1
|
Li Q, Yan C, Zhang P, Wang P, Wang K, Yang W, Cheng L, Dang D, Cao L. Tetraphenylethene-Based Molecular Cage with Coenzyme FAD: Conformationally Isomeric Complexation toward Photocatalysis-Assisted Photodynamic Therapy. J Am Chem Soc 2024; 146:30933-30946. [PMID: 39433428 DOI: 10.1021/jacs.4c09508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Flavin adenine dinucleotide (FAD), serving as a light-absorbing coenzyme factor, can undergo conformationally isomeric complexation within different enzymes to form various enzyme-coenzyme complexes, which exhibit photocatalytic functions that play a crucial role in physiological processes. Constructing an artificial photofunctional system using FAD or its derivatives can not only develop biocompatible photocatalytic systems with excellent activities but also further enhance our understanding of the role of FAD in biological systems. Here, we demonstrate a supramolecular approach for constructing an artificial enzyme-coenzyme-type host-guest complex with photoinduced catalytic function in water. First, we have designed and synthesized a water-soluble tetraphenylethene (TPE)-based octacationic molecular cage (1) with a large and flexible cavity, which can adaptively encapsulate with two FAD molecules with "U-shaped" conformation (uFAD) to form a 1:2 host-guest complex (1⊃uFAD2) in water. Second, based on the conformationally isomeric complexation of FAD within 1, the 1⊃uFAD2 complex facilitates electron and energy transfers to molecular oxygen upon the white-light illumination, efficiently producing reactive oxygen species (ROS) such as superoxide radical (O2•-) and singlet oxygen (1O2). To our knowledge, the 1⊃uFAD2 complex acts as a photocatalyst to achieve the highest turnover frequency (TOF) of 35.6 min-1 for the photocatalytic oxidation reaction of NADH via a photoinduced superoxide radical catalysis mechanism in an aqueous medium. At last, combining the cytotoxic effects of ROS and the disruption of the intracellular redox balance involving NADH, 1⊃uFAD2 as a supramolecular photosensitizer displays an excellent oxygen-independent photocatalysis-assisted photodynamic therapy in hypoxic tumors.
Collapse
Affiliation(s)
- Qingfang Li
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Chaochao Yan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Peijuan Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Pingxia Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Kaige Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wanni Yang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lin Cheng
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Dongfeng Dang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Liping Cao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
2
|
Wang H, Zhang Y, Ji G, Wei J, Zhao L, He C, Duan C. Reserving Electrons in Cofactor Decorated Coordination Capsules for Biomimetic Electrosynthesis of α-Hydroxy/amino Esters. J Am Chem Soc 2024; 146:29272-29277. [PMID: 39316512 DOI: 10.1021/jacs.4c08547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Sustainable electricity-to-chemical conversion via the utilization of artificial catalysts inspired by redox biological systems holds great significance for catalyzing synthesis. Herein, we develop a biomimetic electrosynthesis strategy mediated by a nicotinamide adenine dinucleotide (NADH) mimic-containing coordination capsule for efficiently producing α-hydroxy/amino esters. The coordination saturated metal centers worked as an electron relay to consecutively accept single electrons while donating two electrons to the NAD+ mimics simultaneously. The protonation of the intermediate generated active NADH mimics for biomimetic hydrogenation of the substrates via the conventional enzymatic manifold with or without the presence of natural enzymes. The pocket of the capsule encapsulated the substrate and enforced the close proximity between the substrate and the NADH mimics, forming a preorganized intermediate to shift the redox potential by 0.4 V anodically. The cobalt capsule gave methyl mandelate over a range of applied potentials, with an improved yield of 92% when operated at -1.2 V compared to that of Hantzsch ester or natural NADH. Kinetic experiments revealed a Michaelis-Menten mechanism with a Km of 7.5 mM and a Kcat of 1.1 × 10-2 s-1. This extended strategy in tandem with an enzyme exhibited a TON of 650 molE-1 with an initial TOF of 185 molE-1·h-1, outperforming relevant Rh-mediated enzymatic electrosynthesis systems and providing an attractive avenue toward advanced artificial electrosynthesis.
Collapse
Affiliation(s)
- Huali Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yu Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianwei Wei
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
3
|
Riepl D, Gamiz-Hernandez AP, Kovalova T, Król SM, Mader SL, Sjöstrand D, Högbom M, Brzezinski P, Kaila VRI. Long-range charge transfer mechanism of the III 2IV 2 mycobacterial supercomplex. Nat Commun 2024; 15:5276. [PMID: 38902248 PMCID: PMC11189923 DOI: 10.1038/s41467-024-49628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Aerobic life is powered by membrane-bound redox enzymes that shuttle electrons to oxygen and transfer protons across a biological membrane. Structural studies suggest that these energy-transducing enzymes operate as higher-order supercomplexes, but their functional role remains poorly understood and highly debated. Here we resolve the functional dynamics of the 0.7 MDa III2IV2 obligate supercomplex from Mycobacterium smegmatis, a close relative of M. tuberculosis, the causative agent of tuberculosis. By combining computational, biochemical, and high-resolution (2.3 Å) cryo-electron microscopy experiments, we show how the mycobacterial supercomplex catalyses long-range charge transport from its menaquinol oxidation site to the binuclear active site for oxygen reduction. Our data reveal proton and electron pathways responsible for the charge transfer reactions, mechanistic principles of the quinone catalysis, and how unique molecular adaptations, water molecules, and lipid interactions enable the proton-coupled electron transfer (PCET) reactions. Our combined findings provide a mechanistic blueprint of mycobacterial supercomplexes and a basis for developing drugs against pathogenic bacteria.
Collapse
Affiliation(s)
- Daniel Riepl
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Terezia Kovalova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sylwia M Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sophie L Mader
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
4
|
Matarèse BFE, Rusin A, Seymour C, Mothersill C. Quantum Biology and the Potential Role of Entanglement and Tunneling in Non-Targeted Effects of Ionizing Radiation: A Review and Proposed Model. Int J Mol Sci 2023; 24:16464. [PMID: 38003655 PMCID: PMC10671017 DOI: 10.3390/ijms242216464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
It is well established that cells, tissues, and organisms exposed to low doses of ionizing radiation can induce effects in non-irradiated neighbors (non-targeted effects or NTE), but the mechanisms remain unclear. This is especially true of the initial steps leading to the release of signaling molecules contained in exosomes. Voltage-gated ion channels, photon emissions, and calcium fluxes are all involved but the precise sequence of events is not yet known. We identified what may be a quantum entanglement type of effect and this prompted us to consider whether aspects of quantum biology such as tunneling and entanglement may underlie the initial events leading to NTE. We review the field where it may be relevant to ionizing radiation processes. These include NTE, low-dose hyper-radiosensitivity, hormesis, and the adaptive response. Finally, we present a possible quantum biological-based model for NTE.
Collapse
Affiliation(s)
- Bruno F. E. Matarèse
- Department of Haematology, University of Cambridge, Cambridge CB2 1TN, UK;
- Department of Physics, University of Cambridge, Cambridge CB2 1TN, UK
| | - Andrej Rusin
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| |
Collapse
|
5
|
Terai K, Yuly JL, Zhang P, Beratan DN. Correlated particle transport enables biological free energy transduction. Biophys J 2023; 122:1762-1771. [PMID: 37056051 PMCID: PMC10209040 DOI: 10.1016/j.bpj.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023] Open
Abstract
Studies of biological transport frequently neglect the explicit statistical correlations among particle site occupancies (i.e., they use a mean-field approximation). Neglecting correlations sometimes captures biological function, even for out-of-equilibrium and interacting systems. We show that neglecting correlations fails to describe free energy transduction, mistakenly predicting an abundance of slippage and energy dissipation, even for networks that are near reversible and lack interactions among particle sites. Interestingly, linear charge transport chains are well described without including correlations, even for networks that are driven and include site-site interactions typical of biological electron transfer chains. We examine three specific bioenergetic networks: a linear electron transfer chain (as found in bacterial nanowires), a near-reversible electron bifurcation network (as in complex III of respiration and other recently discovered structures), and a redox-coupled proton pump (as in complex IV of respiration).
