1
|
Qin H, Liu T, Liu Z, Guo M, Guo Y, Tian M. Insights into multi-scale structural evolution and dielectric response of poly(methyl acrylate) under pre-strain: A simulation study. J Chem Phys 2024; 161:224901. [PMID: 39651816 DOI: 10.1063/5.0238343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024] Open
Abstract
The structural evolution of dielectric elastomer induced by pre-strain is a complex, multi-scale process that poses a significant challenge to a deep understanding of the effect of pre-strain. Through simulation results, we identify the variation in the dielectric constant and multi-scale (electronic structure, molecular chain conformation, and aggregation structure) response of poly(methyl acrylate). As the pre-strain increases, the dielectric constant initially rises (below 200% pre-strain) and then declines (above 200% pre-strain). Analysis of the charge distribution, surface electrostatic potential, HOMO-LUMO bandgap, and electron density differences reveal that adjusting chain conformation appropriately could enhance polarity domain and electron polarization. The correlation between permittivity and segment dynamics of deformed molecules is explored, encompassing segment orientation, mean shift displacement, and diffusion coefficient. Following molecular chain orientation, the kinematic capability of the chain segment improves, which leads to an increase in the number and activity of effective dipoles and the enhancement of orientation polarization. Excessive stretching restricts the polymer molecular chain mechanically, reducing the number and activity of effective dipoles and negatively impacting electron polarization. The permittivity transitions from isotropic to anisotropic behavior when the system is subjected to strain. This study provides an interesting solution for research on multiscale responses and intrinsic mechanisms of pre-strain.
Collapse
Affiliation(s)
- Han Qin
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250000, China
- Shandong Provincial Key Laboratory of Computing Power Internet and Service Computing, Shandong Fundamental Research Center for Computer Science, Jinan 250000, China
| | - Tao Liu
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250000, China
- Shandong Provincial Key Laboratory of Computing Power Internet and Service Computing, Shandong Fundamental Research Center for Computer Science, Jinan 250000, China
| | - Zhaoyuan Liu
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250000, China
- Shandong Provincial Key Laboratory of Computing Power Internet and Service Computing, Shandong Fundamental Research Center for Computer Science, Jinan 250000, China
| | - Meng Guo
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250000, China
- Shandong Provincial Key Laboratory of Computing Power Internet and Service Computing, Shandong Fundamental Research Center for Computer Science, Jinan 250000, China
| | - Ying Guo
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250000, China
- Shandong Provincial Key Laboratory of Computing Power Internet and Service Computing, Shandong Fundamental Research Center for Computer Science, Jinan 250000, China
| | - Ming Tian
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Gao L, Dai X, Wu Y, Wang Y, Cheng L, Yan LT. Self-Assembly at Curved Biointerfaces. ACS NANO 2024; 18:30184-30210. [PMID: 39453716 DOI: 10.1021/acsnano.4c09675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Most of the biological interfaces are curved. Understanding the organizational structures and interaction patterns at such curved biointerfaces is therefore crucial not only for deepening our comprehension of the principles that govern life processes but also for designing and developing targeted drugs aimed at diseased cells and tissues. Despite the considerable efforts dedicated to this area of research, our understanding of curved biological interfaces is still limited. Many aspects of these interfaces remain elusive, presenting both challenges and opportunities for further exploration. In this review, we summarize the structural characteristics of biological interfaces found in nature, the current research status of materials associated with curved biointerfaces, and the theoretical advancements achieved to date. Finally, we outline future trends and challenges in the theoretical and technological development of curved biointerfaces. By addressing these challenges, people could bridge the knowledge gap and unlock the full potential of curved biointerfaces for scientific and technological advancements, ultimately benefiting various fields and improving human health and well-being.
Collapse
Affiliation(s)
- Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yibo Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Linghe Cheng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
3
|
Gao L. Anti-Entropy Aggregation of Minority Groups in Polymers: Design and Applications. Chempluschem 2024; 89:e202300638. [PMID: 38032334 DOI: 10.1002/cplu.202300638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Minority groups are non-repeating units with very low content that inevitably exist in polymers. Typically, these minority groups are easily surrounded by the majority of repeating units and randomly dispersed, maximizing the entropy of minority groups. In the concept, anti-entropy aggregation (AEA) of minority groups is described, and different pathways are outlined. They are polymer crystallization-driven AEA, supramolecular interaction-induced AEA, phase separation-confined AEA, and hierarchical interactions-driven AEA. Typical applications of AEA materials are also presented, including fluorescence probes, self-healing materials, ion transporting regulation, and osmotic energy conversion. The concept of AEA is expected to inspire the fabrication of novel functional systems.
Collapse
Affiliation(s)
- Longcheng Gao
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| |
Collapse
|
4
|
Heo J, Seo S, Yun H, Ku KH. Stimuli-responsive nanoparticle self-assembly at complex fluid interfaces: a new insight into dynamic surface chemistry. NANOSCALE 2024; 16:3951-3968. [PMID: 38319675 DOI: 10.1039/d3nr05990a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The self-assembly of core/shell nanoparticles (NPs) at fluid interfaces is a rapidly evolving area with tremendous potential in various fields, including biomedicine, display devices, catalysts, and sensors. This review provides an in-depth exploration of the current state-of-the-art in the programmed design of stimuli-responsive NP assemblies, with a specific focus on inorganic core/organic shell NPs below 100 nm for their responsive adsorption properties at fluid and polymer interfaces. The interface properties, such as ligands, charge, and surface chemistry, play a significant role in dictating the forces and energies governing both NP-NP and NP-hosting matrix interactions. We highlight the fundamental principles governing the reversible surface chemistry of NPs and present detailed experimental examples in the following three key aspects of stimuli-responsive NP assembly: (i) stimuli-driven assembly of NPs at the air/liquid interface, (ii) reversible NP assembly at the liquid/liquid interface, including films and Pickering emulsions, and (iii) hybrid NP assemblies at the polymer/polymer and polymer/water interfaces that exhibit stimuli-responsive behaviors. Finally, we address current challenges in existing approaches and offer a new perspective on the advances in this field.
Collapse
Affiliation(s)
- Jieun Heo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Seunghwan Seo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Hongseok Yun
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea.
| | - Kang Hee Ku
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
5
|
Zhang X, Dai X, Gao L, Xu D, Wan H, Wang Y, Yan LT. The entropy-controlled strategy in self-assembling systems. Chem Soc Rev 2023; 52:6806-6837. [PMID: 37743794 DOI: 10.1039/d3cs00347g] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems.
Collapse
Affiliation(s)
- Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Duo Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Haixiao Wan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Dai L, Wan H, Xu D, Dai X, Li G, Yan LT. Hydrodynamic Anisotropy of Depletion in Nonequilibrium. PHYSICAL REVIEW LETTERS 2023; 131:134002. [PMID: 37832000 DOI: 10.1103/physrevlett.131.134002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/01/2023] [Indexed: 10/15/2023]
Abstract
Active colloids in a bath of inert particles of smaller size cause anisotropic depletion. The active hydrodynamics of this nonequilibrium phenomenon, which is fundamentally different from its equilibrium counterpart and passive particles in an active bath, remains scarcely understood. Here we combine mesoscale hydrodynamic simulation as well as theoretical analysis to examine the physical origin for the active depletion around a self-propelled noninteractive colloid. Our results elucidate that the variable hydrodynamic effect critically governs the microstructure of the depletion zone. Three characteristic states of anisotropic depletion are identified, depending on the strength and stress of activity. This yields a state diagram of depletion in the two-parameter space, captured by developing a theoretical model with the continuum kinetic theory and leading to a mechanistic interpretation of the hydrodynamic anisotropy of depletion. Furthermore, we demonstrate that such depletion in nonequilibrium results in various clusters with ordered organization of squirmers, which follows a distinct principle contrary to that of the entropy scenario of depletion in equilibrium. The findings might be of immediate interest to tune the hydrodynamics-mediated anisotropic interactions and active nonequilibrium organizations in the self-propulsion systems.
