (O2) can decay to the triplet ground state nonradiatively in the presence of a solvent. There is a controversy about whether tunnelling is involved in this nonadiabatic spin-crossover process. Semiclassical instanton theory provides a reliable and practical computational method for elucidating the reaction mechanism and can account for nuclear quantum effects such as zero-point energy and multidimensional tunnelling. However, the previously developed instanton theory is not directly applicable to this system because of a branch-point singularity which appears in the flux correlation function. Here we derive a new instanton theory for cases dominated by the singularity, leading to a new picture of tunnelling in nonadiabatic processes. Together with multireference electronic-structure theory, this provides a rigorous framework based on first principles that we apply to calculate the decay rate of singlet oxygen in water. The results indicate a new reaction mechanism that is 27 orders of magnitude faster at room temperature than the classical process through the minimum-energy crossing point. We find significant heavy-atom tunnelling contributions as well as a large temperature-dependent H2O/D2O kinetic isotope effect of approximately 20, in excellent agreement with experiment.
Collapse
Affiliation(s)
- Imaad M Ansari
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Eric R Heller
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
- Department of Chemistry, University of California, Berkeley, 94720, Berkeley, USA
| | - George Trenins
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
- MPI for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
9
|
Singh N, Sen Gupta R, Bose S. A comprehensive review on singlet oxygen generation in nanomaterials and conjugated polymers for photodynamic therapy in the treatment of cancer. NANOSCALE 2024; 16:3243-3268. [PMID: 38265094 DOI: 10.1039/d3nr05801h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
A key role in lessening humanity's continuous fight against cancer could be played by photodynamic therapy (PDT), a minimally invasive treatment employed in the medical care of a range of benign disorders and malignancies. Cancerous tissue can be effectively removed by using a light source-excited photosensitizer. Singlet oxygen and reactive oxygen species are produced via the photosensitizer as a result of this excitation. In the recent past, researchers have put in tremendous efforts towards developing photosensitizer molecules for photodynamic treatment (PDT) to treat cancer. Conjugated polymers, characterized by their efficient fluorescence, exceptional photostability, and strong light absorption, are currently under scrutiny for their potential applications in cancer detection and treatment through photodynamic and photothermal therapy. Researchers are exploring the versatility of these polymers, utilizing sophisticated chemical synthesis and adaptable polymer structures to create new variants with enhanced capabilities for generating singlet oxygen in photodynamic treatment (PDT). The incorporation of photosensitizers into conjugated polymer nanoparticles has proved to be beneficial, as it improves singlet oxygen formation through effective energy transfer. The evolution of nanotechnology has emerged as an alternative avenue for enhancing the performance of current photosensitizers and overcoming significant challenges in cancer PDT. Various materials, including biocompatible metals, polymers, carbon, silicon, and semiconductor-based nanomaterials, have undergone thorough investigation as potential photosensitizers for cancer PDT. This paper outlines the recent advances in singlet oxygen generation by investigators using an array of materials, including graphene quantum dots (GQDs), gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), titanium dioxide (TiO2), ytterbium (Yb) and thulium (Tm) co-doped upconversion nanoparticle cores (Yb/Tm-co-doped UCNP cores), bismuth oxychloride nanoplates and nanosheets (BiOCl nanoplates and nanosheets), and others. It also stresses the synthesis and application of systems such as amphiphilic block copolymer functionalized with folic acid (FA), polyethylene glycol (PEG), poly(β-benzyl-L-aspartate) (PBLA10) (FA-PEG-PBLA10) functionalized with folic acid, tetra(4-hydroxyphenyl)porphyrin (THPP-(PNIPAM-b-PMAGA)4), pyrazoline-fused axial silicon phthalocyanine (HY-SiPc), phthalocyanines (HY-ZnPcp, HY-ZnPcnp, and HY-SiPc), silver nanoparticles coated with polyaniline (Ag@PANI), doxorubicin (DOX) and infrared (IR)-responsive poly(2-ethyl-2-oxazoline) (PEtOx) (DOX/PEtOx-IR NPs), particularly in NIR imaging-guided photodynamic therapy (fluorescent and photoacoustic). The study puts forward a comprehensive summary and a convincing justification for the usage of the above-mentioned materials in cancer PDT.
Collapse
Affiliation(s)
- Neetika Singh
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka - 560012, India.
| | - Ria Sen Gupta
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka - 560012, India.
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka - 560012, India.
| |
Collapse
|
10
|
Lancel M, Lindgren M, Monnereau C, Amara Z. Kinetic effects in singlet oxygen mediated oxidations by immobilized photosensitizers on silica. Photochem Photobiol Sci 2024; 23:79-92. [PMID: 38066378 DOI: 10.1007/s43630-023-00502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/04/2023] [Indexed: 02/02/2024]
Abstract
Singlet oxygen (1O2) mediated photo-oxidations are important reactions involved in numerous processes in chemical and biological sciences. While most of the current research works have aimed at improving the efficiencies of these transformations either by increasing 1O2 quantum yields or by enhancing its lifetime, we establish herein that immobilization of a molecular photosensitizer onto silica surfaces affords significant, substrate dependant, enhancement in the reactivity of 1O2. Probing a classical model reaction (oxidation of Anthracene-9, 10-dipropionic acid, ADPA or dimethylanthracene, DMA) with various spectrofluorimetric techniques, it is here proposed that an interaction between polar substrates and the silica surface is responsible for the observed phenomenon. This discovery could have a direct impact on the design of future photosensitized 1O2 processes in various applications ranging from organic photochemistry to photobiology.
Collapse
Affiliation(s)
- Maxime Lancel
- Equipe Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM), EA 7528, Conservatoire national des arts et metiers, HESAM université, 75003, Paris, France
| | - Mikaël Lindgren
- Faculty of Natural Sciences, Department of Physics, Norwegian University of Science and Technology, Gløshaugen, 7491, Trondheim, Norway
| | - Cyrille Monnereau
- ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, University of Lyon, 69364, Lyon, France.
| | - Zacharias Amara
- Equipe Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM), EA 7528, Conservatoire national des arts et metiers, HESAM université, 75003, Paris, France.
| |
Collapse
|
11
|
Gao Q, Grzyb K, Gamon LF, Ogilby PR, Pędziński T, Davies MJ. The structure of model and peptide disulfides markedly affects their reactivity and products formed with singlet oxygen. Free Radic Biol Med 2023; 207:320-329. [PMID: 37633403 DOI: 10.1016/j.freeradbiomed.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Disulfide bonds are critical structural elements in proteins and stabilize folded structures. Modification of these linkages is associated with a loss of structure and function. Previous studies have reported large variations in the rate of disulfide oxidation by hypohalous acids, due to stabilization of reaction intermediates. In this study we hypothesized that considerable variation (and hence selective oxidation) would occur with singlet oxygen (1O2), a key intermediate in photo-oxidation reactions. The kinetics of disulfide-mediated 1O2 removal were monitored using the time-resolved 1270 nm phosphorescence of 1O2. Stern-Volmer plots of these data showed a large variation (∼103) in the quenching rate constants kq (from 2 × 107 for α-lipoic acid to 3.6 × 104 M-1s-1 for cystamine). The time course of disulfide loss and product formation (determined by LC-MS) support a role for 1O2, with mono- and di-oxygenated products detected. Elevated levels of these latter species were generated in D2O- compared to H2O buffers, which is consistent with solvent effects on the 1O2 lifetime. These data are interpreted in terms of the intermediacy of a zwitterion [-S+(OO-)-S-], which either isomerizes to a thiosulfonate [-S(O)2-S-] or reacts with another parent molecule to give two thiosulfinates [-S(O)-S-]. The variation in quenching rates and product formation are ascribed to zwitterion stabilization by neighboring, or remote, lone pairs of electrons. These data suggest that some disulfides, including some present within or attached to proteins (e.g., α-lipoic acid), may be selectively modified, and undergo subsequent cleavage, with adverse effects on protein structure and function.