Collapse
Affiliation(s)
- Kiriko Terai
- Department of Chemistry, Duke University, Durham, North Carolina
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersy
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina; Department of Physics, Duke University, Durham, North Carolina; Department of Biochemistry, Duke University, Durham, North Carolina.
| |
Collapse
|
6
|
Ortiz S, Niks D, Vigil W, Tran J, Lubner CE, Hille R. Spectral deconvolution of electron-bifurcating flavoproteins. Methods Enzymol 2023; 685:531-550. [PMID: 37245914 DOI: 10.1016/bs.mie.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Electron-bifurcating flavoproteins catalyze the tightly coupled reduction of high- and low-potential acceptors using a median-potential electron donor, and are invariably complex systems with multiple redox-active centers in two or more subunits. Methods are described that permit, in favorable cases, the deconvolution of spectral changes associated with reduction of specific centers, making it possible to dissect the overall process of electron bifurcation into individual, discrete steps.
Collapse
Affiliation(s)
- Steve Ortiz
- Department of Biochemistry, University of California, Riverside, United States
| | - Dimitri Niks
- Department of Biochemistry, University of California, Riverside, United States
| | - Wayne Vigil
- Department of Biochemistry, University of California, Riverside, United States
| | - Jessica Tran
- Department of Biochemistry, University of California, Riverside, United States
| | - Carolyn E Lubner
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States.
| | - Russ Hille
- Department of Biochemistry, University of California, Riverside, United States.
| |
Collapse
|
7
|
Katsyv A, Kumar A, Saura P, Pöverlein MC, Freibert SA, T Stripp S, Jain S, Gamiz-Hernandez AP, Kaila VRI, Müller V, Schuller JM. Molecular Basis of the Electron Bifurcation Mechanism in the [FeFe]-Hydrogenase Complex HydABC. J Am Chem Soc 2023; 145:5696-5709. [PMID: 36811855 PMCID: PMC10021017 DOI: 10.1021/jacs.2c11683] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Electron bifurcation is a fundamental energy coupling mechanism widespread in microorganisms that thrive under anoxic conditions. These organisms employ hydrogen to reduce CO2, but the molecular mechanisms have remained enigmatic. The key enzyme responsible for powering these thermodynamically challenging reactions is the electron-bifurcating [FeFe]-hydrogenase HydABC that reduces low-potential ferredoxins (Fd) by oxidizing hydrogen gas (H2). By combining single-particle cryo-electron microscopy (cryoEM) under catalytic turnover conditions with site-directed mutagenesis experiments, functional studies, infrared spectroscopy, and molecular simulations, we show that HydABC from the acetogenic bacteria Acetobacterium woodii and Thermoanaerobacter kivui employ a single flavin mononucleotide (FMN) cofactor to establish electron transfer pathways to the NAD(P)+ and Fd reduction sites by a mechanism that is fundamentally different from classical flavin-based electron bifurcation enzymes. By modulation of the NAD(P)+ binding affinity via reduction of a nearby iron-sulfur cluster, HydABC switches between the exergonic NAD(P)+ reduction and endergonic Fd reduction modes. Our combined findings suggest that the conformational dynamics establish a redox-driven kinetic gate that prevents the backflow of the electrons from the Fd reduction branch toward the FMN site, providing a basis for understanding general mechanistic principles of electron-bifurcating hydrogenases.
Collapse
Affiliation(s)
- Alexander Katsyv
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main 60438, Germany
| | - Anuj Kumar
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main 60438, Germany.,SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg 35032, Germany
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Maximilian C Pöverlein
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Sven A Freibert
- Institut für Zytobiologie im Zentrum SYNMIKRO, Philipps-University of Marburg, Marburg 35032, Germany.,Core Facility "Protein Biochemistry and Spectroscopy", Marburg 35032, Germany
| | - Sven T Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin 14195, Germany
| | - Surbhi Jain
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main 60438, Germany
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main 60438, Germany
| | - Jan M Schuller
- SYNMIKRO Research Center and Department of Chemistry, Philipps-University of Marburg, Marburg 35032, Germany
| |
Collapse
|
8
|
Site-Differentiated Iron–Sulfur Cluster Ligation Affects Flavin-Based Electron Bifurcation Activity. Metabolites 2022; 12:metabo12090823. [PMID: 36144227 PMCID: PMC9503767 DOI: 10.3390/metabo12090823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Electron bifurcation is an elegant mechanism of biological energy conversion that effectively couples three different physiologically relevant substrates. As such, enzymes that perform this function often play critical roles in modulating cellular redox metabolism. One such enzyme is NADH-dependent reduced-ferredoxin: NADP+ oxidoreductase (NfnSL), which couples the thermodynamically favorable reduction of NAD+ to drive the unfavorable reduction of ferredoxin from NADPH. The interaction of NfnSL with its substrates is constrained to strict stoichiometric conditions, which ensures minimal energy losses from non-productive intramolecular electron transfer reactions. However, the determinants for this are not well understood. One curious feature of NfnSL is that both initial acceptors of bifurcated electrons are unique iron–sulfur (FeS) clusters containing one non-cysteinyl ligand each. The biochemical impact and mechanistic roles of site-differentiated FeS ligands are enigmatic, despite their incidence in many redox active enzymes. Herein, we describe the biochemical study of wild-type NfnSL and a variant in which one of the site-differentiated ligands has been replaced with a cysteine. Results of dye-based steady-state kinetics experiments, substrate-binding measurements, biochemical activity assays, and assessments of electron distribution across the enzyme indicate that this site-differentiated ligand in NfnSL plays a role in maintaining fidelity of the coordinated reactions performed by the two electron transfer pathways. Given the commonality of these cofactors, our findings have broad implications beyond electron bifurcation and mechanistic biochemistry and may inform on means of modulating the redox balance of the cell for targeted metabolic engineering approaches.
Collapse
|
9
|
An uncharacteristically low-potential flavin governs the energy landscape of electron bifurcation. Proc Natl Acad Sci U S A 2022; 119:e2117882119. [PMID: 35290111 PMCID: PMC8944662 DOI: 10.1073/pnas.2117882119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Nature has long been an inspiration for materials design, as it exemplifies exquisite control of both matter and energy. Electron bifurcation, a mechanism employed in biological systems to drive thermodynamically unfavorable and energetically challenging chemical reactions, is one such example. A key feature of bifurcating enzymes is the ability of a single redox cofactor to distribute a pair of electrons across two spatially separated electron transfer pathways. Here, we report on the empirical determination of both the one-electron potential and two-electron potential of the bifurcating flavin cofactor in the NADH-dependent ferredoxin-NADP+ oxidoreductase I (NfnSL) enzyme. Insights arising from the defined energy landscape of this bifurcation site may underlie the design of synthetic catalysts capable of generating high-energy intermediates. Electron bifurcation, an energy-conserving process utilized extensively throughout all domains of life, represents an elegant means of generating high-energy products from substrates with less reducing potential. The coordinated coupling of exergonic and endergonic reactions has been shown to operate over an electrochemical potential of ∼1.3 V through the activity of a unique flavin cofactor in the enzyme NADH-dependent ferredoxin-NADP+ oxidoreductase I. The inferred energy landscape has features unprecedented in biochemistry and presents novel energetic challenges, the most intriguing being a large thermodynamically uphill step for the first electron transfer of the bifurcation reaction. However, ambiguities in the energy landscape at the bifurcating site deriving from overlapping flavin spectral signatures have impeded a comprehensive understanding of the specific mechanistic contributions afforded by thermodynamic and kinetic factors. Here, we elucidate an uncharacteristically low two-electron potential of the bifurcating flavin, resolving the energetic challenge of the first bifurcation event.