Collapse
Affiliation(s)
- Lijun Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Haixiao Wan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Duo Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Gaojin Li
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
7
|
Borówko M, Staszewski T, Tomasik J. Janus Ligand-Tethered Nanoparticles at Liquid-Liquid Interfaces. J Phys Chem B 2023. [PMID: 37248200 DOI: 10.1021/acs.jpcb.3c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We investigate the structural properties of Janus ligand-tethered nanoparticles at liquid-liquid interfaces using coarse-grained molecular dynamics simulations. The effect of interactions between different chains and liquids is discussed. We consider the Janus particles with symmetrical interactions with the liquids which correspond to supplementary wettability and particles with uncorrelated interactions. Simulation results indicate that the Janus hairy particles trapped in the interface region have different configurations characterized by the vertical displacement distance, the orientation of the Janus line relative to the interface, and the particle shape. The Janus hairy particles present abundant morphologies, including dumbbell-like and typical core-shell, at the interface. The shape of adsorbed particles is analyzed in detail. The simulation data are compared with those predicted by a simple phenomenological approach. This work can promote the applications of Janus hairy particles in nanotechnology.
Collapse
Affiliation(s)
- Małgorzata Borówko
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - Tomasz Staszewski
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - Joanna Tomasik
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| |
Collapse
|
8
|
Li S, Huang F, Xia T, Shi Y, Yue T. Phosphatidylinositol 4,5-Bisphosphate Sensing Lipid Raft via Inter-Leaflet Coupling Regulated by Acyl Chain Length of Sphingomyelin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5995-6005. [PMID: 37086192 DOI: 10.1021/acs.langmuir.2c03492] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) is an important molecule located at the inner leaflet of cell membrane, where it serves as anchoring sites for a cohort of membrane-associated molecules and as a broad-reaching signaling intermediate. The lipid raft is thought as the major platform recruiting proteins for signal transduction and also known to mediate PIP2 accumulation across the membrane. While the significance of this cross-membrane coupling is increasingly appreciated, it remains unclear whether and how PIP2 senses the dynamic change of the ordered lipid domains over the packed hydrophobic core of the bilayer. Herein, by means of molecular dynamic simulation, we reveal that inner PIP2 molecules can sense the outer lipid domain via inter-leaflet coupling, and the coupling manner is dictated by the acyl chain length of sphingomyelin (SM) partitioned to the lipid domain. Shorter SM promotes membrane domain registration, whereby PIP2 accumulates beneath the domain across the membrane. In contrast, the anti-registration is thermodynamically preferred if the lipid domain has longer SM due to the hydrophobic mismatch between the corresponding acyl chains in SM and PIP2. In this case, PIP2 is expelled by the domain with a higher diffusivity. These results provide molecular insights into the regulatory mechanism of correlation between the outer lipid domain and inner PIP2, both of which are critical components for cell signal transduction.
Collapse
Affiliation(s)
- Shixin Li
- College of Bioscience and Biotechnology and Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Tie Xia
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Shi
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Department of Microbiology, Immunology & Infectious Disease and Snyder Institute, University of Calgary, Calgary, Alberta 00000, Canada
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
9
|
Xu D, Wan HX, Yao XR, Li J, Yan LT. Molecular Simulations in Macromolecular Science. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
10
|
Long-Range Ordered Nanostructures of Assembling Macromolecules via Rational Design of Kinetic Pathways: A Computational Perspective. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
11
|
Hybrid Nanoparticles at Fluid-Fluid Interfaces: Insight from Theory and Simulation. Int J Mol Sci 2023; 24:ijms24054564. [PMID: 36901995 PMCID: PMC10003740 DOI: 10.3390/ijms24054564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Hybrid nanoparticles that combine special properties of their different parts have numerous applications in electronics, optics, catalysis, medicine, and many others. Of the currently produced particles, Janus particles and ligand-tethered (hairy) particles are of particular interest both from a practical and purely cognitive point of view. Understanding their behavior at fluid interfaces is important to many fields because particle-laden interfaces are ubiquitous in nature and industry. We provide a review of the literature, focusing on theoretical studies of hybrid particles at fluid-fluid interfaces. Our goal is to give a link between simple phenomenological models and advanced molecular simulations. We analyze the adsorption of individual Janus particles and hairy particles at the interfaces. Then, their interfacial assembly is also discussed. The simple equations for the attachment energy of various Janus particles are presented. We discuss how such parameters as the particle size, the particle shape, the relative sizes of different patches, and the amphiphilicity affect particle adsorption. This is essential for taking advantage of the particle capacity to stabilize interfaces. Representative examples of molecular simulations were presented. We show that the simple models surprisingly well reproduce experimental and simulation data. In the case of hairy particles, we concentrate on the effects of reconfiguration of the polymer brushes at the interface. This review is expected to provide a general perspective on the subject and may be helpful to many researchers and technologists working with particle-laden layers.
Collapse
|
12
|
Xu Z, Liu G, Gao L, Xu D, Wan H, Dai X, Zhang X, Tao L, Yan LT. Configurational Entropy-Enabled Thermostability of Cell Membranes in Extremophiles: From Molecular Mechanism to Bioinspired Design. NANO LETTERS 2023; 23:1109-1118. [PMID: 36716197 DOI: 10.1021/acs.nanolett.2c04939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding physicochemical interactions and mechanisms related to the cell membranes of lives under extreme conditions is of essential importance but remains scarcely explored. Here, using a combination of computer simulations and experiments, we demonstrate that the structural integrity and controllable permeability of cell membranes at high temperatures are predominantly directed by configurational entropy emerging from distorted intermolecular organization of bipolar tethered lipids peculiar to the extremophiles. Detailed simulations across multiple scales─from an all-atom exploration of molecular mechanism to a mesoscale examination of its universal nature─suggest that this configurational entropy effect can be generalized to diverse systems, such as block copolymers. This offers biomimetic inspiration for designing heat-tolerant materials based on entropy, as validated by our experiments of synthetic polymers. The findings provide new insight into the basic nature of the mechanism underlying the adaptation of organisms to extreme conditions and might open paths for designed materials inspired by entropic effects in biological systems.
Collapse
Affiliation(s)
- Ziyang Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Duo Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Haixiao Wan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Hou C, Gao L, Wang Y, Yan LT. Entropic control of nanoparticle self-assembly through confinement. NANOSCALE HORIZONS 2022; 7:1016-1028. [PMID: 35762392 DOI: 10.1039/d2nh00156j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Entropy can be the sole driving force for the construction and regulation of ordered structures of soft matter systems. Specifically, under confinement, the entropic penalty could induce enhanced entropic effects which potentially generate visually ordered structures. Therefore, spatial confinement or a crowding environment offers an important approach to control entropy effects in these systems. Here, we review how spatial confinement-mediated entropic effects accurately and even dynamically control the self-assembly of nanoscale objects into ordered structures, focusing on our efforts towards computer simulations and theoretical analysis. First, we introduce the basic principle of entropic ordering through confinement. We then introduce the applications of this concept to various systems containing nanoparticles, including polymer nanocomposites, biological macromolecular systems and macromolecular colloids. Finally, the future directions and challenges for tailoring nanoparticle organization through spatial confinement-mediated entropic effects are detailed. We expect that this review could stimulate further efforts in the fundamental research on the relationship between confinement and entropy and in the applications of this concept for designer nanomaterials.