Collapse
Affiliation(s)
- Qing Gao
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Katarzyna Grzyb
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznań, Poland
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, DK-8000, Aarhus, Denmark
| | - Tomasz Pędziński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznań, Poland
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
12
|
Wang L, Xiao K, Zhao H. The debatable role of singlet oxygen in persulfate-based advanced oxidation processes. WATER RESEARCH 2023; 235:119925. [PMID: 37028213 DOI: 10.1016/j.watres.2023.119925] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Singlet oxygen (1O2) attracts much attention in persulfate-based advanced oxidation processes (PS-AOPs), because of its wide pH tolerance and high selectivity toward electron-rich organics. However, there are conflicts about the 1O2 role in PS-AOPs on several aspects, including the formation of different key reactive oxygen species (ROS) at similar active sites, pH dependence, broad-spectrum activity, and selectivity in the elimination of organic pollutants. To a large degree, these conflicts root in the drawbacks of the methods to identify and evaluate the role of 1O2. For example, the quenchers of 1O2 have high reactivity to other ROS and persulfate as well. In addition, electron transfer process (ETP) also selectively oxidizes organics, having a misleading effect on the identification of 1O2. Therefore, in this review, we summarized and discussed some basic properties of 1O2, the debatable role of 1O2 in PS-AOPs on multiple aspects, and the methods and their drawbacks to identify and evaluate the role of 1O2. On the whole, this review aims to better understand the role of 1O2 in PS-AOPs and further help with its reasonable utilization.
Collapse
Affiliation(s)
- Liangjie Wang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
13
|
Tasaka T, Matsumoto T, Nagashima U, Nagaoka SI. Potential energy curve for singlet-oxygen quenching reaction by vitamin E. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
14
|
Chen W, Jiang Y, Zhao M, An Y, Zhang Y, Yang L, Miao Q. 1O 2-Relevant Afterglow Luminescence of Chlorin Nanoparticles for Discriminative Detection and Isotopic Analysis of H 2O and D 2O. Anal Chem 2023; 95:5340-5345. [PMID: 36920345 DOI: 10.1021/acs.analchem.2c05459] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Discriminative detection between D2O and H2O is important for diverse fields but challenging due to their high similarity in chemical and physical properties. Current molecular sensors for D2O detection generally rely on the spectral change of fluorophores with suitable pKa in response to D2O and H2O with slightly different pH acidity. Herein, we report a new and facile D2O sensor by using singlet oxygen (1O2)-relevant afterglow luminescence of chlorin e4 nanoparticles (Ce4-NPs) to achieve distinguishable detection between D2O and H2O. As 1O2 is a key initiator involved in the afterglow luminescence process, it displays a 22-fold longer lifetime in D2O relative to H2O and thereafter generates more dioxetane intermediates after laser irradiation to lead to ultimate afterglow brightness of Ce4-NPs in D2O. In addition, Ce4-NPs are capable of quantitatively detecting the amount of H2O in D2O with a limit of detection (LOD) of 1.45%. Together, this study broadens the utility of afterglow materials and presents a facile strategy for isotopic purity analysis of heavy water.
Collapse
Affiliation(s)
- Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yue Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Min Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yi An
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Li Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.,School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Zhu W, Sharma N, Lee YM, El-Khouly ME, Fukuzumi S, Nam W. Use of Singlet Oxygen in the Generation of a Mononuclear Nonheme Iron(IV)-Oxo Complex. Inorg Chem 2023; 62:4116-4123. [PMID: 36862977 DOI: 10.1021/acs.inorgchem.2c04020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Nonheme iron(III)-superoxo intermediates are generated in the activation of dioxygen (O2) by nonheme iron(II) complexes and then converted to iron(IV)-oxo species by reacting with hydrogen donor substrates with relatively weak C-H bonds. If singlet oxygen (1O2) with ca. 1 eV higher energy than the ground state triplet oxygen (3O2) is employed, iron(IV)-oxo complexes can be synthesized using hydrogen donor substrates with much stronger C-H bonds. However, 1O2 has never been used in generating iron(IV)-oxo complexes. Herein, we report that a nonheme iron(IV)-oxo species, [FeIV(O)(TMC)]2+ (TMC = tetramethylcyclam), is generated using 1O2, which is produced with boron subphthalocyanine chloride (SubPc) as a photosensitizer, and hydrogen donor substrates with relatively strong C-H bonds, such as toluene (BDE = 89.5 kcal mol-1), via electron transfer from [FeII(TMC)]2+ to 1O2, which is energetically more favorable by 0.98 eV, as compared with electron transfer from [FeII(TMC)]2+ to 3O2. Electron transfer from [FeII(TMC)]2+ to 1O2 produces an iron(III)-superoxo complex, [FeIII(O2)(TMC)]2+, followed by abstracting a hydrogen atom from toluene by [FeIII(O2)(TMC)]2+ to form an iron(III)-hydroperoxo complex, [FeIII(OOH)(TMC)]2+, that is further converted to the [FeIV(O)(TMC)]2+ species. Thus, the present study reports the first example of generating a mononuclear nonheme iron(IV)-oxo complex with the use of singlet oxygen, instead of triplet oxygen, and a hydrogen atom donor with relatively strong C-H bonds. Detailed mechanistic aspects, such as the detection of 1O2 emission, the quenching by [FeII(TMC)]2+, and the quantum yields, have also been discussed to provide valuable mechanistic insights into understanding nonheme iron-oxo chemistry.
Collapse
Affiliation(s)
- Wenjuan Zhu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Namita Sharma
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mohamed E El-Khouly
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
16
|
Henke P, Rindom C, Kanta Aryal U, Frydenlund Jespersen M, Broløs L, Mansø M, Turkovic V, Madsen M, Mikkelsen KV, Ogilby PR, Brøndsted Nielsen M. Imparting Stability to Organic Photovoltaic Components through Molecular Engineering: Mitigating Reactions with Singlet Oxygen. CHEMSUSCHEM 2023:e202202320. [PMID: 36897647 DOI: 10.1002/cssc.202202320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Indexed: 06/18/2023]
Abstract
One key challenge in the development of viable organic photovoltaic devices is to design component molecules that do not degrade during combined exposure to oxygen and light. Such molecules should thus remain comparatively unreactive towards singlet molecular oxygen and not act as photosensitizers for the generation of this undesirable species. Here, novel redox-active chromophores that combine these two properties are presented. By functionalizing indenofluorene-extended tetrathiafulvalenes (IF-TTFs) with cyano groups at the indenofluorene core using Pd-catalyzed cyanation reactions, we find that the reactivity of the exocyclic fulvene carbon-carbon double bonds towards singlet oxygen is considerably reduced. The new cyano-functionalized IF-TTFs were tested in non-fullerene acceptor based organic photovoltaic proof-of-principle devices, revealing enhanced device stability.
Collapse
Affiliation(s)
- Petr Henke
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000, Aarhus C, Denmark
| | - Cecilie Rindom
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Um Kanta Aryal
- Centre for Advanced Photovoltaics and Thin Film Energy Devices (SDU CAPE), Mads Clausen Institute, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | | | - Line Broløs
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Mads Mansø
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Vida Turkovic
- Centre for Advanced Photovoltaics and Thin Film Energy Devices (SDU CAPE), Mads Clausen Institute, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | - Morten Madsen
- Centre for Advanced Photovoltaics and Thin Film Energy Devices (SDU CAPE), Mads Clausen Institute, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Peter R Ogilby
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000, Aarhus C, Denmark
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
17
|
Forecast R, Campaioli F, Schmidt TW, Cole JH. Photochemical Upconversion in Solution: The Role of Oxygen and Magnetic Field Response. J Phys Chem A 2023; 127:1794-1800. [PMID: 36753357 PMCID: PMC9969966 DOI: 10.1021/acs.jpca.2c08883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Indexed: 02/09/2023]
Abstract
Upconversion processes effectively convert two or more low energy photons into one higher energy photon, and they have diverse prospective applications in photovoltaics and biomedicine. We focus on two specific mechanisms for photochemical upconversion in solution: triplet-triplet annihilation (TTA) and singlet oxygen mediated energy transfer (SOMET). TTA is spin-selective, whereas SOMET is not, so the interplay between these two upconversion mechanisms can be examined via their different magnetic field responses. A kinetic model is developed and applied to explain the different photoluminescence profiles of oxygenated versus deoxygenated systems. From the magnetic field response, the triplet-triplet annihilation rate constant is estimated. The conditions required to maximize upconversion photoluminescence intensity in oxygenated solution are determined, providing a set of design principles to guide molecule choices for robust and air-stable upconversion systems in the future.