Collapse
|
10
|
Agarwal RG, Coste SC, Groff BD, Heuer AM, Noh H, Parada GA, Wise CF, Nichols EM, Warren JJ, Mayer JM. Free Energies of Proton-Coupled Electron Transfer Reagents and Their Applications. Chem Rev 2021; 122:1-49. [PMID: 34928136 DOI: 10.1021/acs.chemrev.1c00521] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present an update and revision to our 2010 review on the topic of proton-coupled electron transfer (PCET) reagent thermochemistry. Over the past decade, the data and thermochemical formalisms presented in that review have been of value to multiple fields. Concurrently, there have been advances in the thermochemical cycles and experimental methods used to measure these values. This Review (i) summarizes those advancements, (ii) corrects systematic errors in our prior review that shifted many of the absolute values in the tabulated data, (iii) provides updated tables of thermochemical values, and (iv) discusses new conclusions and opportunities from the assembled data and associated techniques. We advocate for updated thermochemical cycles that provide greater clarity and reduce experimental barriers to the calculation and measurement of Gibbs free energies for the conversion of X to XHn in PCET reactions. In particular, we demonstrate the utility and generality of reporting potentials of hydrogenation, E°(V vs H2), in almost any solvent and how these values are connected to more widely reported bond dissociation free energies (BDFEs). The tabulated data demonstrate that E°(V vs H2) and BDFEs are generally insensitive to the nature of the solvent and, in some cases, even to the phase (gas versus solution). This Review also presents introductions to several emerging fields in PCET thermochemistry to give readers windows into the diversity of research being performed. Some of the next frontiers in this rapidly growing field are coordination-induced bond weakening, PCET in novel solvent environments, and reactions at material interfaces.
Collapse
Affiliation(s)
- Rishi G Agarwal
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Scott C Coste
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Benjamin D Groff
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Abigail M Heuer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hyunho Noh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Giovanny A Parada
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry, The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Catherine F Wise
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Eva M Nichols
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
11
|
A host-guest semibiological photosynthesis system coupling artificial and natural enzymes for solar alcohol splitting. Nat Commun 2021; 12:5092. [PMID: 34429430 PMCID: PMC8384870 DOI: 10.1038/s41467-021-25362-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/28/2021] [Indexed: 01/07/2023] Open
Abstract
Development of a versatile, sustainable and efficient photosynthesis system that integrates intricate catalytic networks and energy modules at the same location is of considerable future value to energy transformation. In the present study, we develop a coenzyme-mediated supramolecular host-guest semibiological system that combines artificial and enzymatic catalysis for photocatalytic hydrogen evolution from alcohol dehydrogenation. This approach involves modification of the microenvironment of a dithiolene-embedded metal-organic cage to trap an organic dye and NADH molecule simultaneously, serving as a hydrogenase analogue to induce effective proton reduction inside the artificial host. This abiotic photocatalytic system is further embedded into the pocket of the alcohol dehydrogenase to couple enzymatic alcohol dehydrogenation. This host-guest approach allows in situ regeneration of NAD+/NADH couple to transfer protons and electrons between the two catalytic cycles, thereby paving a unique avenue for a synergic combination of abiotic and biotic synthetic sequences for photocatalytic fuel and chemical transformation. Abiotic–biotic hybrid systems are promising to trap light for fuel and chemical transformation with high efficacy and selectivity. This study reports a coenzyme-mediated supramolecular host-guest semibiological system combining supramolecular catalyst and enzymes for solar alcohol splitting.
Collapse
|
12
|
Yuly JL, Zhang P, Ru X, Terai K, Singh N, Beratan DN. Efficient and reversible electron bifurcation with either normal or inverted potentials at the bifurcating cofactor. Chem 2021. [DOI: 10.1016/j.chempr.2021.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Thompson BL, Heiden ZM. Tuning the reduction potentials of benzoquinone through the coordination to Lewis acids. Phys Chem Chem Phys 2021; 23:9822-9831. [PMID: 33908513 DOI: 10.1039/d1cp01266e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Electron transfer promoted by the coordination of a substrate molecule to a Lewis acid or hydrogen bonding group is a critical step in many biological and catalytic transformations. This computational study investigates the nature of the interaction between benzoquinone and one and two Lewis acids by examining the influence of Lewis acid strength on the ability to alter the two reduction potentials of the coordinated benzoquinone molecule. To investigate this interaction, the coordination of the neutral (Q), singly reduced ([Q]˙-), and doubly reduced benzoquinone ([Q]2-) molecule to eight Lewis acids was analyzed. Coordination of benzoquinone to a Lewis acid became more favorable by 25 kcal mol-1 with each reduction of the benzoquinone fragment. Coordination of benzoquinone to a Lewis acid also shifted each of the reduction potentials of the coordinated benzoquinone anodically by 0.50 to 1.5 V, depending on the strength of the Lewis acid, with stronger Lewis acids exhibiting a larger effect on the reduction potential. Coordination of a second Lewis acid further altered each of the reduction potentials by an additional 0.70 to 1.6 V. Replacing one of the Lewis acids with a proton resulted in the ability to modify the pKa of the protonated Lewis acid-Q/[Q]˙-/[Q]2- adducts by about 10 pKa units, in addition to being able to alter the ability to transfer a hydrogen atom by 10 kcal mol-1, and the capacity to transfer a hydride by about 30 kcal mol-1.
Collapse
Affiliation(s)
- Brena L Thompson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA.
| | | |
Collapse
|
14
|
Kayastha K, Vitt S, Buckel W, Ermler U. Flavins in the electron bifurcation process. Arch Biochem Biophys 2021; 701:108796. [PMID: 33609536 DOI: 10.1016/j.abb.2021.108796] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/18/2022]
Abstract
The discovery of a new energy-coupling mechanism termed flavin-based electron bifurcation (FBEB) in 2008 revealed a novel field of application for flavins in biology. The key component is the bifurcating flavin endowed with strongly inverted one-electron reduction potentials (FAD/FAD•- ≪ FAD•-/FADH-) that cooperatively transfers in its reduced state one low and one high-energy electron into different directions and thereby drives an endergonic with an exergonic reduction reaction. As energy splitting at the bifurcating flavin apparently implicates one-electron chemistry, the FBEB machinery has to incorporate prior to and behind the central bifurcating flavin 2e-to-1e and 1e-to-2e switches, frequently also flavins, for oxidizing variable medium-potential two-electron donating substrates and for reducing high-potential two-electron accepting substrates. The one-electron carriers ferredoxin or flavodoxin serve as low-potential (high-energy) electron acceptors, which power endergonic processes almost exclusively in obligate anaerobic microorganisms to increase the efficiency of their energy metabolism. In this review, we outline the global organization of FBEB enzymes, the functions of the flavins therein and the surrounding of the isoalloxazine rings by which their reduction potentials are specifically adjusted in a finely tuned energy landscape.
Collapse
Affiliation(s)
- Kanwal Kayastha
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Stella Vitt
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany; Laboratorium für Mikrobiologie, Fachbereich Biologie and SYNMIKRO, Philipps-Universität, 35032, Marburg, Germany
| | - Wolfgang Buckel
- Laboratorium für Mikrobiologie, Fachbereich Biologie and SYNMIKRO, Philipps-Universität, 35032, Marburg, Germany; Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Wise CE, Ledinina AE, Yuly JL, Artz JH, Lubner CE. The role of thermodynamic features on the functional activity of electron bifurcating enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148377. [PMID: 33453185 DOI: 10.1016/j.bbabio.2021.148377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/25/2022]
Abstract
Electron bifurcation is a biological mechanism to drive a thermodynamically unfavorable redox reaction through direct coupling with an exergonic reaction. This process allows microorganisms to generate high energy reducing equivalents in order to sustain life and is often found in anaerobic metabolism, where the energy economy of the cell is poor. Recent work has revealed details of the redox energy landscapes for a variety of electron bifurcating enzymes, greatly expanding the understanding of how energy is transformed by this unique mechanism. Here we highlight the plasticity of these emerging landscapes, what is known regarding their mechanistic underpinnings, and provide a context for interpreting their biochemical activity within the physiological framework. We conclude with an outlook for propelling the field toward an integrative understanding of the impact of electron bifurcation.
Collapse
Affiliation(s)
| | | | | | - Jacob H Artz
- National Renewable Energy Laboratory, Golden, CO, USA
| | | |
Collapse
|
16
|
Abstract
Redox titration of flavoproteins allows to detect and analyze (1) the determinants of the stabilization of individual redox forms of the flavin by the protein; (2) the binding of the redox-active cofactor to the protein; (3) the effects of other components of the systems (such as micro- or macromolecular interactors) on parameters 1 and 2; (4) the pattern of electron flow to and from the flavin cofactor to other redox-active chemical species, including those present in the protein itself or in its physiological partners. This overview presents and discusses the fundamentals of the methodological approaches most commonly used for these purposes, and illustrates how data may be obtained in a reliable way, and how they can be read and interpreted.