Collapse
Affiliation(s)
- Cuiling Hou
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
14
|
Mostarac D, Xiong Y, Gang O, Kantorovich S. Nanopolymers for magnetic applications: how to choose the architecture? NANOSCALE 2022; 14:11139-11151. [PMID: 35771156 PMCID: PMC9367751 DOI: 10.1039/d2nr01502a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/15/2022] [Indexed: 05/06/2023]
Abstract
Directional assembly of nanoscale objects results in morphologies that can broadly be classified as supra-molecular nanopolymers. Such morphologies, given a functional choice of the monomers used as building blocks, can be of ubiquitous utility in optical, magnetic, rheological, and medical applications. These applications, however, require a profound understanding of the interplay between monomer shape and bonding on one side, and polymeric properties - on the other. Recently, we fabricated nanopolymers using cuboid DNA nanochambers, as they not only allow fine-tuning of the resulting morphologies but can also carry magnetic nanoparticles. However, it is not known if the cuboid shape and inter-cuboid connectivity restrict the equilibrium confirmations of the resulting nanopolymers, making them less responsive to external stimuli. In this work, using Molecular Dynamics simulations, we perform an extensive comparison between various nanopolymer architectures to explore their polymeric properties, and their response to an applied magnetic field if magnetic nanoparticles are embedded. We explain the impact of monomer shape and bonding on the mechanical and magnetic properties and show that DNA nanochambers can build highly responsive and magnetically controllable nanopolymers.
Collapse
Affiliation(s)
- Deniz Mostarac
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
- Research Platform MMM Mathematics-Magnetism-Materials, Vienna, Austria
| | | | - Oleg Gang
- Columbia University, New York, USA
- Brookhaven National Laboratories, New York, USA
| | - Sofia Kantorovich
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| |
Collapse
|
15
|
Liu Z, Lan Y, Jia J, Geng Y, Dai X, Yan L, Hu T, Chen J, Matyjaszewski K, Ye G. Multi-scale computer-aided design and photo-controlled macromolecular synthesis boosting uranium harvesting from seawater. Nat Commun 2022; 13:3918. [PMID: 35798729 PMCID: PMC9262957 DOI: 10.1038/s41467-022-31360-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
By integrating multi-scale computational simulation with photo-regulated macromolecular synthesis, this study presents a new paradigm for smart design while customizing polymeric adsorbents for uranium harvesting from seawater. A dissipative particle dynamics (DPD) approach, combined with a molecular dynamics (MD) study, is performed to simulate the conformational dynamics and adsorption process of a model uranium grabber, i.e., PAOm-b-PPEGMAn, suggesting that the maximum adsorption capacity with atomic economy can be achieved with a preferred block ratio of 0.18. The designed polymers are synthesized using the PET-RAFT polymerization in a microfluidic platform, exhibiting a record high adsorption capacity of uranium (11.4 ± 1.2 mg/g) in real seawater within 28 days. This study offers an integrated perspective to quantitatively assess adsorption phenomena of polymers, bridging metal-ligand interactions at the molecular level with their spatial conformations at the mesoscopic level. The established protocol is generally adaptable for target-oriented development of more advanced polymers for broadened applications.
Collapse
Affiliation(s)
- Zeyu Liu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Youshi Lan
- China Institute of Atomic Energy, Department of Radiochemistry, 102413, Beijing, People's Republic of China
| | - Jianfeng Jia
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Yiyun Geng
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Litang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Tongyang Hu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA.
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China.
| |
Collapse
|
16
|
Yurkevich O, Modin E, Šarić I, Petravić M, Knez M. Entropy-Driven Self-Healing of Metal Oxides Assisted by Polymer-Inorganic Hybrid Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202989. [PMID: 35641441 DOI: 10.1002/adma.202202989] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Enabling self-healing of materials is crucially important for saving resources and energy in numerous emerging applications. While strategies for the self-healing of polymers are advanced, mechanisms for semiconducting inorganic materials are scarce due to the lack of suitable healing agents. Here a concept for the self-healing of metal oxides is developed. This concept consists of metal oxide nanoparticle growth inside the bulk of halogenated polymers and their subsequent entropy-driven migration to externally induced defect sites, leading to recovery of the defect. Herein, it is demonstrated that the pool of self-healing materials is expanded to include semiconductors, thereby increasing the reliability and sustainability of functional materials through the use of metal oxides. It is revealed that electrical properties of tin-doped indium oxide can be partially restored upon healing. Such properties are of immediate interest for the further development of transparent flexible electrodes.
Collapse
Affiliation(s)
- Oksana Yurkevich
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-San Sebastián, 20018, Spain
| | - Evgeny Modin
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-San Sebastián, 20018, Spain
| | - Iva Šarić
- Faculty of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejčić 2, Rijeka, 51000, Croatia
| | - Mladen Petravić
- Faculty of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejčić 2, Rijeka, 51000, Croatia
| | - Mato Knez
- CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia-San Sebastián, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 3, Bilbao, E-48009, Spain
| |
Collapse
|
17
|
Qi G, Xu C, Wang J, Tian Y, Wang B, Zhang Y, Ma K, Diao X, Jin Y. Optoplasmonic Modulation of Cell Metabolic State Promotes Rapid Cell Differentiation. Anal Chem 2022; 94:8354-8364. [PMID: 35622722 DOI: 10.1021/acs.analchem.2c00837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell differentiation plays a vital role in mediating organ formation and tissue repair and regeneration. Although rapid and effective methods to stimulate cell differentiation for clinical purposes are highly desired, it remains a great challenge in the medical fields. Herein, a highly effective and conceptual optical method was developed based on a plasmonic chip platform (made of 2D AuNPs nanomembranes). through effective light-augmented plasmonic regulation of cellular bioenergetics (CBE) and an entropy effect at bionano interfaces, to promote rapid cell differentiation. Compared with traditional methods, the developed optoplasmonic method greatly shortens cell differentiation time from usually more than 10 days to only about 3 days. Upon the optoplasmonic treatment of cells, the conformational and vibration entropy changes of cell membranes were clearly revealed through theoretical simulation and fingerprint spectra of cell membranes. Meanwhile, during the treatment process, bioenergetics levels of cells were elevated with increasing mitochondrial membrane potential (Δψm), which accelerates cell differentiation and proliferation. The developed optoplasmonic method is highly efficient and easy to implement, provides a new perspective and avenue for cell differentiation and proliferation, and has potential application prospects in accelerating tissue repair and regeneration.
Collapse
Affiliation(s)
- Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Chen Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jiafeng Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, P.R. China
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Bo Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Ying Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Kongshuo Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xingkang Diao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
18
|
Gao H, Shi R, Zhu Y, Qian H, Lu Z. Coarse-grained Dynamics Simulation in Polymer Systems: from Structures to Material Properties. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Jia H, Dai J, Wang T, Xu Y, Zhang L, Wang J, Song L, Lv K, Liu D, Huang P. The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering emulsions and enhance oil recovery. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2095-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Röhrl M, Federer LKS, Timmins RL, Rosenfeldt S, Dörres T, Habel C, Breu J. Disorder-Order Transition-Improving the Moisture Sensitivity of Waterborne Nanocomposite Barriers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48101-48109. [PMID: 34585569 DOI: 10.1021/acsami.1c14246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Systematic studies on the influence of crystalline vs disordered nanocomposite structures on barrier properties and water vapor sensitivity are scarce as it is difficult to switch between the two morphologies without changing other critical parameters. By combining water-soluble poly(vinyl alcohol) (PVOH) and ultrahigh aspect ratio synthetic sodium fluorohectorite (Hec) as filler, we were able to fabricate nanocomposites from a single nematic aqueous suspension by slot die coating that, depending on the drying temperature, forms different desired morphologies. Increasing the drying temperature from 20 to 50 °C for the same formulation triggers phase segregation and disordered nanocomposites are obtained, while at room temperature, one-dimensional (1D) crystalline, intercalated hybrid Bragg Stacks form. The onset of swelling of the crystalline morphology is pushed to significantly higher relative humidity (RH). This disorder-order transition renders PVOH/Hec a promising barrier material at RH of up to 65%, which is relevant for food packaging. The oxygen permeability (OP) of the 1D crystalline PVOH/Hec is an order of magnitude lower compared to the OP of the disordered nanocomposite at this elevated RH (OP = 0.007 cm3 μm m-2 day-1 bar-1 cf. OP = 0.047 cm3 μm m-2 day-1 bar-1 at 23 °C and 65% RH).