Collapse
Affiliation(s)
- Roslyn Forecast
- ARC
Centre of Excellence in Exciton Science and Chemical and Quantum Physics,
School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Francesco Campaioli
- ARC
Centre of Excellence in Exciton Science and Chemical and Quantum Physics,
School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Timothy W. Schmidt
- ARC
Centre of Excellence in Exciton Science, School of Chemistry, The University of NSW, Sydney, NSW 2052, Australia
| | - Jared H. Cole
- ARC
Centre of Excellence in Exciton Science and Chemical and Quantum Physics,
School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
18
|
Atmaca GY, Elmalı FT, Erdoğmuş A. Improved singlet oxygen generation of axially ruthenium(II) complex substituted silicon(IV) phthalocyanine by sono-photochemical studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Baptista MS, Cadet J, Greer A, Thomas AH. Practical Aspects in the Study of Biological Photosensitization Including Reaction Mechanisms and Product Analyses: A Do's and Don'ts Guide †. Photochem Photobiol 2022; 99:313-334. [PMID: 36575651 DOI: 10.1111/php.13774] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The interaction of light with natural matter leads to a plethora of photosensitized reactions. These reactions cause the degradation of biomolecules, such as DNA, lipids, proteins, being therefore detrimental to the living organisms, or they can also be beneficial by allowing the treatment of several diseases by photomedicine. Based on the molecular mechanistic understanding of the photosensitization reactions, we propose to classify them in four processes: oxygen-dependent (type I and type II processes) and oxygen-independent [triplet-triplet energy transfer (TTET) and photoadduct formation]. In here, these processes are discussed by considering a wide variety of approaches including time-resolved and steady-state techniques, together with solvent, quencher, and scavenger effects. The main aim of this survey is to provide a description of general techniques and approaches that can be used to investigate photosensitization reactions of biomolecules together with basic recommendations on good practices. Illustration of the suitability of these approaches is provided by the measurement of key biomarkers of singlet oxygen and one-electron oxidation reactions in both isolated and cellular DNA. Our work is an educational review that is mostly addressed to students and beginners.
Collapse
Affiliation(s)
- Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, New York, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York, USA
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
20
|
de la Torre C, Gavara R, García-Fernández A, Mikhaylov M, Sokolov MN, Miravet JF, Sancenón F, Martínez-Máñez R, Galindo F. Enhancement of photoactivity and cellular uptake of (Bu 4N) 2[Mo 6I 8(CH 3COO) 6] complex by loading on porous MCM-41 support. Photodynamic studies as an anticancer agent. BIOMATERIALS ADVANCES 2022; 140:213057. [PMID: 36007463 DOI: 10.1016/j.bioadv.2022.213057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022]
Abstract
The incorporation by ionic assembly of the hexanuclear molybdenum cluster (Bu4N)2[Mo6I8(CH3CO2)6] (1) in amino-decorated mesoporous silica nanoparticles MCM-41, has yielded the new molybdenum-based hybrid photosensitizer 1@MCM-41. The new photoactive material presents a high porosity, due to the intrinsic high specific surface area of MCM-41 nanoparticles (989 m2 g-1) which is responsible for the good dispersion of the hexamolybdenum clusters on the nanoparticles surface, as observed by STEM analysis. The hybrid photosensitizer can generate efficiently singlet oxygen, which was demonstrated by using the benchmark photooxygenation reaction of 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABDA) in water. The photodynamic therapy activity has been tested using LED light as an irradiation source (λirr ~ 400-700 nm; 15.6 mW/cm2). The results show a good activity of the hybrid photosensitizer against human cervical cancer (HeLa) cells, reducing up to 70 % their viability after 20 min of irradiation, whereas low cytotoxicity is detected in the darkness. The main finding of this research is that the incorporation of molybdenum complexes at porous MCM-41 supports enhances their photoactivity and improves cellular uptake, compared to free clusters.
Collapse
Affiliation(s)
- Cristina de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València - Universidad de Valencia, Departamento de Química Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Raquel Gavara
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València - Universidad de Valencia, Departamento de Química Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Maxim Mikhaylov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
| | - Juan F Miravet
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València - Universidad de Valencia, Departamento de Química Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València - Universidad de Valencia, Departamento de Química Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain.
| | - Francisco Galindo
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain.
| |
Collapse
|
21
|
Božinović K, Nestić D, Michail E, Ferger M, Košćak M, Lambert C, Majhen D, Marder TB, Piantanida I. Diethynylarene-linked bis(triarylborane)cations as theranostic agents for tumor cell and virus-targeted photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112523. [PMID: 35868133 DOI: 10.1016/j.jphotobiol.2022.112523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/20/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
We recently reported diethynylarene-linked bis(triarylborane) tetracations which show remarkable fluorimetric and Raman-SERS sensing of DNA/RNA. In the current study, we show that they exhibit promising photodynamic therapy (PDT)-based biological activity on human cell lines and adenovirus type 5 (HAdV5), acting as theranostic agents. All compounds efficiently enter living cells showing negligible antiproliferative activity. Bis-thiophene- and anthracene- analogues bind non-covalently to HAdV5 virus with high affinity, the anthracene-analogue itself causing a moderate antiviral effect, i.e., decreased ability of the virus to infect human cells. Irradiation of bis-thiophene- and anthracene- analogues with visible light (400-700 nm) caused a very rapid (within 1 min) and strong increase in cytotoxicity, as well as an order of magnitude increase in antiviral activity, attributed to the formation of reactive oxygen species (ROS). Photochemical studies of the compounds revealed that, upon irradiation, they produce singlet oxygen, which correlates with the observed light-induced bioactivity.
Collapse
Affiliation(s)
- Ksenija Božinović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Davor Nestić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Evripidis Michail
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Matthias Ferger
- Institut für Anorganische Chemie, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marta Košćak
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Todd B Marder
- Institut für Anorganische Chemie, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Piantanida
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
22
|
Ferger M, Roger C, Köster E, Rauch F, Lorenzen S, Krummenacher I, Friedrich A, Košćak M, Nestić D, Braunschweig H, Lambert C, Piantanida I, Marder TB. Electron-Rich EDOT Linkers in Tetracationic bis-Triarylborane Chromophores: Influence on Water Stability, Biomacromolecule Sensing, and Photoinduced Cytotoxicity. Chemistry 2022; 28:e202201130. [PMID: 35647673 PMCID: PMC9543662 DOI: 10.1002/chem.202201130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/03/2022]
Abstract
Three novel tetracationic bis-triarylboranes with 3,4-ethylenedioxythiophene (EDOT) linkers, and their neutral precursors, showed significant red-shifted absorption and emission compared to their thiophene-containing analogues, with one of the EDOT-derivatives emitting in the NIR region. Only the EDOT-linked trixylylborane tetracation was stable in aqueous solution, indicating that direct attachment of a thiophene or even 3-methylthiophene to the boron atom is insufficient to provide hydrolytic stability in aqueous solution. Further comparative analysis of the EDOT-linked trixylylborane tetracation and its bis-thiophene analogue revealed efficient photo-induced singlet oxygen production, with the consequent biological implications. Thus, both analogues bind strongly to ds-DNA and BSA, very efficiently enter living human cells, accumulate in several different cytoplasmic organelles with no toxic effect but, under intense visible light irradiation, they exhibit almost instantaneous and very strong cytotoxic effects, presumably attributed to singlet oxygen production. Thus, both compounds are intriguing theranostic agents, whose intracellular and probably intra-tissue location can be monitored by strong fluorescence, allowing switching on of the strong bioactivity by well-focused visible light.