Collapse
Affiliation(s)
- Francesco Bonomi
- Section of Chemical and Biomolecular Sciences, DeFENS, University of Milan, Milan, Italy.
| | - Stefania Iametti
- Section of Chemical and Biomolecular Sciences, DeFENS, University of Milan, Milan, Italy
| |
Collapse
|
17
|
Das A, Hessin C, Ren Y, Desage-El Murr M. Biological concepts for catalysis and reactivity: empowering bioinspiration. Chem Soc Rev 2020; 49:8840-8867. [PMID: 33107878 DOI: 10.1039/d0cs00914h] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological systems provide attractive reactivity blueprints for the design of challenging chemical transformations. Emulating the operating mode of natural systems may however not be so easy and direct translation of structural observations does not always afford the anticipated efficiency. Metalloenzymes rely on earth-abundant metals to perform an incredibly wide range of chemical transformations. To do so, enzymes in general have evolved tools and tricks to enable control of such reactivity. The underlying concepts related to these tools are usually well-known to enzymologists and bio(inorganic) chemists but may be a little less familiar to organometallic chemists. So far, the field of bioinspired catalysis has greatly focused on the coordination sphere and electronic effects for the design of functional enzyme models but might benefit from a paradigm shift related to recent findings in biological systems. The goal of this review is to bring these fields closer together as this could likely result in the development of a new generation of highly efficient bioinspired systems. This contribution covers the fields of redox-active ligands, entatic state reactivity, energy conservation through electron bifurcation, and quantum tunneling for C-H activation.
Collapse
Affiliation(s)
- Agnideep Das
- Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, 67000 Strasbourg, France.
| | | | | | | |
Collapse
|
18
|
Arrigoni F, Rizza F, Vertemara J, Breglia R, Greco C, Bertini L, Zampella G, De Gioia L. Rational Design of Fe 2 (μ-PR 2 ) 2 (L) 6 Coordination Compounds Featuring Tailored Potential Inversion. Chemphyschem 2020; 21:2279-2292. [PMID: 32815583 DOI: 10.1002/cphc.202000623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/19/2020] [Indexed: 01/04/2023]
Abstract
It was recently discovered that some redox proteins can thermodynamically and spatially split two incoming electrons towards different pathways, resulting in the one-electron reduction of two different substrates, featuring reduction potential respectively higher and lower than the parent reductant. This energy conversion process, referred to as electron bifurcation, is relevant not only from a biochemical perspective, but also for the ground-breaking applications that electron-bifurcating molecular devices could have in the field of energy conversion. Natural electron-bifurcating systems contain a two-electron redox centre featuring potential inversion (PI), i. e. with second reduction easier than the first. With the aim of revealing key factors to tailor the span between first and second redox potentials, we performed a systematic density functional study of a 26-molecule set of models with the general formula Fe2 (μ-PR2 )2 (L)6 . It turned out that specific features such as i) a Fe-Fe antibonding character of the LUMO, ii) presence of electron-donor groups and iii) low steric congestion in the Fe's coordination sphere, are key ingredients for PI. In particular, the synergic effects of i)-iii) can lead to a span between first and second redox potentials larger than 700 mV. More generally, the "molecular recipes" herein described are expected to inspire the synthesis of Fe2 P2 systems with tailored PI, of primary relevance to the design of electron-bifurcating molecular devices.
Collapse
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Fabio Rizza
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Raffaella Breglia
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano - Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
19
|
Universal free-energy landscape produces efficient and reversible electron bifurcation. Proc Natl Acad Sci U S A 2020; 117:21045-21051. [PMID: 32801212 DOI: 10.1073/pnas.2010815117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For decades, it was unknown how electron-bifurcating systems in nature prevented energy-wasting short-circuiting reactions that have large driving forces, so synthetic electron-bifurcating molecular machines could not be designed and built. The underpinning free-energy landscapes for electron bifurcation were also enigmatic. We predict that a simple and universal free-energy landscape enables electron bifurcation, and we show that it enables high-efficiency bifurcation with limited short-circuiting (the EB scheme). The landscape relies on steep free-energy slopes in the two redox branches to insulate against short-circuiting using an electron occupancy blockade effect, without relying on nuanced changes in the microscopic rate constants for the short-circuiting reactions. The EB scheme thus unifies a body of observations on biological catalysis and energy conversion, and the scheme provides a blueprint to guide future campaigns to establish synthetic electron bifurcation machines.
Collapse
|
20
|
Mandal A, Krauss TD, Huo P. Polariton-Mediated Electron Transfer via Cavity Quantum Electrodynamics. J Phys Chem B 2020; 124:6321-6340. [PMID: 32589846 DOI: 10.1021/acs.jpcb.0c03227] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate the polariton-mediated electron transfer reaction in a model system with analytic rate constant theory and direct quantum dynamical simulations. We demonstrate that the photoinduced charge transfer reaction between a bright donor state and dark acceptor state can be significantly enhanced or suppressed by coupling the molecular system to the quantized radiation field inside an optical cavity. This is because the quantum light-matter interaction can influence the effective driving force and electronic couplings between the donor state, which is the hybrid light-matter excitation, and the molecular acceptor state. Under the resonance condition between the photonic and electronic excitations, the effective driving force can be tuned by changing the light-matter coupling strength; for an off-resonant condition, the same effect can be accomplished by changing the molecule-cavity detuning. We further demonstrate that using both the electronic coupling and light-matter coupling helps to extend the effective couplings across the entire system, even for the dark state that carries a zero transition dipole. Theoretically, we find that both the counter-rotating terms and the dipole self-energy in the quantum electrodynamics Hamiltonian are important for obtaining an accurate polariton eigenspectrum as well as the polariton-mediated charge transfer rate constant, especially in the ultrastrong coupling regime.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Todd D Krauss
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
21
|
Land H, Senger M, Berggren G, Stripp ST. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01614] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Henrik Land
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Moritz Senger
- Physical Chemistry, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Sven T. Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
22
|
Sucharitakul J, Buttranon S, Wongnate T, Chowdhury NP, Prongjit M, Buckel W, Chaiyen P. Modulations of the reduction potentials of flavin-based electron bifurcation complexes and semiquinone stabilities are key to control directional electron flow. FEBS J 2020; 288:1008-1026. [PMID: 32329961 DOI: 10.1111/febs.15343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/08/2020] [Accepted: 04/06/2020] [Indexed: 01/09/2023]
Abstract
The flavin-based electron bifurcation (FBEB) system from Acidaminococcus fermentans is composed of the electron transfer flavoprotein (EtfAB) and butyryl-CoA dehydrogenase (Bcd). α-FAD binds to domain II of the A-subunit of EtfAB, β-FAD to the B-subunit of EtfAB and δ-FAD to Bcd. NADH reduces β-FAD to β-FADH- , which bifurcates one electron to the high potential α-FAD•- semiquinone followed by the other to the low potential ferredoxin (Fd). As deduced from crystal structures, upon interaction of EtfAB with Bcd, the formed α-FADH- approaches δ-FAD by rotation of domain II, yielding δ-FAD•- . Repetition of this process leads to a second reduced ferredoxin (Fd- ) and δ-FADH- , which reduces crotonyl-CoA to butyryl-CoA. In this study, we measured the redox properties of the components EtfAB, EtfaB (Etf without α-FAD), Bcd, and Fd, as well as of the complexes EtfaB:Bcd, EtfAB:Bcd, EtfaB:Fd, and EftAB:Fd. In agreement with the structural studies, we have shown for the first time that the interaction of EtfAB with Bcd drastically decreases the midpoint reduction potential of α-FAD to be within the same range of that of β-FAD and to destabilize the semiquinone of α-FAD. This finding clearly explains that these interactions facilitate the passing of electrons from β-FADH- via α-FAD•- to the final electron acceptor δ-FAD•- on Bcd. The interactions modulate the semiquinone stability of δ-FAD in an opposite way by having a greater semiquinone stability than in free Bcd.