Collapse
Affiliation(s)
- Maximilian Röhrl
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - Lukas K S Federer
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - Renee L Timmins
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - Sabine Rosenfeldt
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - Theresa Dörres
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - Christoph Habel
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth 95447, Germany
| | - Josef Breu
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth 95447, Germany
| |
Collapse
|
21
|
Qi G, Xu C, Li H, Ma K, Tian Y, Jin Y. Wet-Chemical Electro-Plasmonic Modulation of Metasurfaced Cell-Electrode Interfaces for Effective and Selective Entropic Killing of Cancer Cells. Anal Chem 2021; 93:13624-13631. [PMID: 34591441 DOI: 10.1021/acs.analchem.1c02919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface plasmons (SPs) of metallic nanostructures excited by optical ways have been extensively utilized for versatile sensing, biomedical, catalysis, and energy conversion applications. Nevertheless, utilizing the electrically excited plasmonic field (effect) of metallic nanostructures (and electrodes) in wet-chemical conditions, for catalytic and energy conversion, especially for potential biological and biomedical applications, is still poorly studied. Herein, we report a conceptual and biocompatible wet-chemical platform and approach to utilize the electrically excited plasmonic field (effect) of metasurfaced plasmonic electrodes (without light irradiation) for cell fate regulation on electrode surfaces. By using self-assembled two-dimensional (2D) ordered-plasmonic AuNP- or Au@SiO2 NP-nanomembrane as a metasurfaced electrode, the cancer cells cultured on it can be selectively and effectively killed (due to the enhanced stimulus current and related entropic effects) via wet-chemical electro-plasmonic modulation (WC-EPM) of the cell-electrode interfaces. Biological conformational and configurational entropic change information from the cell membrane during the WC-EPM of the cell-electrode interface has also been revealed by label-free in situ surface-enhanced Raman spectroscopy. The developed approach and results can be guides for the WC-EPM regulation of biological interfaces to achieve cell fate regulation and disease treatment and is also constructive for the design of 2D plasmonic nanomaterials and devices for efficient electrochemical energy conservation and biomedical applications.
Collapse
Affiliation(s)
- Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 Jilin, P. R. China
| | - Chen Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 Jilin, P. R. China
| | - Kongshuo Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 Jilin, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 Jilin, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
22
|
Liu J, Wei J, Yang Z. Building ordered nanoparticle assemblies inspired by atomic epitaxy. Phys Chem Chem Phys 2021; 23:20028-20037. [PMID: 34498628 DOI: 10.1039/d1cp02373j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Self-assembly of inorganic nanoparticles into mesoscopic or macroscopic nanoparticle assemblies is an efficient strategy to fabricate advanced devices with emergent nanoscale functionalities. Furthermore, assembly of nanoparticles onto substrates may enable the fabrication of substrate-integrated devices, akin to atomic crystal growth on a substrate. Recent progress in nanoparticle assembly suggests that ordered nanoparticle assemblies could be well produced on a selected substrate, referred to as soft epitaxial growth. Herein, recent advances in soft epitaxial growth of a nanoparticle assembly are presented, including the assembly strategies, the choice of substrate and the epitaxial modes. Perspectives are also discussed for the material design based on substrate-integrated soft epitaxial growth.
Collapse
Affiliation(s)
- Jiaming Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| |
Collapse
|
23
|
|
24
|
Kuo AT, Urata S, Koguchi R, Sonoda T, Kobayashi S, Tanaka M. Effects of Side-Chain Spacing and Length on Hydration States of Poly(2-methoxyethyl acrylate) Analogues: A Molecular Dynamics Study. ACS Biomater Sci Eng 2021; 7:2383-2391. [PMID: 33979126 DOI: 10.1021/acsbiomaterials.1c00388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydration states of polymers are known to directly influence the adsorption of biomolecules. Particularly, intermediate water (IW) has been found able to prevent protein adsorption. Experimental studies have examined the IW content and nonthrombogenicity of poly(2-methoxyethyl acrylate) analogues with different side-chain spacings and lengths, which are HPx (x is the number of backbone carbons in a monomer) and PMCyA (y is the number of carbons in-between ester and ether oxygens of the side-chain) series, respectively. HPx was reported to possess more IW content but lower nonthrombogenicity compared to PMCyA with analogous composition. To understand the reason for the conflict, molecular dynamics simulations were conducted to elucidate the difference in the properties between the HPx and PMCyA. Simulation results showed that the presence of more methylene groups in the side chain more effectively prohibits water penetration in the polymer than those in the polymer backbone, causing a lower IW content in the PMCyA. At a high water content, the methoxy oxygen in the shorter side chain of the HPx cannot effectively bind water compared to that in the PMCyA side chain. HPx side chains may have more room to contact with molecules other than water (e.g., proteins), causing experimentally less nonthrombogenicity of HPx than that of PMCyA. In summary, theoretical simulations successfully explained the difference in the effects of side-chain spacing and length in atomistic scale.
Collapse
Affiliation(s)
- An-Tsung Kuo
- Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Shingo Urata
- Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Ryohei Koguchi
- Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Toshiki Sonoda
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
25
|
Burgos-Mármol JJ, Patti A. Molecular Dynamics of Janus Nanodimers Dispersed in Lamellar Phases of a Block Copolymer. Polymers (Basel) 2021; 13:1524. [PMID: 34065148 PMCID: PMC8126030 DOI: 10.3390/polym13091524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
We investigate structural and dynamical properties of Janus nanodimers (NDs) dispersed in lamellar phases of a diblock copolymer. By performing molecular dynamics simulations, we show that an accurate tuning of the interactions between NDs and copolymer blocks can lead to a close control of NDs' space distribution and orientation. In particular, NDs are preferentially found within the lamellae if enthalpy-driven forces offset their entropic counterpart. By contrast, when enthalpy-driven forces are not significant, the distribution of NDs, preferentially observed within the inter-lamellar spacing, is mostly driven by excluded-volume effects. Not only does the degree of affinity between host and guest species drive the NDs' distribution in the polymer matrix, but it also determines their space orientation. In turn, these key structural properties influence the long-time dynamics and the ability of NDs to diffuse through the polymer matrix.
Collapse
Affiliation(s)
- J. Javier Burgos-Mármol
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK;
| | - Alessandro Patti
- Department of Chemical Engineering and Analytical Science, The University of Manchester, The Mill. Sackville Street, Manchester M13 9PL, UK
| |
Collapse
|
26
|
Sun Y, Dai S. High-entropy materials for catalysis: A new frontier. SCIENCE ADVANCES 2021; 7:eabg1600. [PMID: 33980494 PMCID: PMC8115918 DOI: 10.1126/sciadv.abg1600] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/25/2021] [Indexed: 05/19/2023]
Abstract
Entropy plays a pivotal role in catalysis, and extensive research efforts have been directed to understanding the enthalpy-entropy relationship that defines the reaction pathways of molecular species. On the other side, surface of the catalysts, entropic effects have been rarely investigated because of the difficulty in deciphering the increased complexities in multicomponent systems. Recent advances in high-entropy materials (HEMs) have triggered broad interests in exploring entropy-stabilized systems for catalysis, where the enhanced configurational entropy affords a virtually unlimited scope for tailoring the structures and properties of HEMs. In this review, we summarize recent progress in the discovery and design of HEMs for catalysis. The correlation between compositional and structural engineering and optimization of the catalytic behaviors is highlighted for high-entropy alloys, oxides, and beyond. Tuning composition and configuration of HEMs introduces untapped opportunities for accessing better catalysts and resolving issues that are considered challenging in conventional, simple systems.