Collapse
Affiliation(s)
- Matthias Ferger
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Chantal Roger
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Eva Köster
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Florian Rauch
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Sabine Lorenzen
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Marta Košćak
- Division of Organic Chemistry and BiochemistryRuđer Bošković InstituteBijenicka c. 5410000ZagrebCroatia
| | - Davor Nestić
- Division of Molecular BiologyRuđer Bošković InstituteBijenicka c. 5410000ZagrebCroatia
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Christoph Lambert
- Institut für Organische ChemieJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Piantanida
- Division of Organic Chemistry and BiochemistryRuđer Bošković InstituteBijenicka c. 5410000ZagrebCroatia
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
23
|
Bernal-Escalante J, Molina-Villa T, López-Casillas F, Jiménez-Sánchez A. Mitochondria-Assisted Photooxidation to Track Singlet Oxygen at Homeostatic Membrane Microviscosity. ACS Sens 2022; 7:2303-2311. [PMID: 35913393 DOI: 10.1021/acssensors.2c00933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Using intracellular-controlled photochemistry to track dynamic organelle processes is gaining attention due to its broad applications. However, most of the employed molecular probes usually require toxic photosensitizers and complex bioanalytical protocols. Here, the synthesis and performance of two new subcellular probes (MitoT1 and MitoT2) are described. The probes undergo photooxidation in the damaged tissue of zebrafish, a model system for tissue regeneration studies. Using high-resolution confocal microscopy and fluorescence spectroscopy, we combine the mentioned photoinduced interconversion at the homeostatic membrane viscosity to track singlet oxygen activity selectively. The continuous and real-time biosensing method reported here provides a new approach for simultaneously detecting endogenous singlet oxygen and viscosity status.
Collapse
Affiliation(s)
- Jasmine Bernal-Escalante
- Bioorganic Chemistry Laboratory (BioChela) at Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Coyoacán, P.C. Ciudad Universitaria,, 04510 Ciudad de México, Circuito Exterior s/n, Mexico
| | - Tonatiuh Molina-Villa
- Laboratory of Developmental Biology at Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Coyoacán, P.C., Ciudad Universitaria, 04510 Ciudad de México, Circuito Exterior s/n, Mexico
| | - Fernando López-Casillas
- Laboratory of Developmental Biology at Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Coyoacán, P.C., Ciudad Universitaria, 04510 Ciudad de México, Circuito Exterior s/n, Mexico
| | - Arturo Jiménez-Sánchez
- Bioorganic Chemistry Laboratory (BioChela) at Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Coyoacán, P.C. Ciudad Universitaria,, 04510 Ciudad de México, Circuito Exterior s/n, Mexico
| |
Collapse
|
24
|
Thorning F, Henke P, Ogilby PR. Perturbed and Activated Decay: The Lifetime of Singlet Oxygen in Liquid Organic Solvents. J Am Chem Soc 2022; 144:10902-10911. [PMID: 35686951 DOI: 10.1021/jacs.2c03444] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Singlet oxygen, O2(a1Δg), the lowest excited electronic state of molecular oxygen, plays an important role in a range of chemical and biological processes. In liquid solvents, the reactions of singlet oxygen with a solute kinetically compete with solvent-mediated deactivation that yields the ground electronic state of oxygen, O2(X3Σg-). In this regard, the key parameter is the solvent-mediated lifetime of singlet oxygen, which embodies fundamental physical principles ranging from intermolecular interactions that perturb the forbidden O2(a1Δg) → O2(X3Σg-) transition to the transfer of oxygen's excitation energy into the vibrational modes of a solvent molecule M. Extensive research performed by the global community on this oxygen-related issue over the past ∼50 years reflects its significance. Unfortunately, a satisfactory quantitative understanding of this unique solvent effect has remained elusive thus far. In temperature-dependent studies, we have quantified the singlet oxygen lifetime in common aromatic and aliphatic organic solvents, including partially deuterated molecules that exploit the H/D solvent isotope effect on the lifetime. We now account for experimental data, including previously intractable data, using a model that exploits both weak and strong coupling in the M-O2 complex to accommodate the roles that M plays to (1) induce the forbidden O2(a1Δg) → O2(X3Σg-) transition and (2) accept the excitation energy of O2(a1Δg). As such, our approach brings us appreciably closer to an accurate and predictive ab initio solution for the long-standing oxygen-dependent problem that, in turn, should be relevant for a host of other molecular systems.
Collapse
Affiliation(s)
| | - Petr Henke
- Chemistry Department, Aarhus University, DK-8000 Aarhus, Denmark
| | - Peter R Ogilby
- Chemistry Department, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
25
|
Bregnhøj M, McLoughlin CK, Breitenbach T, Ogilby PR. X 3Σ g- → b 1Σ g+ Absorption Spectra of Molecular Oxygen in Liquid Organic Solvents at Atmospheric Pressure. J Phys Chem A 2022; 126:3839-3845. [PMID: 35649157 DOI: 10.1021/acs.jpca.2c03053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spectra and absorption coefficients of the forbidden 765 nm X3Σg- → b1Σg+ transition of molecular oxygen dissolved in organic solvents at atmospheric pressure were recorded over a 5 m path length using a liquid waveguide capillary cell. The results show that it is possible to investigate this weak near-infrared absorption transition in a common liquid hydrocarbon solvent without the need for a potentially dangerous high oxygen pressure. Proof-of-principle data from benzene, toluene, chlorobenzene, bromobenzene, and iodobenzene reveal a pronounced heavy atom effect on this spin-forbidden transition. For example, the absorption coefficient at the band maximum in iodobenzene, (28.9 ± 3.3) × 10-3 M-1 cm-1, is approximately 21 times larger than that in benzene, (1.4 ± 0.1) × 10-3 M-1 cm-1. These absorption measurements corroborate results obtained from O2(X3Σg-) → O2(b1Σg+) excitation spectra of O2(a1Δg) → O2(X3Σg-) phosphorescence, which depended on data from a plethora of convoluted experiments. Spectroscopic studies of molecular oxygen in liquid solvents can help evaluate aspects of the seminal Strickler-Berg approach to treat the effect of solvent on Einstein's A and B coefficients for radiative transitions. In particular, our present results are a key step toward using the O2(X3Σg-) → O2(b1Σg+) transition to evaluate the speculated limiting condition of applying the Strickler-Berg treatment to a highly forbidden process. This latter issue is but one example of how an arguably simple homonuclear diatomic molecule continues to aid the scientific community by providing fundamental physical insight.
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
| | | | | | - Peter R Ogilby
- Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
26
|
Thorning F, Jensen F, Ogilby PR. The oxygen-organic molecule photosystem: revisiting the past, recalibrating the present, and redefining the future. Photochem Photobiol Sci 2022; 21:1133-1141. [PMID: 35284990 DOI: 10.1007/s43630-022-00196-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/23/2022] [Indexed: 12/16/2022]
Abstract
Perturbation by a neighboring molecule M appreciably alters the properties of both the ground and excited states of molecular oxygen, as reflected in a variety of photophysical phenomena. In this article, we build upon the ~ 100 year history of work in this field, illustrating how the M-O2 system continues to challenge the scientific community, facilitating better insight into fundamental tenets of chemistry and physics.