Collapse
Affiliation(s)
- Jeerus Sucharitakul
- Department of Biochemistry, Chulalongkorn University, Patumwan, Bangkok, Thailand.,Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | - Supacha Buttranon
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Nilanjan Pal Chowdhury
- Laboratorium für Mikrobiologie, Fachbereich Biologie and Synmikro, Philipps-Universität, Marburg, Germany.,Max-Plank-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | - Methinee Prongjit
- Department of Biochemistry, Chulalongkorn University, Patumwan, Bangkok, Thailand
| | - Wolfgang Buckel
- Laboratorium für Mikrobiologie, Fachbereich Biologie and Synmikro, Philipps-Universität, Marburg, Germany.,Max-Plank-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
23
|
Onuchic JN, Rubtsov IV, Therien MJ. Tribute to David N. Beratan. J Phys Chem B 2020; 124:3437-3440. [DOI: 10.1021/acs.jpcb.0c02606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Effect of Cobalt, Nickel, and Selenium/Tungsten Deficiency on Mesophilic Anaerobic Digestion of Chemically Defined Soluble Organic Compounds. Microorganisms 2020; 8:microorganisms8040598. [PMID: 32326100 PMCID: PMC7232481 DOI: 10.3390/microorganisms8040598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 01/09/2023] Open
Abstract
Trace elements (TEs) are vital for anaerobic digestion (AD), due to their role as cofactors in many key enzymes. The aim of this study was to evaluate the effects of specific TE deficiencies on mixed microbial communities during AD of soluble polymer-free substrates, thus focusing on AD after hydrolysis. Three mesophilic (37 °C) continuous stirred-tank biogas reactors were depleted either of Co, Ni, or a combination of Se and W, respectively, by discontinuing their supplementation. Ni and Se/W depletion led to changes in methane kinetics, linked to progressive volatile fatty acid (VFA) accumulation, eventually resulting in process failure. No significant changes occurred in the Co-depleted reactor, indicating that the amount of Co present in the substrate in absence of supplementation was sufficient to maintain process stability. Archaeal communities remained fairly stable independent of TE concentrations, while bacterial communities gradually changed with VFA accumulation in Ni- and Se-/W-depleted reactors. Despite this, the communities remained relatively similar between these two reactors, suggesting that the major shifts in composition likely occurred due to the accumulating VFAs. Overall, the results indicate that Ni and Se/W depletion primarily lead to slower metabolic activities of methanogenic archaea and their syntrophic partners, which then has a ripple effect throughout the microbial community due to a gradual accumulation of intermediate fermentation products.
Collapse
|
25
|
Chongdar N, Pawlak K, Rüdiger O, Reijerse EJ, Rodríguez-Maciá P, Lubitz W, Birrell JA, Ogata H. Spectroscopic and biochemical insight into an electron-bifurcating [FeFe] hydrogenase. J Biol Inorg Chem 2019; 25:135-149. [PMID: 31823008 PMCID: PMC7064455 DOI: 10.1007/s00775-019-01747-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/21/2019] [Indexed: 01/28/2023]
Abstract
Abstract The heterotrimeric electron-bifurcating [FeFe] hydrogenase (HydABC) from Thermotoga maritima (Tm) couples the endergonic reduction of protons (H+) by dihydronicotinamide adenine dinucleotide (NADH) (∆G0 ≈ 18 kJ mol−1) to the exergonic reduction of H+ by reduced ferredoxin (Fdred) (∆G0 ≈ − 16 kJ mol−1). The specific mechanism by which HydABC functions is not understood. In the current study, we describe the biochemical and spectroscopic characterization of TmHydABC recombinantly produced in Escherichia coli and artificially maturated with a synthetic diiron cofactor. We found that TmHydABC catalyzed the hydrogen (H2)-dependent reduction of nicotinamide adenine dinucleotide (NAD+) in the presence of oxidized ferredoxin (Fdox) at a rate of ≈17 μmol NADH min−1 mg−1. Our data suggest that only one flavin is present in the enzyme and is not likely to be the site of electron bifurcation. FTIR and EPR spectroscopy, as well as FTIR spectroelectrochemistry, demonstrated that the active site for H2 conversion, the H-cluster, in TmHydABC behaves essentially the same as in prototypical [FeFe] hydrogenases, and is most likely also not the site of electron bifurcation. The implications of these results are discussed with respect to the current hypotheses on the electron bifurcation mechanism of [FeFe] hydrogenases. Overall, the results provide insight into the electron-bifurcating mechanism and present a well-defined system for further investigations of this fascinating class of [FeFe] hydrogenases. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00775-019-01747-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nipa Chongdar
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
| | - Krzysztof Pawlak
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Edward J Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Patricia Rodríguez-Maciá
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - James A Birrell
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany. .,Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan.
| |
Collapse
|
26
|
Abstract
Books with titles like 'The Call of the Wild' seemed to set a path for a life. Thus, I would be an explorer-a plan that did not work out so well, at least at first. On leaving school I got a job as a 'Works Chemist Improver', testing Ni catalysts for the hydrogenation of phenol to cyclohexanol. Taking night classes I passed enough exams to study geology at Queen Mary College, London. Armed thus I travelled to the Solomon Islands where geology is a 'happening'! Next was Canada to visit a mine sunk into a 1.5 billion year old Pb-Zn orebody precipitated from submarine hot springs. At last I reached the Yukon to prospect for silver. Thence to Ireland researching what I also took to be 'exhalative' (i.e. hot spring-related) Pb-Zn orebodies. While there in 1979, the discovery of 350°C metal-bearing acidic waters issuing from submarine Black Smoker chimneys in the Pacific sent us searching for fossil examples in the Irish mines. However, the chimneys we found were more like chemical gardens than Black Smokers, a finding that made us think about the emergence of life. After all, what better for life's emergence than to have a membrane comprising Fe minerals dosed with Ni in our chimneys to mediate the 'hydrogenation' of CO2-life's job anyway. Indeed, such a membrane would keep redox and pH disequilibria at bay, just like biological membranes. At the same time, my field research among Alpine ophiolites-ocean floor mafic rocks obducted to the Alps-indicated that alkaline waters bearing H2 and CH4 were a result of serpentinization, a process that must have operated in all ocean floors over all time. Thus it was that we could predict the Lost City hydrothermal field 10 years before its discovery in the North Atlantic in the year 2000. Lost City comprises a number of alkaline springs at up to 90°C that produce carbonate and brucite (Mg[OH]2) chimneys. We had surmised that Ni-enriched FeS chimneys would have precipitated at comparable alkaline springs issuing into a metal-rich carbonic ocean on the very early Earth (inducing membrane potentials comparable to those capable of succouring all life, and presumably, sufficient to drive life into being). However, our laboratory precipitates also revealed green rust, thought to be the precursor to the magnetite now comprising the Archaean Banded Iron Formations. We now look upon green rust, also known as fougèrite, as the tangible, base fractal of life.
Collapse
Affiliation(s)
- Michael J. Russell
- NASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, CA, USA
- http://bip.cnrs-mrs.fr/bip09/AHVics.html
| |
Collapse
|
27
|
Wei J, Zhao L, He C, Zheng S, Reek JNH, Duan C. Metal-Organic Capsules with NADH Mimics as Switchable Selectivity Regulators for Photocatalytic Transfer Hydrogenation. J Am Chem Soc 2019; 141:12707-12716. [PMID: 31319035 DOI: 10.1021/jacs.9b05351] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Switchable selective hydrogenation among the groups in multifunctional compounds is challenging because selective hydrogenation is of great interest in the synthesis of fine chemicals and pharmaceuticals as a result of the importance of key intermediates. Herein, we report a new approach to highly selectively (>99%) reducing C═X (X = O, N) over the thermodynamically more favorable nitro groups locating the substrate in a metal-organic capsule containing NADH active sites. Within the capsule, the NADH active sites reduce the double bonds via a typical 2e- hydride transfer hydrogenation, and the formed excited-state NAD+ mimics oxidize the reductant via two consecutive 1e- processes to regenerate the NADH active sites under illumination. Outside the capsule, nitro groups are highly selectively reduced through a typical 1e- hydrogenation. By combining photoinduced 1e- transfer regeneration outside the cage, both 1e- and 2e- hydrogenation can be switched controllably by varying the concentrations of the substrates and the redox potential of electron donors. This promising alternative approach, which could proceed under mild reaction conditions and use easy-to-handle hydrogen donors with enhanced high selectivity toward different groups, is based on the localization and differentiation of the 2e- and 1e- hydrogenation pathways inside and outside the capsules, provides a deep comprehension of photocatalytic microscopic reaction processes, and will allow the design and optimization of catalysts. We demonstrate the advantage of this method over typical hydrogenation that involves specific activation via well-modified catalytic sites and present results on the high, well-controlled, and switchable selectivity for the hydrogenation of a variety of substituted and bifunctional aldehydes, ketones, and imines.