Collapse
Affiliation(s)
- Yifan Sun
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
- Department of Chemistry, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
27
|
Zhou X, Song Y, Wang D, Fang C, Xie L, Yao T, Zhang X, Zhang J. Functional nano‐fillers in waterborne polyurethane/acrylic composites and the thermal, mechanical, and dielectrical properties. J Appl Polym Sci 2021. [DOI: 10.1002/app.50822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xing Zhou
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
- School of Materials Science and Engineering Xi'an University of Technology Xi'an China
| | - Yonghua Song
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
| | - Dong Wang
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
- School of Materials Science and Engineering Xi'an University of Technology Xi'an China
| | - Changqing Fang
- School of Materials Science and Engineering Xi'an University of Technology Xi'an China
| | - Li Xie
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
| | - Taiping Yao
- Department of Electrical Engineering Northeast Electric Power University Jilin City Jilin China
| | - Xin Zhang
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
| | - Jiawei Zhang
- Department of Electrical Engineering Northeast Electric Power University Jilin City Jilin China
- Department of Electrical Engineering Xi'an University of Technology Xi'an Shanxi China
| |
Collapse
|
28
|
Xu Z, Dai X, Bu X, Yang Y, Zhang X, Man X, Zhang X, Doi M, Yan LT. Enhanced Heterogeneous Diffusion of Nanoparticles in Semiflexible Networks. ACS NANO 2021; 15:4608-4616. [PMID: 33625839 DOI: 10.1021/acsnano.0c08877] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The transport of nanoparticles in semiflexible networks, which form diverse principal structural components throughout living systems, is important in biology and biomedical applications. By combining large-scale molecular simulations as well as theoretical analysis, we demonstrate here that nanoparticles in polymer networks with semiflexible strands possess enhanced heterogeneous diffusion characterized by more evident hopping dynamics. Particularly, the hopping energy barrier approximates to linear dependence on confinement parameters in the regime of moderate rigidity, in contrast to the quadratic dependence of both its soft and hard counterparts. This nonmonotonic feature can be attributed to the competition between the conformation entropy and the bending energy regulated by the chain rigidity, captured by developing an analytical model of a hopping energy barrier. Moreover, these theoretical results agree reasonably well with previous experiments. The findings bear significance in unraveling the fundamental physics of substance transport confined in network-topological environments and would provide an explanation for the dynamics diversity of nanoparticles within various networks, biological or synthetic.
Collapse
Affiliation(s)
- Ziyang Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiangyu Bu
- School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Ye Yang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xingkun Man
- Center of Soft Matter Physics and its Applications, Beihang University, Beijing, 100191, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Xinghua Zhang
- School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Masao Doi
- Center of Soft Matter Physics and its Applications, Beihang University, Beijing, 100191, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
29
|
Gao H, Zhao L, Liu K, Lu ZY. Polymerization-Induced Reassembly of Gemini Molecules toward Generating Porous Two-Dimensional Polymers. J Phys Chem Lett 2021; 12:2340-2347. [PMID: 33656345 DOI: 10.1021/acs.jpclett.1c00243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In situ polymerization of preorganized amphiphilic monomers on various substrates provides a flexible synthetic route to construct high-quality two-dimensional polymers (2DPs) with designed functionalities. However, the detailed polymerization kinetics of these monomers in 2D confinement and their impact on the structural features of 2DPs have not been efficiently explored. Here, using dissipative particle dynamics (DPD) simulations, we unveil the similarity of the polymerization kinetics of the amphiphilic Gemini molecules in both a 2D-confined space and solution and emphasize the key role of the initiator concentration in modifying the morphology of 2DPs. More interestingly, introducing a spacer group into the Gemini monomer facilitates the formation of porous 2DPs. The size and periodic arrangement of pores in these 2DPs could be directly controlled by the Gemini molecular geometries and polymerization kinetics. The insights based on our DPD simulations provide valuable guidelines for the rational design and synthesis of 2DPs from a wider range of amphiphilic molecules.
Collapse
Affiliation(s)
- Huimin Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- School of Mathematics, Jilin University, Changchun 130012, China
| | - Li Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
30
|
Duan Y, Zhao X, Sun M, Hao H. Research Advances in the Synthesis, Application, Assembly, and Calculation of Janus Materials. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Xia Zhao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Miaomiao Sun
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi’an 710069, Shan xi, China
| |
Collapse
|
31
|
Nakamura N, Mochida Y, Toh K, Fukushima S, Cabral H, Anraku Y. Effect of Mixing Ratio of Oppositely Charged Block Copolymers on Polyion Complex Micelles for In Vivo Application. Polymers (Basel) 2020; 13:polym13010005. [PMID: 33375035 PMCID: PMC7792805 DOI: 10.3390/polym13010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 01/15/2023] Open
Abstract
Self-assembled supramolecular structures based on polyion complex (PIC) formation between oppositely charged polymers are attracting much attention for developing drug delivery systems able to endure harsh in vivo environments. As controlling polymer complexation provides an opportunity for engineering the assemblies, an improved understanding of the PIC formation will allow constructing assemblies with enhanced structural and functional capabilities. Here, we focused on the influence of the mixing charge ratio between block aniomers and catiomers on the physicochemical characteristics and in vivo biological performance of the resulting PIC micelles (PIC/m). Our results showed that by changing the mixing charge ratio, the structural state of the core was altered despite the sizes of PIC/m remaining almost the same. These structural variations greatly affected the stability of the PIC/m in the bloodstream after intravenous injection and determined their biodistribution.
Collapse
Affiliation(s)
- Noriko Nakamura
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (Y.M.); (K.T.); (S.F.)
| | - Yuki Mochida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (Y.M.); (K.T.); (S.F.)
| | - Kazuko Toh
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (Y.M.); (K.T.); (S.F.)
| | - Shigeto Fukushima
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (Y.M.); (K.T.); (S.F.)
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (Y.M.); (K.T.); (S.F.)
- Correspondence: (H.C.); (Y.A.); Tel.: +81-3-5841-7138 (Y.A.)
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (Y.M.); (K.T.); (S.F.)
- Correspondence: (H.C.); (Y.A.); Tel.: +81-3-5841-7138 (Y.A.)
| |
Collapse
|
32
|
Khedr A, Striolo A. Self-assembly of mono- and poly-dispersed nanoparticles on emulsion droplets: antagonistic vs. synergistic effects as a function of particle size. Phys Chem Chem Phys 2020; 22:22662-22673. [PMID: 33015700 DOI: 10.1039/d0cp02588g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, using Dissipative Particle Dynamics simulations, we provide fundamental insights into the self-assembly of nanoparticles (NPs) on droplet surfaces in an oil-in-water emulsion. We highlight the effect of particle size on the arrangement of NPs for different interparticle interactions. NPs of two different sizes were considered. In general, when the NP-NP interaction is changed from repulsive to attractive, a transition in the NP arrangement occurs from weekly-connected networks to clusters of NPs separated by particle-free domains. When NP-NP interactions are strongly attractive, NPs yield small 3D aggregates on the droplet surface. These arrangements seem to agree with experimental observations reported in the literature. In addition, our simulations suggest that small NPs are able to diffuse more easily on the droplet surface, which leads to prompt self-organisation, while large NPs are more likely to form metastable structures, perhaps because of slow mobility and strong adsorption to the interface. Our analysis suggests that thermal fluctuations could provide the activation energy for the small NPs to escape local minima in the free energy landscape. The results obtained for systems containing NPs of two sizes provide evidence of size segregation on the droplet surface, which could be useful when NP self-assemblies are used, for example, to template supra-molecular materials. However, analysis of the simulated trajectories suggests that the results depend strongly on the initial configuration, as the larger NPs seem to impose barriers for the small NPs to adsorb and diffuse on the droplet surface.