Collapse
Affiliation(s)
| | - Frank Jensen
- Chemistry Department, Aarhus University, 8000, Aarhus, Denmark
| | - Peter R Ogilby
- Chemistry Department, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
27
|
Thorning F, Jensen F, Ogilby PR. Geometry Dependence of Spin-Orbit Coupling in Complexes of Molecular Oxygen with Atoms, H 2, or Organic Molecules. J Phys Chem A 2022; 126:834-844. [PMID: 35107295 DOI: 10.1021/acs.jpca.1c09634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies of the interactions between molecular oxygen and a perturbing species, such as an organic solvent, have been an active research area for at least 70 years. In particular, interaction with a neighboring molecule or atom may perturb the electronic states of oxygen to such an extent that the O2(a1Δg) → O2(X3Σg-) transition, formally forbidden as an electric dipole process, achieves significant transition probability. We present a computational study of how the geometry of complexes consisting of molecular oxygen and different perturbing species influences the magnitude of spin-orbit coupling that facilitates the O2(a1Δg) → O2(X3Σg-) transition. We rationalize our results using a model based on orbital interactions: a non-zero spin-orbit coupling matrix element results from asymmetric transfer of charge to or from the 1πg orbitals on oxygen. Our results indicate that the atoms in a perturbing species closest to oxygen are responsible for the majority of the spin-orbit interactions, suggesting that large systems can be simplified appreciably. Furthermore, we infer and confirm that an estimate of the spin-orbit coupling matrix element can be obtained from the magnitude of the induced energy splitting of oxygen's 1πg orbitals. These results should provide further momentum in the long-standing issue of understanding phenomena that influence the O2(a1Δg) → O2(X3Σg-) transition.
Collapse
Affiliation(s)
| | - Frank Jensen
- Chemistry Department, Aarhus University, DK-8000 Aarhus, Denmark
| | - Peter R Ogilby
- Chemistry Department, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
28
|
Lamač M, Dunlop D, Lang K, Kubát P. Group 4 metallocene derivatives as a new class of singlet oxygen photosensitizers. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Isikawa M, Guidelli E. Microfluidic Synthesis of Theranostic Nanoparticles with Near-Infrared Scintillation: Toward Next-Generation Dosimetry in X-ray-Induced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:324-336. [PMID: 34963048 DOI: 10.1021/acsami.1c20689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We developed a microfluidic synthesis to grow GdF3:Eu theranostic scintillating nanoparticles to simultaneously monitor the X-ray dose delivered to tumors during treatments with X-ray activated photodynamic therapy (X-PDT). The flow reaction was optimized to enhance scintillation emission from the Eu3+ ions. The as-prepared ∼15 nm rhombohedral-shaped nanoparticles self-assembled into ∼100 nm mesoporous flower-like nanostructures, but the rhombohedral units remained intact and the scintillation spectra unaltered. The conjugation of the ScNPs with multilayers of methylene blue (MB) in a core-shell structure (GdF@MB) resulted in enhanced singlet oxygen (1O2) generation under X-ray irradiation, with maximum 1O2 production for nanoparticles with 4 MB layers (GdF@4MB). High 1O2 yield was further evidenced in cytotoxicity assays, demonstrating complete cell death only for the association of ScNPs with MB and X-rays. Because the scintillating Eu3+ emission at 694 nm is within the therapeutic window and was only partially absorbed by the MB molecules, it was explored for getting in vivo dosimetric information. Using porcine skin and fat to simulate the optical and radiological properties of the human tissues, we showed that the scintillation light can be detected for a tissue layer of ∼16 mm, thick enough to be employed in radiotherapy treatments of breast cancers, for instance. Therefore, the GdF3:Eu ScNPs and the GdF@4MB nanoconjugates are strong candidates for treating cancer with X-PDT while monitoring the treatment and the radiation dose delivered, opening new avenues to develop a next-generation modality of real-time in vivo dosimetry.
Collapse
Affiliation(s)
- Mileni Isikawa
- Departamento de Física. FFCLRP- Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Eder Guidelli
- Departamento de Física. FFCLRP- Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|
30
|
Delcanale P, Abbruzzetti S, Viappiani C. Photodynamic treatment of pathogens. LA RIVISTA DEL NUOVO CIMENTO 2022; 45:407-459. [PMCID: PMC8921710 DOI: 10.1007/s40766-022-00031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
The current viral pandemic has highlighted the compelling need for effective and versatile treatments, that can be quickly tuned to tackle new threats, and are robust against mutations. Development of such treatments is made even more urgent in view of the decreasing effectiveness of current antibiotics, that makes microbial infections the next emerging global threat. Photodynamic effect is one such method. It relies on physical processes proceeding from excited states of particular organic molecules, called photosensitizers, generated upon absorption of visible or near infrared light. The excited states of these molecules, tailored to undergo efficient intersystem crossing, interact with molecular oxygen and generate short lived reactive oxygen species (ROS), mostly singlet oxygen. These species are highly cytotoxic through non-specific oxidation reactions and constitute the basis of the treatment. In spite of the apparent simplicity of the principle, the method still has to face important challenges. For instance, the short lifetime of ROS means that the photosensitizer must reach the target within a few tens nanometers, which requires proper molecular engineering at the nanoscale level. Photoactive nanostructures thus engineered should ideally comprise a functionality that turns the system into a theranostic means, for instance, through introduction of fluorophores suitable for nanoscopy. We discuss the principles of the method and the current molecular strategies that have been and still are being explored in antimicrobial and antiviral photodynamic treatment.
Collapse
Affiliation(s)
- Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| |
Collapse
|
31
|
Yoshida T, Okoshi M, Kawai A. O 2 solvation cavity in voids of ionic liquids studied by the solvatochromic red shift of O 2( 1Δ g) phosphorescence. J Chem Phys 2021; 155:234503. [PMID: 34937375 DOI: 10.1063/5.0073955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phosphorescence spectroscopy of singlet oxygen [=O2(1Δg)] was applied to study the solvation properties of small solute molecule, O2, in ionic liquids. Unlike conventional molecular solvents, the spectral red shift of the O2(1Δg) phosphorescence in ionic liquids from the gas phase was found to depend not only on the refractive index of solvents but also on the vdW volume of anions. This unusual spectral shift of the O2(1Δg) luminescence is interpreted by considering the size of solvation cavities in voids, which is estimated by analyzing the free volume in ionic liquids. These results suggest the potential of the O2(1Δg) phosphorescence spectral shift measurement in the study of molecular-scale voids in ionic liquids.
Collapse
Affiliation(s)
- Tsuyoshi Yoshida
- Department of Electrical and Electronic Engineering, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| | - Masayuki Okoshi
- Department of Electrical and Electronic Engineering, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan
| | - Akio Kawai
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka-shi, Kanagawa 259-1293, Japan
| |
Collapse
|
32
|
Novel photosensitizing nanoparticles for PDT and biosensing applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
33
|
Sherin PS, Vyšniauskas A, López-Duarte I, Ogilby PR, Kuimova MK. Visualising UV-A light-induced damage to plasma membranes of eye lens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 225:112346. [PMID: 34736070 DOI: 10.1016/j.jphotobiol.2021.112346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023]
Abstract
An eye lens is constantly exposed to the solar UV radiation, which is considered the most important external source of age-related changes to eye lens constituents. The accumulation of modifications of proteins and lipids with age can eventually lead to the development of progressive lens opacifications, such as cataracts. Though the impact of solar UV radiation on the structure and function of proteins is actively studied, little is known about the effect of photodamage on plasma membranes of lens cells. In this work we exploit Fluorescence Lifetime Imaging Microscopy (FLIM), together with viscosity-sensitive fluorophores termed molecular rotors, to study the changes in viscosity of plasma membranes of porcine eye lens resulting from two different types of photodamage: Type I (electron transfer) and Type II (singlet oxygen) reactions. We demonstrate that these two types of photodamage result in clearly distinct changes in viscosity - a decrease in the case of Type I damage and an increase in the case of Type II processes. Finally, to simulate age-related changes that occur in vivo, we expose an intact eye lens to UV-A light under anaerobic conditions. The observed decrease in viscosity within plasma membranes is consistent with the ability of eye lens constituents to sensitize Type I photodamage under natural irradiation conditions. These changes are likely to alter the transport of metabolites and predispose the whole tissue to the development of pathological processes such as cataracts.