Collapse
Affiliation(s)
- Jianwei Wei
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Sijia Zheng
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Joost N H Reek
- Van't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , Amsterdam 1098XH , The Netherlands
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry , Dalian University of Technology , Dalian 116024 , People's Republic of China
| |
Collapse
|
28
|
Miller AF, Duan HD, Varner TA, Mohamed Raseek N. Reduction midpoint potentials of bifurcating electron transfer flavoproteins. Methods Enzymol 2019; 620:365-398. [PMID: 31072494 DOI: 10.1016/bs.mie.2019.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recently, a variety of enzymes have been found to accept electrons from NAD(P)H yet reduce lower-potential carriers such as ferredoxin and flavodoxin semiquinone, in apparent violation of thermodynamics. The reaction is favorable overall, however, because these enzymes couple the foregoing endergonic one-electron transfer to exergonic transfer of the other electron from each NAD(P)H, in a process called "flavin-based electron bifurcation." The reduction midpoint potentials (E°s) of the multiple flavins in these enzymes are critical to their mechanisms. We describe methods we have found to be useful for measuring each of the E°s of each of the flavins in bifurcating electron transfer flavoproteins.
Collapse
Affiliation(s)
- A-F Miller
- Department of Chemistry, University of Kentucky, Lexington, KY, United States.
| | - H D Duan
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - T A Varner
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - N Mohamed Raseek
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
29
|
Schut GJ, Mohamed-Raseek N, Tokmina-Lukaszewska M, Mulder DW, Nguyen DMN, Lipscomb GL, Hoben JP, Patterson A, Lubner CE, King PW, Peters JW, Bothner B, Miller AF, Adams MWW. The catalytic mechanism of electron-bifurcating electron transfer flavoproteins (ETFs) involves an intermediary complex with NAD<sup/>. J Biol Chem 2019; 294:3271-3283. [PMID: 30567738 PMCID: PMC6398123 DOI: 10.1074/jbc.ra118.005653] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/11/2018] [Indexed: 12/20/2022] Open
Abstract
Electron bifurcation plays a key role in anaerobic energy metabolism, but it is a relatively new discovery, and only limited mechanistic information is available on the diverse enzymes that employ it. Herein, we focused on the bifurcating electron transfer flavoprotein (ETF) from the hyperthermophilic archaeon Pyrobaculum aerophilum The EtfABCX enzyme complex couples NADH oxidation to the endergonic reduction of ferredoxin and exergonic reduction of menaquinone. We developed a model for the enzyme structure by using nondenaturing MS, cross-linking, and homology modeling in which EtfA, -B, and -C each contained FAD, whereas EtfX contained two [4Fe-4S] clusters. On the basis of analyses using transient absorption, EPR, and optical titrations with NADH or inorganic reductants with and without NAD+, we propose a catalytic cycle involving formation of an intermediary NAD+-bound complex. A charge transfer signal revealed an intriguing interplay of flavin semiquinones and a protein conformational change that gated electron transfer between the low- and high-potential pathways. We found that despite a common bifurcating flavin site, the proposed EtfABCX catalytic cycle is distinct from that of the genetically unrelated bifurcating NADH-dependent ferredoxin NADP+ oxidoreductase (NfnI). The two enzymes particularly differed in the role of NAD+, the resting and bifurcating-ready states of the enzymes, how electron flow is gated, and the two two-electron cycles constituting the overall four-electron reaction. We conclude that P. aerophilum EtfABCX provides a model catalytic mechanism that builds on and extends previous studies of related bifurcating ETFs and can be applied to the large bifurcating ETF family.
Collapse
Affiliation(s)
- Gerrit J Schut
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | | | | | - David W Mulder
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - Diep M N Nguyen
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | - Gina L Lipscomb
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | - John P Hoben
- the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | - Angela Patterson
- the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Carolyn E Lubner
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - Paul W King
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - John W Peters
- the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Brian Bothner
- the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Anne-Frances Miller
- the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | - Michael W W Adams
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229,
| |
Collapse
|
30
|
Abstract
The corpus of electron transfer (ET) theory provides considerable power to describe the kinetics and dynamics of electron flow at the nanoscale. How is it, then, that nucleic acid (NA) ET continues to surprise, while protein-mediated ET is relatively free of mechanistic bombshells? I suggest that this difference originates in the distinct electronic energy landscapes for the two classes of reactions. In proteins, the donor/acceptor-to-bridge energy gap is typically several-fold larger than in NAs. NA ET can access tunneling, hopping, and resonant transport among the bases, and fluctuations can enable switching among mechanisms; protein ET is restricted to tunneling among redox active cofactors and, under strongly oxidizing conditions, a few privileged amino acid side chains. This review aims to provide conceptual unity to DNA and protein ET reaction mechanisms. The establishment of a unified mechanistic framework enabled the successful design of NA experiments that switch electronic coherence effects on and off for ET processes on a length scale of multiple nanometers and promises to provide inroads to directing and detecting charge flow in soft-wet matter.
Collapse
Affiliation(s)
- David N Beratan
- Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708, USA; .,Department of Biochemistry, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
31
|
Yuly JL, Lubner CE, Zhang P, Beratan DN, Peters JW. Electron bifurcation: progress and grand challenges. Chem Commun (Camb) 2019; 55:11823-11832. [DOI: 10.1039/c9cc05611d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Electron bifurcation moves electrons from a two-electron donor to reduce two spatially separated one-electron acceptors.
Collapse
Affiliation(s)
| | | | - Peng Zhang
- Department of Chemistry
- Duke University
- Durham
- USA
| | - David N. Beratan
- Department of Physics
- Duke University
- Durham
- USA
- Department of Chemistry
| | - John W. Peters
- Institute of Biological Chemistry
- Washington State University
- Pullman
- USA
| |
Collapse
|
32
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
33
|
Torres A, Prado LR, Bortolini G, Rego LGC. Charge Transfer Driven Structural Relaxation in a Push-Pull Azobenzene Dye-Semiconductor Complex. J Phys Chem Lett 2018; 9:5926-5933. [PMID: 30257563 DOI: 10.1021/acs.jpclett.8b02490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photoexcited structural dynamics in azo-compounds may differ fundamentally whether the push-pull photochromic azo-compound is isolated or forms a heterogeneous charge transfer complex, due to a sudden oxidation of the chromophore. Herein, we use a quantum-classical self-consistent approach that incorporates nonadiabatic excited-state electronic quantum dynamics into molecular mechanics to study the photoexcited dynamics of the push-pull azo-compound para-Methyl Red in the gas phase and sensitizing the (101) anatase surface of TiO2. We find that the photoinduced S2/S0 trans-to- cis isomerization of para-Methyl Red in the gas phase occurs through a pedal-like torsion around the ϕCNNC dihedral angle, without evidence to support the inversion mechanism, likewise in the parent azobenzene molecule. However, the photoexcited structural relaxation of the charge transfer complex para-Methyl Red/TiO2 contrasts essentially with the isolated azo-compounds. Immediately after photoexcitation, the excited electron flows into the TiO2 conduction band, with an injection time constant of ≃5 fs, and no indication of isomerization is observed during the 1.5 ps simulations. Instead, a strong vibronic relaxation occurs that excites the NN stretching mode of the azo-group, which is ultimately ascribed to the NA relaxation, and delocalization, of the hole wavepacket.