Collapse
Affiliation(s)
- Abeer Khedr
- Department of Chemical Engineering, University College London, UK.
| | | |
Collapse
|
33
|
|
34
|
Abstract
Entropy, one of the central concepts of thermodynamics, can be a predominant contribution to structural formation and transition. Although it is well-known that diverse forces and energies can significantly contribute to the structures and activities at bio-nano interfaces, the potential entropic contribution remains less well understood. Therefore, this review article seeks to provide a conceptual framework demonstrating that entropy can be exploited to shape the physicochemical properties of bio-nano interfaces and thereby regulate the structures, responses, and functions of biological systems. We introduce the typical types of entropy that matter at bio-nano interfaces. Moreover, some key characteristics featuring entropy at bio-nano interfaces, such as the difference between entropic force and energetic interaction and the associated implications for biomimetic research, are discussed. We expect that this review could stimulate further effort in the fundamental research of entropy in biology and in the biological applications of entropic effects in designer biomaterials.
Collapse
Affiliation(s)
- Guolong Zhu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Ziyang Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
35
|
Brighenti R, Li Y, Vernerey FJ. Smart Polymers for Advanced Applications: A Mechanical Perspective Review. FRONTIERS IN MATERIALS 2020; 7. [DOI: 10.3389/fmats.2020.00196] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
36
|
Deng K, Luo Z, Tan L, Quan Z. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem Soc Rev 2020; 49:6002-6038. [PMID: 32692337 DOI: 10.1039/d0cs00541j] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Self-assembly of colloidal nanoparticles (NPs) into superstructures offers a flexible and promising pathway to manipulate the nanometer-sized particles and thus make full use of their unique properties. This bottom-up strategy builds a bridge between the NP regime and a new class of transformative materials across multiple length scales for technological applications. In this field, anisotropic NPs with size- and shape-dependent physical properties as self-assembly building blocks have long fascinated scientists. Self-assembly of anisotropic NPs not only opens up exciting opportunities to engineer a variety of intriguing and complex superlattice architectures, but also provides access to discover emergent collective properties that stem from their ordered arrangement. Thus, this has stimulated enormous research interests in both fundamental science and technological applications. This present review comprehensively summarizes the latest advances in this area, and highlights their rich packing behaviors from the viewpoint of NP shape. We provide the basics of the experimental techniques to produce NP superstructures and structural characterization tools, and detail the delicate assembled structures. Then the current understanding of the assembly dynamics is discussed with the assistance of in situ studies, followed by emergent collective properties from these NP assemblies. Finally, we end this article with the remaining challenges and outlook, hoping to encourage further research in this field.
Collapse
Affiliation(s)
- Kerong Deng
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zhishan Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Li Tan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Key Laboratory of Energy Conversion and Storage Technologies, Ministry of Education, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
37
|
Ding P, Yin X, Wang Q, Kang X, Wu M, Zhu K, Wang X, Wang R, Xue G. Open and Closed Layered Nanostructures with Sub-10 nm Periodicity Self-Assembled from Hydrophilic [60]Fullerene-Based Giant Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7289-7295. [PMID: 32513008 DOI: 10.1021/acs.langmuir.0c00659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Giant surfactants have been identified as good candidates to produce sub-10 nm elaborate nanostructures, which could potentially realize complex functions in nanofabrication fields. Our theoretical simulation demonstrates the formation of open layered (pupa-like micelles) and closed layered (onion-like micelles) nanostructures, self-assembled from giant surfactants with comparably sized hydrophilic heads tethered by oligomers in solution. Directed by these simulation results, we synthesized giant surfactants consisting of hydrophilic [60]fullerene heads and oligostyrene (OS7) tails and produced the predicted nanostructures with periods of 9.5, 8.3, and 7.5 nm, experimentally. Adjusting the polarity of the solvent and corresponding concentration changed the nanostructures from onion-like micelles with closed layers to pupa-like micelles with open layers. The different morphologies and periods were caused by solvent inclusion and the overlap of OS chains. The above layered nanostructures remained stable after annealing at 120 °C. This work provides insights that computer simulation can play an important role in assisting the design and construction of complicated nanostructures in giant surfactant systems.
Collapse
Affiliation(s)
- Peitao Ding
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Nanostructures, Nanjing University, Nanjing 210023, P. R. China
| | - Xiangfei Yin
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Nanostructures, Nanjing University, Nanjing 210023, P. R. China
| | - Qiyuan Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Nanostructures, Nanjing University, Nanjing 210023, P. R. China
| | - Xiyang Kang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Nanostructures, Nanjing University, Nanjing 210023, P. R. China
| | - Mei Wu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Nanostructures, Nanjing University, Nanjing 210023, P. R. China
| | - Ke Zhu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Nanostructures, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaoliang Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Nanostructures, Nanjing University, Nanjing 210023, P. R. China
| | - Rong Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Nanostructures, Nanjing University, Nanjing 210023, P. R. China
| | - Gi Xue
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Nanostructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
38
|
Xu Z, Gao L, Chen P, Yan LT. Diffusive transport of nanoscale objects through cell membranes: a computational perspective. SOFT MATTER 2020; 16:3869-3881. [PMID: 32236197 DOI: 10.1039/c9sm02338k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diffusion is an essential and fundamental means of transport of substances on cell membranes, and the dynamics of biomembranes plays a crucial role in the regulation of numerous cellular processes. The understanding of the complex mechanisms and the nature of particle diffusion have a bearing on establishing guidelines for the design of efficient transport materials and unique therapeutic approaches. Herein, this review article highlights the most recent advances in investigating diffusion dynamics of nanoscale objects on biological membranes, focusing on the approaches of tailored computer simulations and theoretical analysis. Due to the presence of the complicated and heterogeneous environment on native cell membranes, the diffusive transport behaviors of nanoparticles exhibit unique and variable characteristics. The general aspects and basic theories of normal diffusion and anomalous diffusion have been introduced. In addition, the influence of a series of external and internal factors on the diffusion behaviors is discussed, including particle size, membrane curvature, particle-membrane interactions or particle-inclusion, and the crowding degree of membranes. Finally, we seek to identify open problems in the existing experimental, simulation, and theoretical research studies, and to propose challenges for future development.
Collapse
Affiliation(s)
- Ziyang Xu
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Lijuan Gao
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Pengyu Chen
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Li-Tang Yan
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
39
|
Jia L, Wang R, Fan Y. Encapsulation and release of drug nanoparticles in functional polymeric vesicles. SOFT MATTER 2020; 16:3088-3095. [PMID: 32149316 DOI: 10.1039/d0sm00069h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigated the co-assembly of amphiphilic diblock copolymers in solutions containing drugs and functional nanoparticles using the dissipative particle dynamics (DPD) method. By controlling the size and the concentration of the functional nanoparticles, the length of the hydrophobic blocks, and the interaction parameters between the hydrophobic block/solvent and the functional nanoparticles, we obtained the desired aggregates to load drugs. The aggregates loaded with drugs can be disk-like micelles, sphere-like micelles and vesicles with functional nanoparticles on the surface. When the solvent environment changes, the drugs loaded in the functional vesicles can release into the solvent. The release content is critically dependent on the repulsive interaction between the drugs and the solvent. The dynamic curve of drug release is obtained. The result is in agreement with the experiments about drug release. Our studies showed that we can precisely control the formation of functional vesicles to load and release drugs. Loading drugs in the process of self-assembly and controlling the release have broad potential in the field of clinical medicine and adding functional nanoparticles can be of great help in drug delivery and medical diagnosis.