Collapse
Affiliation(s)
- Peter S Sherin
- Chemistry Department, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK; International Tomography Center SB RAS, Institutskaya street 3A, Novosibirsk 630090, Russia.
| | - Aurimas Vyšniauskas
- Center for Physical Sciences and Technology, Saulėtekio av. 3, Vilnius LT-10257, Lithuania; Chemistry Department, Vilnius University, Naugarduko st. 24, Vilnius LT-03225, Lithuania
| | - Ismael López-Duarte
- Chemistry Department, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus DK-8000, Denmark
| | - Marina K Kuimova
- Chemistry Department, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
34
|
Parsons BF, Freitag MA, Warder HJ. Singlet O 2 Produced by Ultraviolet Dissociation of the β-ionone-O 2 Complex. J Phys Chem A 2021; 125:8649-8657. [PMID: 34554753 DOI: 10.1021/acs.jpca.1c06669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We formed the gas-phase β-ionone-O2 complex in a supersonic expansion and then photodissociated the complex with light near 312 nm. Photodissociation resulted in the production of O2 in the a 1Δg state, which was ionized at 312 nm using (2 + 1) resonance-enhanced multiphoton ionization (REMPI). We recorded the 1O2 REMPI action spectrum and O2+ velocity map ion image following photodissociation of the complex. From the velocity map image, we determined the total recoil kinetic energy distribution from dissociation of the complex. Fitting the REMPI spectrum showed that the 1O2 product has an effective rotational temperature of about 50 K, while the recoil kinetic energy distribution was well fit with a statistical Boltzmann distribution having an effective translational temperature of 289 K. Using the average translational energy from the Boltzmann fit along with the complex dissociation energy from ab initio calculations, we determined that β-ionone was formed with an average of 2.87 eV of internal energy, which was 0.49 eV higher than previous measurements for the β-ionone triplet-state energy. Our own CCSD/cc-pVDZ//(U)MP2/cc-pVDZ calculations gave a minimum triplet-state energy of 2.04 eV. However, a large structural change occurs between the minimum singlet-ground-state geometry and the minimum triplet-excited-state geometry, and as a result, the calculated vertical energy for the triplet-state β-ionone was determined to be 3.30 eV. Comparing the ab initio and experimental results indicated that following excitation, β-ionone was formed in the triplet state but with significant internal vibrational energy. As such, complex dissociation likely proceeds following internal vibrational energy redistribution, which explains the statistical recoil kinetic energy distribution.
Collapse
Affiliation(s)
- Bradley F Parsons
- Department of Chemistry and Biochemistry, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, United States
| | - Mark A Freitag
- Department of Chemistry and Biochemistry, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, United States
| | - Hunter J Warder
- Department of Chemistry and Biochemistry, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, United States
| |
Collapse
|
35
|
Quina FH, Silva GTM. The photophysics of photosensitization: A brief overview. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
36
|
Lang Y, Wu S, Yang Q, Luo Y, Jiang X, Wu P. Analysis of the Isotopic Purity of D 2O with the Characteristic NIR-II Phosphorescence of Singlet Oxygen from a Photostable Polythiophene Photosensitizer. Anal Chem 2021; 93:9737-9743. [PMID: 34235917 DOI: 10.1021/acs.analchem.1c01160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
D2O plays important roles in a variety of fields (such as the nuclear industry and bioorganic analysis), and thus its isotopic purity (H2O contents) is highly concerned. Due to its highly similar physical properties to H2O and large excess amounts of H2O over D2O, it is challenging to distinguish D2O from H2O. On the basis of the characteristic NIR-II phosphorescence of singlet oxygen (1O2), and the fact that H2O is a more efficient quencher for 1O2 than D2O, here, we proposed to simply use the 1275 nm emission of 1O2 for the analysis of the isotopic purity of D2O. In normal cases (a xenon lamp for excitation), such steady-state emission is extremely weak for valid analytical applications, we thus employed laser excitation for intensification. To this goal, a series of photosensitizers were screened, and eventually polythiophene PT10 was selected with high singlet oxygen quantum yield (ΦΔ = 0.51), high H2O/D2O contrast, and excellent photostability. Upon excitation with a 445 nm laser, a limit of detection (LOD, 3σ) of 0.1% for H2O in D2O was achieved. The accuracy of the proposed method was verified by the analysis of the isotopic purity of several D2O samples (with randomly added H2O). More interestingly, the hygroscopicity of D2O was sensitively monitored with the proposed probe in a real-time manner; the results of which are important for strengthening the care of D2O storage and the importance of humidity control during related investigations. Besides D2O isotopic purity evaluation, this work also indicated the potential usefulness of the NIR-II emission of singlet oxygen in future analytical detection.
Collapse
|
37
|
Shen HJ, Hu ZN, Zhang C. Singlet Oxygen Generation from a Water-Soluble Hypervalent Iodine(V) Reagent AIBX and H 2O 2: An Access to Artemisinin. J Org Chem 2021; 87:3885-3894. [PMID: 34028276 DOI: 10.1021/acs.joc.1c00596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report an efficient method for the chemical generation of 1O2 by treatment of H2O2 with AIBX, a highly water-soluble, bench-stable, recyclable hypervalent iodine(V) reagent developed by our group. The generation of 1O2 was confirmed by the following results: (1) capture of 1O2 with the sodium salt of anthracene-9,10-bis(ethanesulfonate) produced the corresponding endoperoxide and (2) TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) produced by the oxidation of 2,2,6,6-tetramethylpiperidine with 1O2 generated using the AIBX/H2O2 system was detected by electron spin resonance spectroscopy. To illustrate the potential utility of this method for organic synthesis, we used the AIBX/H2O2 system to perform typical reactions of 1O2: [2 + 2]/[4 + 2] cycloadditions, Schenck ene reactions, and heteroatom oxidation reactions, which afforded the corresponding products in high yields. Moreover, we used the method to synthesize the antimalarial drug artemisinin. Finally, we demonstrated that AIBX could be regenerated after the reaction by means of a workup involving extraction and removal of water to obtain a precursor of AIBX, which could then be re-oxidized.
Collapse
Affiliation(s)
- Hui-Jie Shen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ze-Nan Hu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chi Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Mogensen DJ, Westberg M, Breitenbach T, Etzerodt M, Ogilby PR. Stable Transfection of the Singlet Oxygen Photosensitizing Protein SOPP3: Examining Aspects of Intracellular Behavior †. Photochem Photobiol 2021; 97:1417-1430. [PMID: 33934354 DOI: 10.1111/php.13440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 01/28/2023]
Abstract
Protein-encased chromophores that photosensitize the production of reactive oxygen species, ROS, have been the center of recent activity in studies of oxidative stress. One potential attribute of such systems is that the local environment surrounding the chromophore, and that determines the chromophore's photophysics, ideally remains constant and independent of the global environment into which the system is placed. Therefore, a protein-encased sensitizer localized in the mitochondria would arguably have the same photophysics as that protein-encased sensitizer at the plasma membrane, for example. One thus obtains a useful tool to study processes modulated by spatially localized ROS. One ROS of interest is singlet oxygen, O2 (a1 Δg ). We recently developed a singlet oxygen photosensitizing protein, SOPP, in which flavin mononucleotide, FMN, is encased in a re-engineered light-oxygen-voltage protein. One goal was to ascertain how a version of this system, SOPP3, which selectively makes O2 (a1 Δg ), in vitro, behaves in a cell. We now demonstrate that SOPP3 undergoes exacerbated irradiation-mediated bleaching when expressed at either the plasma membrane or mitochondria in stable cell lines. We find that the environment around the SOPP3 system affects the bleaching rate, which argues against one of the key suppositions in support of a protein-encased chromophore.