Collapse
Affiliation(s)
- Alberto Torres
- Department of Physics , Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| | - Luciano R Prado
- Department of Physics , Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| | - Graziele Bortolini
- Department of Physics , Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| | - Luis G C Rego
- Department of Physics , Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| |
Collapse
|
34
|
Russell MJ. Green Rust: The Simple Organizing 'Seed' of All Life? Life (Basel) 2018; 8:E35. [PMID: 30150570 PMCID: PMC6161180 DOI: 10.3390/life8030035] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/28/2018] [Accepted: 08/14/2018] [Indexed: 01/18/2023] Open
Abstract
Korenaga and coworkers presented evidence to suggest that the Earth's mantle was dry and water filled the ocean to twice its present volume 4.3 billion years ago. Carbon dioxide was constantly exhaled during the mafic to ultramafic volcanic activity associated with magmatic plumes that produced the thick, dense, and relatively stable oceanic crust. In that setting, two distinct and major types of sub-marine hydrothermal vents were active: ~400 °C acidic springs, whose effluents bore vast quantities of iron into the ocean, and ~120 °C, highly alkaline, and reduced vents exhaling from the cooler, serpentinizing crust some distance from the heads of the plumes. When encountering the alkaline effluents, the iron from the plume head vents precipitated out, forming mounds likely surrounded by voluminous exhalative deposits similar to the banded iron formations known from the Archean. These mounds and the surrounding sediments, comprised micro or nano-crysts of the variable valence FeII/FeIII oxyhydroxide known as green rust. The precipitation of green rust, along with subsidiary iron sulfides and minor concentrations of nickel, cobalt, and molybdenum in the environment at the alkaline springs, may have established both the key bio-syntonic disequilibria and the means to properly make use of them-the elements needed to effect the essential inanimate-to-animate transitions that launched life. Specifically, in the submarine alkaline vent model for the emergence of life, it is first suggested that the redox-flexible green rust micro- and nano-crysts spontaneously precipitated to form barriers to the complete mixing of carbonic ocean and alkaline hydrothermal fluids. These barriers created and maintained steep ionic disequilibria. Second, the hydrous interlayers of green rust acted as engines that were powered by those ionic disequilibria and drove essential endergonic reactions. There, aided by sulfides and trace elements acting as catalytic promoters and electron transfer agents, nitrate could be reduced to ammonia and carbon dioxide to formate, while methane may have been oxidized to methyl and formyl groups. Acetate and higher carboxylic acids could then have been produced from these C1 molecules and aminated to amino acids, and thence oligomerized to offer peptide nests to phosphate and iron sulfides, and secreted to form primitive amyloid-bounded structures, leading conceivably to protocells.
Collapse
Affiliation(s)
- Michael J Russell
- Planetary Chemistry and Astrobiology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA.
| |
Collapse
|
35
|
Peters JW, Beratan DN, Bothner B, Dyer RB, Harwood CS, Heiden ZM, Hille R, Jones AK, King PW, Lu Y, Lubner CE, Minteer SD, Mulder DW, Raugei S, Schut GJ, Seefeldt LC, Tokmina-Lukaszewska M, Zadvornyy OA, Zhang P, Adams MW. A new era for electron bifurcation. Curr Opin Chem Biol 2018; 47:32-38. [PMID: 30077080 DOI: 10.1016/j.cbpa.2018.07.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/16/2018] [Accepted: 07/18/2018] [Indexed: 11/17/2022]
Abstract
Electron bifurcation, or the coupling of exergonic and endergonic oxidation-reduction reactions, was discovered by Peter Mitchell and provides an elegant mechanism to rationalize and understand the logic that underpins the Q cycle of the respiratory chain. Thought to be a unique reaction of respiratory complex III for nearly 40 years, about a decade ago Wolfgang Buckel and Rudolf Thauer discovered that flavin-based electron bifurcation is also an important component of anaerobic microbial metabolism. Their discovery spawned a surge of research activity, providing a basis to understand flavin-based bifurcation, forging fundamental parallels with Mitchell's Q cycle and leading to the proposal of metal-based bifurcating enzymes. New insights into the mechanism of electron bifurcation provide a foundation to establish the unifying principles and essential elements of this fascinating biochemical phenomenon.
Collapse
Affiliation(s)
- John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman WA 99163, United States; Pacific Northwest National Laboratory, Richland, WA 99352, United States.
| | - David N Beratan
- Department of Chemistry and Department of Physics, Duke University, Durham, NC 27708, United States; Department of Biochemistry, Duke University, Durham, NC 27710, United States
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, WA 98195, United States
| | - Zachariah M Heiden
- Department of Chemistry, Washington State University, Pullman WA 99163, United States
| | - Russ Hille
- Biochemistry Department, University of California at Riverside, Riverside, CA 92521, United States
| | - Anne K Jones
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Paul W King
- National Renewable Energy Laboratory, Golden, CO 8040, United States
| | - Yi Lu
- Pacific Northwest National Laboratory, Richland, WA 99352, United States; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Carolyn E Lubner
- National Renewable Energy Laboratory, Golden, CO 8040, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - David W Mulder
- National Renewable Energy Laboratory, Golden, CO 8040, United States
| | - Simone Raugei
- Institute of Biological Chemistry, Washington State University, Pullman WA 99163, United States; Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Gerrit J Schut
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - Lance C Seefeldt
- Pacific Northwest National Laboratory, Richland, WA 99352, United States; Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States
| | | | - Oleg A Zadvornyy
- Institute of Biological Chemistry, Washington State University, Pullman WA 99163, United States
| | - Peng Zhang
- Department of Biochemistry, Duke University, Durham, NC 27710, United States
| | - Michael Ww Adams
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
36
|
Baymann F, Schoepp-Cothenet B, Duval S, Guiral M, Brugna M, Baffert C, Russell MJ, Nitschke W. On the Natural History of Flavin-Based Electron Bifurcation. Front Microbiol 2018; 9:1357. [PMID: 30018596 PMCID: PMC6037941 DOI: 10.3389/fmicb.2018.01357] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/05/2018] [Indexed: 11/23/2022] Open
Abstract
Electron bifurcation is here described as a special case of the continuum of electron transfer reactions accessible to two-electron redox compounds with redox cooperativity. We argue that electron bifurcation is foremost an electrochemical phenomenon based on (a) strongly inverted redox potentials of the individual redox transitions, (b) a high endergonicity of the first redox transition, and (c) an escapement-type mechanism rendering completion of the first electron transfer contingent on occurrence of the second one. This mechanism is proposed to govern both the traditional quinone-based and the newly discovered flavin-based versions of electron bifurcation. Conserved and variable aspects of the spatial arrangement of electron transfer partners in flavoenzymes are assayed by comparing the presently available 3D structures. A wide sample of flavoenzymes is analyzed with respect to conserved structural modules and three major structural groups are identified which serve as basic frames for the evolutionary construction of a plethora of flavin-containing redox enzymes. We argue that flavin-based and other types of electron bifurcation are of primordial importance to free energy conversion, the quintessential foundation of life, and discuss a plausible evolutionary ancestry of the mechanism.