Collapse
Affiliation(s)
- Lei Jia
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | |
Collapse
|
40
|
|
41
|
Li ZW, Sun YW, Wang YH, Zhu YL, Lu ZY, Sun ZY. Kinetics-controlled design principles for two-dimensional open lattices using atom-mimicking patchy particles. NANOSCALE 2020; 12:4544-4551. [PMID: 32040105 DOI: 10.1039/c9nr09656f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The design and discovery of new two-dimensional materials with desired structures and properties are always one of the most fundamental goals in materials science. Here we present an atom-mimicking design concept to achieve direct self-assembly of two-dimensional low-coordinated open lattices using three-dimensional patchy particle systems. Besides honeycomb lattices, a new type of two-dimensional square-octagon lattice is obtained through rational design of the patch configuration of soft three-patch particles. However, unexpectedly the building blocks with thermodynamically favoured patch configuration cannot form square-octagon lattices in our simulations. We further reveal the kinetic mechanisms controlling the formation of the honeycomb and square-octagon lattices. The results indicate that the kinetically favoured intermediates play a critical role in determining the structure of obtained open lattices. This kinetics-controlled design principle provides a particularly effective and extendable framework to construct other novel open lattice structures.
Collapse
Affiliation(s)
- Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Yan-Hui Wang
- University of Science and Technology of China, Hefei, 230026, China and Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. and University of Science and Technology of China, Hefei, 230026, China and Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| |
Collapse
|
42
|
Liu X, Tian F, Yue T, Zhang X, Zhong C. Radial aggregation of proteins prevails over axial aggregation on membrane tubes. NANOSCALE 2020; 12:3029-3037. [PMID: 31967160 DOI: 10.1039/c9nr09303f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tubular membrane structures are abundant in living cells and participate in various cell activities with the help of specific proteins. This complicated protein-membrane interaction raises a largely unclear question of how cells create, maintain and eliminate membrane nanotubes with a variety of proteins involved. To simplify the question and to give a common mechanism, we simply model membrane proteins as various solid nanoparticles (NPs) of different shapes, instead of considering the detailed structure of different proteins. With this minimal model of membrane proteins, we use molecular simulations to study the common features for protein self-assembly on membrane tubes. Both molecular simulations and energy analysis reveal that on tubular membrane surfaces, the radial aggregation structure of spherical NPs prevails over axial aggregation. We demonstrate that anisotropic deformation of membrane tubes by NP adhesion leads to a direction-dependent (effective) inter-NP attraction, which controls the direction of NP assembly. Moreover, this radial aggregation morphology seems to be independent of the shape of NPs, except for NPs with a length comparable to the tube diameter. This observation indicates that proteins with strong adhesion to a membrane tube tend to form ring-like aggregates, and this finding offers an insight into how proteins play their roles in generating, maintaining and breaking tubular membrane structures.
Collapse
Affiliation(s)
- Xuejuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China. and Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Edible and Medicinal Fungi Research and Development Center of Hebei Universities, College of Life Science, Lang Fang Normal University, Langfang 065000, PR China
| | - Falin Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Tongtao Yue
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Chongli Zhong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China. and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing 100029, PR China
| |
Collapse
|
43
|
Smirnov MA, Nikolaeva AL, Vorobiov VK, Bobrova NV, Abalov IV, Smirnov AV, Sokolova MP. Ionic Conductivity and Structure of Chitosan Films Modified with Lactic Acid-Choline Chloride NADES. Polymers (Basel) 2020; 12:E350. [PMID: 32041166 PMCID: PMC7077437 DOI: 10.3390/polym12020350] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 01/06/2023] Open
Abstract
The natural deep eutectic solvent (NADES) based on choline chloride (ChCl) and lactic acid (LA) was used for the preparation of chitosan (CS) films by the solution casting method. The content of NADES in films was from 0 to 82 wt%. The impact of NADES on the morphology and crystalline structure of films was investigated using scanning electron microscopy as well as wide-angle and small-angle X-ray scattering. The experimental results allow to propose CS chains swelling in NADES. FTIR spectroscopy confirms the interactions between CS and NADES components via the formation of hydrogen and ion bonds. The thermal properties of the composite films were studied by simultaneous thermogravimetric and differential thermal analysis. Thermomechanical analysis demonstrated appearance of two transitions at temperatures between -23 and -5 °C and 54-102 °C depending on NADES content. It was found that electrical conductivity of film with 82 wt% of NADES reaches 1.7 mS/cm. The influence of the composition and structure of films on the charge carriers concentration and their mobility is discussed.
Collapse
Affiliation(s)
- Mikhail A. Smirnov
- Institute of Macromolecular Compounds Russian Academy of Sciences, Bolshoy pr. 31, Saint Petersburg 199004, Russia; (M.A.S.); (A.L.N.); (V.K.V.); (N.V.B.); (I.V.A.)
| | - Alexandra L. Nikolaeva
- Institute of Macromolecular Compounds Russian Academy of Sciences, Bolshoy pr. 31, Saint Petersburg 199004, Russia; (M.A.S.); (A.L.N.); (V.K.V.); (N.V.B.); (I.V.A.)
| | - Vitaly K. Vorobiov
- Institute of Macromolecular Compounds Russian Academy of Sciences, Bolshoy pr. 31, Saint Petersburg 199004, Russia; (M.A.S.); (A.L.N.); (V.K.V.); (N.V.B.); (I.V.A.)
| | - Natalia V. Bobrova
- Institute of Macromolecular Compounds Russian Academy of Sciences, Bolshoy pr. 31, Saint Petersburg 199004, Russia; (M.A.S.); (A.L.N.); (V.K.V.); (N.V.B.); (I.V.A.)
| | - Ivan V. Abalov
- Institute of Macromolecular Compounds Russian Academy of Sciences, Bolshoy pr. 31, Saint Petersburg 199004, Russia; (M.A.S.); (A.L.N.); (V.K.V.); (N.V.B.); (I.V.A.)
| | - Alexander V. Smirnov
- Physics and Technology Faculty, ITMO University, Kronverskii prosp. 49, Saint Petersburg 197101, Russia;
| | - Maria P. Sokolova
- Institute of Macromolecular Compounds Russian Academy of Sciences, Bolshoy pr. 31, Saint Petersburg 199004, Russia; (M.A.S.); (A.L.N.); (V.K.V.); (N.V.B.); (I.V.A.)
- Saint Petersburg State University, Institute of Chemistry, Universitetskaya nab. 7-9, Saint Petersburg 198504, Russia
| |
Collapse
|
44
|
Janus particles: from concepts to environmentally friendly materials and sustainable applications. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04601-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractJanus particles represent a unique group of patchy particles combining two or more different physical or chemical functionalities at their opposite sides. Especially, individual Janus particles (JPs) with both chemical and geometrical anisotropy as well as their assembled layers provide considerable advantages over the conventional monofunctional particles or surfactant molecules offering (a) a high surface-to-volume ratio; (b) high interfacial activity; (c) target controlling and manipulation of their interfacial activity by external signals such as temperature, light, pH, or ionic strength and achieving switching between stable emulsions and macro-phase separation; (d) recovery and recycling; (e) controlling the mass transport across the interface between the two phases; and finally (f) tunable several functionalities in one particle allowing their use either as carrier materials for immobilized catalytically active substances or, alternatively, their site-selective attachment to substrates keeping another functionality active for further reactions. All these advantages of JPs make them exclusive materials for application in (bio-)catalysis and (bio-)sensing. Considering “green chemistry” aspects covering biogenic materials based on either natural or fully synthetic biocompatible and biodegradable polymers for the design of JPs may solve the problem of toxicity of some existing materials and open new paths for the development of more environmentally friendly and sustainable materials in the very near future. Considering the number of contributions published each year on the topic of Janus particles in general, the number of contributions regarding their environmentally friendly and sustainable applications is by far smaller. This certainly pinpoints an important challenge and is addressed in this review article. The first part of the review focuses on the synthesis of sustainable biogenic or biocompatible Janus particles, as well as strategies for their recovery, recycling, and reusability. The second part addresses recent advances in applications of biogenic/biocompatible and non-biocompatible JPs in environmental and biotechnological fields such as sensing of hazardous pollutants, water decontamination, and hydrogen production. Finally, we provide implications for the rational design of environmentally friendly and sustainable materials based on Janus particles.