Collapse
Affiliation(s)
| | | | | | - Michael Etzerodt
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| |
Collapse
|
39
|
Supramolecular Control of Singlet Oxygen Generation. Molecules 2021; 26:molecules26092673. [PMID: 34063309 PMCID: PMC8124681 DOI: 10.3390/molecules26092673] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
Singlet oxygen (1O2) is the excited state electronic isomer and a reactive form of molecular oxygen, which is most efficiently produced through the photosensitized excitation of ambient triplet oxygen. Photochemical singlet oxygen generation (SOG) has received tremendous attention historically, both for its practical application as well as for the fundamental aspects of its reactivity. Applications of singlet oxygen in medicine, wastewater treatment, microbial disinfection, and synthetic chemistry are the direct results of active past research into this reaction. Such advancements were achieved through design factors focused predominantly on the photosensitizer (PS), whose photoactivity is relegated to self-regulated structure and energetics in ground and excited states. However, the relatively new supramolecular approach of dictating molecular structure through non-bonding interactions has allowed photochemists to render otherwise inactive or less effective PSs as efficient 1O2 generators. This concise and first of its kind review aims to compile progress in SOG research achieved through supramolecular photochemistry in an effort to serve as a reference for future research in this direction. The aim of this review is to highlight the value in the supramolecular photochemistry approach to tapping the unexploited technological potential within this historic reaction.
Collapse
|
40
|
Dichmann L, Bregnhøj M, Liu H, Westberg M, Poulsen TB, Etzerodt M, Ogilby PR. Photophysics of a protein-bound derivative of malachite green that sensitizes the production of singlet oxygen. Photochem Photobiol Sci 2021; 20:435-449. [DOI: 10.1007/s43630-021-00032-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
|
41
|
Ossola R, Jönsson OM, Moor K, McNeill K. Singlet Oxygen Quantum Yields in Environmental Waters. Chem Rev 2021; 121:4100-4146. [PMID: 33683861 DOI: 10.1021/acs.chemrev.0c00781] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Singlet oxygen (1O2) is a reactive oxygen species produced in sunlit waters via energy transfer from the triplet states of natural sensitizers. There has been an increasing interest in measuring apparent 1O2 quantum yields (ΦΔ) of aquatic and atmospheric organic matter samples, driven in part by the fact that this parameter can be used for environmental fate modeling of organic contaminants and to advance our understanding of dissolved organic matter photophysics. However, the lack of reproducibility across research groups and publications remains a challenge that significantly limits the usability of literature data. In the first part of this review, we critically evaluate the experimental techniques that have been used to determine ΦΔ values of natural organic matter, we identify and quantify sources of errors that potentially explain the large variability in the literature, and we provide general experimental recommendations for future studies. In the second part, we provide a qualitative overview of known ΦΔ trends as a function of organic matter type, isolation and extraction procedures, bulk water chemistry parameters, molecular and spectroscopic organic matter features, chemical treatments, wavelength, season, and location. This review is supplemented with a comprehensive database of ΦΔ values of environmental samples.
Collapse
Affiliation(s)
- Rachele Ossola
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Oskar Martin Jönsson
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Kyle Moor
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, 84322 Logan, Utah, United States
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
42
|
Myrzakhmetov B, Arnoux P, Mordon S, Acherar S, Tsoy I, Frochot C. Photophysical Properties of Protoporphyrin IX, Pyropheophorbide-a and Photofrin ® in Different Conditions. Pharmaceuticals (Basel) 2021; 14:ph14020138. [PMID: 33572282 PMCID: PMC7914864 DOI: 10.3390/ph14020138] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022] Open
Abstract
Photodynamic therapy (PDT) is an innovative treatment of malignant or diseased tissues. The effectiveness of PDT depends on light dosimetry, oxygen availability, and properties of the photosensitizer (PS). Depending on the medium, photophysical properties of the PS can change leading to increase or decrease in fluorescence emission and formation of reactive oxygen species (ROS) especially singlet oxygen (1O2). In this study, the influence of solvent polarity, viscosity, concentration, temperature, and pH medium on the photophysical properties of protoporphyrin IX, pyropheophorbide-a, and Photofrin® were investigated by UV-visible absorption, fluorescence emission, singlet oxygen emission, and time-resolved fluorescence spectroscopies.
Collapse
Affiliation(s)
- Bauyrzhan Myrzakhmetov
- LRGP UMR 7274, CNRS, University of Lorraine, 54000 Nancy, France; (B.M.); (P.A.)
- Department of Chemistry and Chemical Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080012, Kazakhstan;
| | - Philippe Arnoux
- LRGP UMR 7274, CNRS, University of Lorraine, 54000 Nancy, France; (B.M.); (P.A.)
| | - Serge Mordon
- ONCO-THAI U1189, INSERM, CHU Lille, University of Lille, 59000 Lille, France;
| | - Samir Acherar
- LCPM UMR 7375, CNRS, University of Lorraine, 54000 Nancy, France;
| | - Irina Tsoy
- Department of Chemistry and Chemical Technology, M.Kh. Dulaty Taraz Regional University, Taraz 080012, Kazakhstan;
| | - Céline Frochot
- LRGP UMR 7274, CNRS, University of Lorraine, 54000 Nancy, France; (B.M.); (P.A.)
- Correspondence: ; Tel.: +33-372743780
| |
Collapse
|
43
|
Thorning F, Strunge K, Jensen F, Ogilby PR. The complex between molecular oxygen and an organic molecule: modeling optical transitions to the intermolecular charge-transfer state. Phys Chem Chem Phys 2021; 23:15038-15048. [PMID: 34212959 DOI: 10.1039/d1cp01738a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The collision complex between the ground electronic state of an organic molecule, M, and ground state oxygen, O2(X3Σg-), can absorb light to produce an intermolecular charge transfer (CT) state, often represented simply as the M radical cation, M+˙, paired with the superoxide radical anion, O2-˙. Aspects of this transition have been the subject of numerous studies for ∼70 years, many of which address fundamental concepts in chemistry and physics. We now examine the extent to which the combination of Molecular Dynamics simulations and electronic structure response methods can model transitions to the toluene-O2 CT state. To account for the experimental spectra, we consider (a) the distribution of toluene-O2 geometries that contribute to the transitions, (b) a quantitative description of intermolecular CT, and (c) oxygen-induced local transitions in toluene that complement the CT transitions, specifically transitions that populate toluene triplet states. We find that the latter oxygen-induced local transitions play a prominent role on the long wavelength side of the spectrum commonly attributed to the intermolecular CT transition. Our calculations provide a new perspective on the seminal discussion between R. S. Mulliken and D. F. Evans on the nature of O2-dependent transitions in organic molecules, and bode well for modeling transitions to excited states with CT character in noncovalent weakly-bonded molecular complexes.
Collapse
Affiliation(s)
| | - Kris Strunge
- Chemistry Department, Aarhus University, DK-8000, Aarhus, Denmark.
| | - Frank Jensen
- Chemistry Department, Aarhus University, DK-8000, Aarhus, Denmark.
| | - Peter R Ogilby
- Chemistry Department, Aarhus University, DK-8000, Aarhus, Denmark.