Collapse
Affiliation(s)
- Frauke Baymann
- CNRS, BIP, UMR 7281, IMM FR3479, Aix-Marseille University, Marseille, France
| | | | - Simon Duval
- CNRS, BIP, UMR 7281, IMM FR3479, Aix-Marseille University, Marseille, France
| | - Marianne Guiral
- CNRS, BIP, UMR 7281, IMM FR3479, Aix-Marseille University, Marseille, France
| | - Myriam Brugna
- CNRS, BIP, UMR 7281, IMM FR3479, Aix-Marseille University, Marseille, France
| | - Carole Baffert
- CNRS, BIP, UMR 7281, IMM FR3479, Aix-Marseille University, Marseille, France
| | - Michael J. Russell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Wolfgang Nitschke
- CNRS, BIP, UMR 7281, IMM FR3479, Aix-Marseille University, Marseille, France
| |
Collapse
|
37
|
Buckel W, Thauer RK. Flavin-Based Electron Bifurcation, A New Mechanism of Biological Energy Coupling. Chem Rev 2018; 118:3862-3886. [PMID: 29561602 DOI: 10.1021/acs.chemrev.7b00707] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There are two types of electron bifurcation (EB), either quinone- or flavin-based (QBEB/FBEB), that involve reduction of a quinone or flavin by a two-electron transfer and two reoxidations by a high- and low-potential one-electron acceptor with a reactive semiquinone intermediate. In QBEB, the reduced low-potential acceptor (cytochrome b) is exclusively used to generate ΔμH+. In FBEB, the "energy-rich" low-potential reduced ferredoxin or flavodoxin has dual function. It can give rise to ΔμH+/Na+ via a ferredoxin:NAD reductase (Rnf) or ferredoxin:proton reductase (Ech) or conducts difficult reductions such as CO2 to CO. The QBEB membrane complexes are similar in structure and function and occur in all domains of life. In contrast, FBEB complexes are soluble and occur only in strictly anaerobic bacteria and archaea (FixABCX being an exception). The FBEB complexes constitute a group consisting of four unrelated families that contain (1) electron-transferring flavoproteins (EtfAB), (2) NAD(P)H dehydrogenase (NuoF homologues), (3) heterodisulfide reductase (HdrABC) or HdrABC homologues, and (4) NADH-dependent ferredoxin:NADP reductase (NfnAB). The crystal structures and electron transport of EtfAB-butyryl-CoA dehydrogenase and NfnAB are compared with those of complex III of the respiratory chain (cytochrome bc1), whereby unexpected common features have become apparent.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Fachbereich Biologie , Philipps-Universität , 35032 Marburg , Germany.,Max-Planck-Institut für Terrestrische Mikrobiologie , 35043 Marburg , Germany
| | - Rudolf K Thauer
- Fachbereich Biologie , Philipps-Universität , 35032 Marburg , Germany.,Max-Planck-Institut für Terrestrische Mikrobiologie , 35043 Marburg , Germany
| |
Collapse
|
38
|
Buckel W, Thauer RK. Flavin-Based Electron Bifurcation, Ferredoxin, Flavodoxin, and Anaerobic Respiration With Protons (Ech) or NAD + (Rnf) as Electron Acceptors: A Historical Review. Front Microbiol 2018; 9:401. [PMID: 29593673 PMCID: PMC5861303 DOI: 10.3389/fmicb.2018.00401] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
Flavin-based electron bifurcation is a newly discovered mechanism, by which a hydride electron pair from NAD(P)H, coenzyme F420H2, H2, or formate is split by flavoproteins into one-electron with a more negative reduction potential and one with a more positive reduction potential than that of the electron pair. Via this mechanism microorganisms generate low- potential electrons for the reduction of ferredoxins (Fd) and flavodoxins (Fld). The first example was described in 2008 when it was found that the butyryl-CoA dehydrogenase-electron-transferring flavoprotein complex (Bcd-EtfAB) of Clostridium kluyveri couples the endergonic reduction of ferredoxin (E0′ = −420 mV) with NADH (−320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (−10 mV) with NADH. The discovery was followed by the finding of an electron-bifurcating Fd- and NAD-dependent [FeFe]-hydrogenase (HydABC) in Thermotoga maritima (2009), Fd-dependent transhydrogenase (NfnAB) in various bacteria and archaea (2010), Fd- and H2-dependent heterodisulfide reductase (MvhADG-HdrABC) in methanogenic archaea (2011), Fd- and NADH-dependent caffeyl-CoA reductase (CarCDE) in Acetobacterium woodii (2013), Fd- and NAD-dependent formate dehydrogenase (HylABC-FdhF2) in Clostridium acidi-urici (2013), Fd- and NADP-dependent [FeFe]-hydrogenase (HytA-E) in Clostridium autoethanogrenum (2013), Fd(?)- and NADH-dependent methylene-tetrahydrofolate reductase (MetFV-HdrABC-MvhD) in Moorella thermoacetica (2014), Fd- and NAD-dependent lactate dehydrogenase (LctBCD) in A. woodii (2015), Fd- and F420H2-dependent heterodisulfide reductase (HdrA2B2C2) in Methanosarcina acetivorans (2017), and Fd- and NADH-dependent ubiquinol reductase (FixABCX) in Azotobacter vinelandii (2017). The electron-bifurcating flavoprotein complexes known to date fall into four groups that have evolved independently, namely those containing EtfAB (CarED, LctCB, FixBA) with bound FAD, a NuoF homolog (HydB, HytB, or HylB) harboring FMN, NfnB with bound FAD, or HdrA harboring FAD. All these flavoproteins are cytoplasmic except for the membrane-associated protein FixABCX. The organisms—in which they have been found—are strictly anaerobic microorganisms except for the aerobe A. vinelandii. The electron-bifurcating complexes are involved in a variety of processes such as butyric acid fermentation, methanogenesis, acetogenesis, anaerobic lactate oxidation, dissimilatory sulfate reduction, anaerobic- dearomatization, nitrogen fixation, and CO2 fixation. They contribute to energy conservation via the energy-converting ferredoxin: NAD+ reductase complex Rnf or the energy-converting ferredoxin-dependent hydrogenase complex Ech. This Review describes how this mechanism was discovered.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Laboratory for Microbiology, Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Rudolf K Thauer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
39
|
Duan HD, Lubner CE, Tokmina-Lukaszewska M, Gauss GH, Bothner B, King PW, Peters JW, Miller AF. Distinct properties underlie flavin-based electron bifurcation in a novel electron transfer flavoprotein FixAB from Rhodopseudomonas palustris. J Biol Chem 2018; 293:4688-4701. [PMID: 29462786 DOI: 10.1074/jbc.ra117.000707] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/08/2018] [Indexed: 11/06/2022] Open
Abstract
A newly recognized third fundamental mechanism of energy conservation in biology, electron bifurcation, uses free energy from exergonic redox reactions to drive endergonic redox reactions. Flavin-based electron bifurcation furnishes low-potential electrons to demanding chemical reactions, such as reduction of dinitrogen to ammonia. We employed the heterodimeric flavoenzyme FixAB from the diazotrophic bacterium Rhodopseudomonas palustris to elucidate unique properties that underpin flavin-based electron bifurcation. FixAB is distinguished from canonical electron transfer flavoproteins (ETFs) by a second FAD that replaces the AMP of canonical ETF. We exploited near-UV-visible CD spectroscopy to resolve signals from the different flavin sites in FixAB and to interrogate the putative bifurcating FAD. CD aided in assigning the measured reduction midpoint potentials (E° values) to individual flavins, and the E° values tested the accepted model regarding the redox properties required for bifurcation. We found that the higher-E° flavin displays sequential one-electron (1-e-) reductions to anionic semiquinone and then to hydroquinone, consistent with the reactivity seen in canonical ETFs. In contrast, the lower-E° flavin displayed a single two-electron (2-e-) reduction without detectable accumulation of semiquinone, consistent with unstable semiquinone states, as required for bifurcation. This is the first demonstration that a FixAB protein possesses the thermodynamic prerequisites for bifurcating activity, and the separation of distinct optical signatures for the two flavins lays a foundation for mechanistic studies to learn how electron flow can be directed in a protein environment. We propose that a novel optical signal observed at long wavelength may reflect electron delocalization between the two flavins.
Collapse
Affiliation(s)
- H Diessel Duan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | | | | | - George H Gauss
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Paul W King
- National Renewable Energy Laboratory, Golden, Colorado 80401
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99163
| | | |
Collapse
|
40
|
Peters JW, Beratan DN, Schut GJ, Adams MWW. On the nature of organic and inorganic centers that bifurcate electrons, coupling exergonic and endergonic oxidation–reduction reactions. Chem Commun (Camb) 2018; 54:4091-4099. [DOI: 10.1039/c8cc01530a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bifurcating electrons to couple endergonic and exergonic electron-transfer reactions has been shown to have a key role in energy conserving redox enzymes.
Collapse
Affiliation(s)
- John W. Peters
- Institute of Biological Chemistry, Washington State University
- Pullman
- USA
| | - David N. Beratan
- Department of Chemistry and Department of Physics, Duke University
- Durham
- USA
- Department of Biochemistry, Duke University
- Durham
| | - Gerrit J. Schut
- Department of Biochemistry and Molecular Biology, University of Georgia
- Athens
- USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia
- Athens
- USA
| |
Collapse
|
41
|
Lubner CE, Peters JW. Electron Bifurcation Makes the Puzzle Pieces Fall Energetically into Place in Methanogenic Energy Conservation. Chembiochem 2017; 18:2295-2297. [PMID: 28986941 DOI: 10.1002/cbic.201700533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 12/25/2022]
Abstract
Elaborate arrays of iron-sulfur clusters link active sites via a flavin that bifurcates electrons through two energetically independent paths. The structure of the heterodisulfide reductase provides insight into how methanogens conserve energy through coupling hydrogen oxidation to coordinated exergonic heterodisulfide and endergonic ferredoxin reduction in an overall thermodynamically favorable reaction.
Collapse
Affiliation(s)
- Carolyn E Lubner
- Biosciences Center, National Renewable Energy Laboratory, 15013 Denver W Parkway, Golden, CO, 80401, USA
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|