Collapse
|
45
|
Nademi Y, Tang T, Uludağ H. Membrane lipids destabilize short interfering ribonucleic acid (siRNA)/polyethylenimine nanoparticles. NANOSCALE 2020; 12:1032-1045. [PMID: 31845926 DOI: 10.1039/c9nr08128c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell entry of polymeric nanoparticles (NPs) bearing polynucleotides is an important stage for successful gene delivery. In this work, we addressed the influence of cell membrane lipids on the integrity and configurational changes of NPs composed of short interfering ribonucleic acid (siRNA) and polyethylenimine. We focused on NPs derived from two different PEIs, unmodified low molecular weight PEI and linoleic acid (LA)-substituted PEI, and their interactions with two membrane lipids (zwitterionic 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) and anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS)). Our experiments showed that POPS liposomes interacted strongly with both types of NPs, which caused partial dissociation of the NPs. POPC liposomes, however, did not induce any dissociation. Consistent with the experiments, steered molecular dynamics simulations showed a stronger interaction between the NPs and the POPS membrane than between the NPs and the POPC membrane. Lipid substitution on the PEIs enhanced the stability of the NPs during membrane crossing; lipid association between PEIs of the LA-bearing NPs as well as parallel orientation of the siRNAs provided protection against their dissociation (unlike NPs from native PEI). Our observations provide valuable insight into the integrity and structural changes of PEI/siRNA NPs during membrane crossing which will help in the design of more effective carriers for nucleic acid delivery.
Collapse
Affiliation(s)
- Yousef Nademi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
46
|
Chen SJ, Chen WQ, Ouyang Y, Matthai S, Zhang L. Transitions between nanomechanical and continuum mechanical contacts: new insights from liquid structure. NANOSCALE 2019; 11:22954-22963. [PMID: 31764920 DOI: 10.1039/c9nr07180f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The use of continuum mechanics to describe contacts involving nanoscale and atomic interactions has been one of the key controversies in nanoscience, tribology, and petrophysical and geological studies. By applying a novel nonequilibrium molecular dynamics scheme to wet quartz contacts, this study revealed the key transitions between continuum electrostatic, nanomechanical and Hertzian contact behaviors at around one nm of surface separation, which results in critical contact pressure fluctuations between -30 and 100 MPa. Using a novel liquid-structure analysis scheme based on the spatial distribution of water molecules, the nanomechanical behavior was found to originate from the collapse and localization of layers of water molecules. Moreover, the role of surface curvature on this effect was also quantified and explained based on a new topological descriptor. The findings of this study enrich our understanding of wet contacts and have a wide range of applications from the nanoscale to macroscale.
Collapse
Affiliation(s)
- Shu Jian Chen
- School of Civil Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia. and Department of Infrastructure Engineering, The University of Melbourne, Parkville 3010, Australia.
| | - Wei Qiang Chen
- State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Yubing Ouyang
- Department of Civil Engineering, Monash University, Clayton 3168, Australia
| | - Stephan Matthai
- Department of Infrastructure Engineering, The University of Melbourne, Parkville 3010, Australia.
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
47
|
Dai X, Chen P, Zhu G, Xu Z, Zhang X, Yan LT. Entropy-Mediated Mechanomutable Microstructures and Mechanoresponsive Thermal Transport of Nanoparticle Self-Assembly in Block Copolymers. J Phys Chem Lett 2019; 10:7970-7979. [PMID: 31802675 DOI: 10.1021/acs.jpclett.9b03253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite decades of intense research efforts on the self-assembly of nanoparticles in mesophase-forming copolymers, the progress in practical applications is impeded by the lack of knowledge about the dynamic transition of such hierarchical nanostructures in an environment bearing an external load. Here, we show that the hierarchical self-assembly of nanoparticles in block copolymer scaffolds can be made to significantly alternate by external compression, characterized by a continuous and reverse transition among various distribution states of nanoparticles in their preferential domains. Theoretical analysis reveals that compression-induced transition of the nanoparticle distribution can be fundamentally attributed to unique entropic effects originating from the compacted block chains. Further, we demonstrate that the hierarchical nanostructures with different distribution states of nanoparticles can lead to mechanomutable phonon transport properties. The findings reveal the mechanoresponsive behaviors of the hierarchical nanostructures of block copolymer-based nanocomposites and their potential applications as thermal interface materials with tailored thermal conductivity.
Collapse
Affiliation(s)
- Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Pengyu Chen
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Guolong Zhu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Ziyang Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Xinghua Zhang
- School of Science , Beijing Jiaotong University , Beijing 100044 , China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
48
|
Calvanese L, Brun P, Messina GML, Russo T, Zamuner A, Falcigno L, D’Auria G, Gloria A, Vitagliano L, Marletta G, Dettin M. EAK Hydrogels Cross-Linked by Disulfide Bonds: Cys Number and Position Are Matched to Performances. ACS Biomater Sci Eng 2019; 6:1154-1164. [DOI: 10.1021/acsbiomaterials.9b01556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Luisa Calvanese
- CIRPeB, University of Naples Federico II, Via Mezzocannone 16, 80134 Naples, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Grazia M. L. Messina
- Department of Chemical Sciences, University of Catania, Via A. Doria 6, 95125 Catania, Italy
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Viale J.F. Kennedy 54−Mostra d’Oltremare PAD. 20, 80125 Naples, Italy
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padua, Italy
| | - Lucia Falcigno
- Department of Pharmacy, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Institute of Biostructures and Bioimaging-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Gabriella D’Auria
- Department of Pharmacy, University of Naples “Federico II”, Via Mezzocannone 16, 80134 Naples, Italy
- Institute of Biostructures and Bioimaging-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Antonio Gloria
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Viale J.F. Kennedy 54−Mostra d’Oltremare PAD. 20, 80125 Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging-CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Giovanni Marletta
- Department of Chemical Sciences, University of Catania, Via A. Doria 6, 95125 Catania, Italy
| | - Monica Dettin
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padua, Italy
| |
Collapse
|
49
|
Gao H, Liu H, Zhang R, Lu Z. Structure Evolution of Binary Ligands on Nanoparticles Triggered by Competition between Adsorption Reaction and Phase Separation. J Phys Chem B 2019; 123:10311-10321. [PMID: 31710227 DOI: 10.1021/acs.jpcb.9b09338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ligand shell of a nanoparticle (NP) determines most of the interfacial properties through its composition and structure. Despite widespread study over the years, the factors impacting the ligand shell structures, especially the effects of ligand-adsorption kinetics in solution, are still not clear and even conflict with each other. We have developed an adsorption-migration reaction model to study the dynamic evolution processes of binary ligands on NP surfaces during adsorption reaction. Apparent dependence of the structure of ligand shells on ligand-adsorption and phase-separation rates has been found, which induces the formation of different shell patterns, including Janus, patchy, stripe, and island patterns. The formation process of these patterns accords with different reaction kinetic pathways, depending on the nature of ligands. Further screening the role of the NPs' curvature reveals that it can indirectly influence the ligand-adsorption and phase-separation kinetics. As the NPs' curvature increases, an accelerated ligand-adsorption and phase-separation process on NPs will happen, resulting in the preferential formation of more ordered Janus or stripe patterns. These results suggest that controlling the reaction kinetics is key to effectively regulating the composition and morphology of binary ligands on NPs. They also provide principles for guiding the experimental studies to fabricate novel NPs with a functional surface for use in broad nanoscience fields.
Collapse
|
50
|
Xu D, Zhao L, Zhang K, Lu ZY. Dynamic self-assembly of block copolymers regulated by time-varying building block composition via reversible chemical reaction. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9589-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|