| |
Collapse
|
44
|
Rettig ID, McCormick TM. Enrolling reactive oxygen species in photon-to-chemical energy conversion: fundamentals, technological advances, and applications. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1950049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Irving D. Rettig
- Department of Chemistry, Portland State University, Portland, USA
| | | |
Collapse
|
45
|
Minaev BF, Panchenko AA. New Aspects of the Airglow Problem and Reactivity of the Dioxygen Quintet O 2( 5Π g) State in the MLT Region as Predicted by DFT Calculations. J Phys Chem A 2020; 124:9638-9655. [PMID: 33170003 DOI: 10.1021/acs.jpca.0c07310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dioxygen in the quintet O2(5Πg) state is a weakly bound species near the entrance of the O(3P) + O(3P) recombination channel. It was predicted by ab initio calculations in 1977 and detected experimentally in 1999. Meantime, the O2(5Πg) species was tentatively assumed as intermediate in transport properties calculations for the rarefied gases of the Earth's upper atmosphere, though its potential energy curve is still debated. Besides six other strongly bound low-lying states of dioxygen, the O2(5Πg) state is an important potential candidate for modeling energy transfer and airglow of the upper atmosphere. A number of photochemical kinetic schemes designed to simulate energy flow upon atomic and molecular oxygen collisions in the rarefied mesosphere take into account a participation of the O2(5Πg) state in energy relaxation processes responsible for terrestrial nightglow. All mechanisms of energy redistribution are based on the hard-sphere collision models. The possibility of chemical interactions between the quintet excited state of dioxygen and other atmospheric components has not been considered so far in photochemistry of the upper atmosphere. In the present paper, the chemical reactivity of the quintet O2(5Πg) species is calculated for the first time in the framework of the density functional theory. Definitely, O2(5Πg) is the most reactive species among all other metastable dioxygen states below 5.1 eV. Quintet products of the O2(5Πg) state association with heavy inert gases, H2O, N2, and CO2 are predicted to be chemically significant, while the complexes with abundant H2 and He species are rather weak and not important even in the mesopause low-temperature region. The complex with N2 molecule is unexpectedly stable with dissociation energy 4 kJ/mol, which can strongly influence the abundant termolecular association O + O + N2 → O2 + N2 process. Reaction with meteoritic ablated Mg atom produces metastable 5A1 excited state of MgO2 being more strongly bound than the ground 3A2 state of magnesium peroxide.
Collapse
Affiliation(s)
- B F Minaev
- Bogdan Khmelnitskij National University, Cherkasy, Ukraine
| | - A A Panchenko
- Bogdan Khmelnitskij National University, Cherkasy, Ukraine
| |
Collapse
|
46
|
Wang KK, Song S, Jung SJ, Hwang JW, Kim MG, Kim JH, Sung J, Lee JK, Kim YR. Lifetime and diffusion distance of singlet oxygen in air under everyday atmospheric conditions. Phys Chem Chem Phys 2020; 22:21664-21671. [PMID: 32608420 DOI: 10.1039/d0cp00739k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Singlet oxygen is a toxic chemical but powerful oxidant, exploited in many chemical and biological applications. However, the lifetime of singlet oxygen in air under atmospheric conditions is yet to be known. This has limited safe usage of singlet oxygen in air, despite being a strong antimicrobial agent with the unique property of relaxing to breathable oxygen after serving its purpose. Here, we solve this long-standing problem by combining experimental and theoretical research efforts; we generate singlet oxygen using a photosensitizer at a local source and monitor the time-dependent extent of singlet oxygen reaction with probe molecules at a detector, precisely controlling the detector distance from the source. To explain our experimental results, we employ a theoretical model that fully accounts for singlet oxygen diffusion, radiative and nonradiative relaxations, and the bimolecular reaction with probe molecules at the detector. For all cases investigated, our model, with only two adjustable parameters, provides an excellent quantitative explanation of the experiment. From this analysis, we extract the lifetime of singlet oxygen in the air to be 2.80 s at 23 °C under 1 atm, during which time singlet oxygen diffuses about 0.992 cm. The correctness of this estimation is confirmed by a simple mean-first-passage time analysis of the maximum distance singlet oxygen can reach from the source. We also confirm the sterilization effects of singlet oxygen for distances up to 0.6-0.8 cm, depending on the bacteria strain in question, between the bacteria and the singlet oxygen source.
Collapse
Affiliation(s)
- Kang-Kyun Wang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Sanggeun Song
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea. and Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Korea
| | - Seung-Jin Jung
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Jung-Wook Hwang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Min-Goo Kim
- Corporate R&D, LG Chemical Ltd., LG Science Park, Seoul 07796, Korea.
| | - Ji-Hyun Kim
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Korea
| | - Jaeyoung Sung
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea. and Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Korea
| | - Jin-Kyu Lee
- Corporate R&D, LG Chemical Ltd., LG Science Park, Seoul 07796, Korea.
| | - Yong-Rok Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
47
|
Oxygen- and pH-Dependent Photophysics of Fluorinated Fluorescein Derivatives: Non-Symmetrical vs. Symmetrical Fluorination. SENSORS 2020; 20:s20185172. [PMID: 32927830 PMCID: PMC7570907 DOI: 10.3390/s20185172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022]
Abstract
Fluorescein, and derivatives of fluorescein, are often used as fluorescent probes and sensors. In systems where pH is a variable, protonation/deprotonation of the molecule can influence the pertinent photophysics. Fluorination of the xanthene moiety can alter the molecule’s pKa such as to render a probe whose photophysics remains invariant over a wide pH range. Di-fluorination is often sufficient to accomplish this goal, as has been demonstrated with compounds such as Oregon Green in which the xanthene moiety is symmetrically difluorinated. In this work, we synthesized a non-symmetrical difluorinated analog of Oregon Green which we call Athens Green. We ascertained that the photophysics and photochemistry of Athens Green, including the oxygen-dependent photophysics that results in the sensitized production of singlet oxygen, O2(a1Δg), can differ appreciably from the photophysics of Oregon Green. Our data indicate that Athens Green will be a more benign fluorescent probe in systems that involve the production and removal of O2(a1Δg). These results expand the available options in the toolbox of fluorescein-based fluorophores.
Collapse
|
48
|
Agrachev M, Fei W, Antonello S, Bonacchi S, Dainese T, Zoleo A, Ruzzi M, Maran F. Understanding and controlling the efficiency of Au 24M(SR) 18 nanoclusters as singlet-oxygen photosensitizers. Chem Sci 2020; 11:3427-3440. [PMID: 34777743 PMCID: PMC8524663 DOI: 10.1039/d0sc00520g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/18/2020] [Indexed: 01/04/2023] Open
Abstract
Singlet oxygen, 1O2, can be generated by molecules that upon photoexcitation enable the 3O2 → 1O2 transition. We used a series of atomically precise Au24M(SR)18 clusters, with different R groups and doping metal atoms M. Upon nanosecond photoexcitation of the cluster, 1O2 was efficiently generated. Detection was carried out by time-resolved electron paramagnetic resonance (TREPR) spectroscopy. The resulting TREPR transient yielded the 1O2 lifetime as a function of the nature of the cluster. We found that: these clusters indeed generate 1O2 by forming a triplet state; a more positive oxidation potential of the molecular cluster corresponds to a longer 1O2 lifetime; proper design of the cluster yields results analogous to those of a well-known reference photosensitizer, although more effectively. Comprehensive kinetic analysis provided important insights into the mechanism and driving-force dependence of the quenching of 1O2 by gold nanoclusters. Understanding on a molecular basis why these molecules may perform so well in 1O2 photosensitization is instrumental to controlling their performance.
Collapse
Affiliation(s)
- Mikhail Agrachev
- Department of Chemistry, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Wenwen Fei
- Department of Chemistry, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Sabrina Antonello
- Department of Chemistry, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Sara Bonacchi
- Department of Chemistry, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Tiziano Dainese
- Department of Chemistry, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Alfonso Zoleo
- Department of Chemistry, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Marco Ruzzi
- Department of Chemistry, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Flavio Maran
- Department of Chemistry, University of Padova Via Marzolo 1 35131 Padova Italy
- Department of Chemistry, University of Connecticut 55 North Eagleville Road, Storrs 06269 Connecticut USA
| |
Collapse
|
49
|
Thorning F, Jensen F, Ogilby PR. Modeling the Effect of Solvents on Nonradiative Singlet Oxygen Deactivation: Going beyond Weak Coupling in Intermolecular Electronic-to-Vibrational Energy Transfer. J Phys Chem B 2020; 124:2245-2254. [DOI: 10.1021/acs.jpcb.0c00807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | - Frank Jensen
- Chemistry Department, Aarhus University, DK-8000 Aarhus, Denmark
| | - Peter R. Ogilby
- Chemistry Department, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
50
|
Khalitova LR, Grabovskii SA, Kabal’nova NN. Formation of Singlet Oxygen during Thermal Degradation of Hydrotrioxides of Triorganosilanes. HIGH ENERGY CHEMISTRY 2020. [DOI: 10.1134/s0018143919060109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|