1
|
Dohi T, Elboray EE, Kikushima K, Morimoto K, Kita Y. Iodoarene Activation: Take a Leap Forward toward Green and Sustainable Transformations. Chem Rev 2025; 125:3440-3550. [PMID: 40053418 PMCID: PMC11951092 DOI: 10.1021/acs.chemrev.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Constructing chemical bonds under green sustainable conditions has drawn attention from environmental and economic perspectives. The dissociation of (hetero)aryl-halide bonds is a crucial step of most arylations affording (hetero)arene derivatives. Herein, we summarize the (hetero)aryl halides activation enabling the direct (hetero)arylation of trapping reagents and construction of highly functionalized (hetero)arenes under benign conditions. The strategies for the activation of aryl iodides are classified into (a) hypervalent iodoarene activation followed by functionalization under thermal/photochemical conditions, (b) aryl-I bond dissociation in the presence of bases with/without organic catalysts and promoters, (c) photoinduced aryl-I bond dissociation in the presence/absence of organophotocatalysts, (d) electrochemical activation of aryl iodides by direct/indirect electrolysis mediated by organocatalysts and mediators acting as electron shuttles, and (e) electrophotochemical activation of aryl iodides mediated by redox-active organocatalysts. These activation modes result in aryl iodides exhibiting diverse reactivity as formal aryl cations/radicals/anions and aryne precursors. The coupling of these reactive intermediates with trapping reagents leads to the facile and selective formation of C-C and C-heteroatom bonds. These ecofriendly, inexpensive, and functional group-tolerant activation strategies offer green alternatives to transition metal-based catalysis.
Collapse
Affiliation(s)
- Toshifumi Dohi
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Elghareeb E. Elboray
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Department
of Chemistry, Faculty of Science, South
Valley University, Qena 83523, Egypt
| | - Kotaro Kikushima
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Koji Morimoto
- Graduate
School of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu Shiga 525-8577, Japan
| |
Collapse
|
2
|
Cui W, Xu X, Zhang C, Wang D, Yang Y, Wang Q, Wang J. Manganese-Promoted Electrochemical Imino-Pinacol Coupling to Access Vicinal Diamines. J Org Chem 2025; 90:3659-3664. [PMID: 40042358 DOI: 10.1021/acs.joc.4c02994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
We herein introduce an electrochemical imino-pinacol coupling reaction to access the vicinal diamine scaffold. This green and convenient protocol employs in situ-generated imines as starting materials to deliver a broad range of diamine products under electroreductive conditions. Moreover, this protocol is also applicable to electrochemical pinacol coupling. Mechanistic investigation suggests that a Mn(III) additive is essential for promoting the SET reduction of the imine starting material and preventing the formation of the over-reduced amine side product.
Collapse
Affiliation(s)
- Weihao Cui
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Xiaolong Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Cong Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Dong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yingqi Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Qiong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
3
|
Pozhydaiev V, Paparesta A, Moran J, Lebœuf D. Iron(II)-Catalyzed 1,2-Diamination of Styrenes Installing a Terminal NH 2 Group Alongside Unprotected Amines. Angew Chem Int Ed Engl 2024; 63:e202411992. [PMID: 39016034 DOI: 10.1002/anie.202411992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
1,2-Diamination of alkenes represents an attractive way to generate differentiated vicinal diamines, which are prevalent motifs in biologically active compounds and catalysts. However, existing methods are usually limited in scope and produce diamines where one or both nitrogens are protected, adding synthetic steps for deprotection and further N-functionalization to reach a desired target. Furthermore, the range of amino groups that can be introduced at the internal position is fairly limited. Here we describe a 1,2-diamination of styrenes that directly installs a free amino group at the terminal position and a wide variety of unprotected nitrogen nucleophiles (primary or secondary alkyl or aromatic amines, sulfoximines, N-heterocycles, and ammonia surrogate) at the internal position. Two complementary sets of conditions encompass electronically activated and deactivated styrenes with diverse substitution patterns and functional groups. Moreover, this strategy can be extended to the 1,2-aminothiolation of styrenes.
Collapse
Affiliation(s)
- Valentyn Pozhydaiev
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Antonio Paparesta
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
4
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
5
|
Patra K, Dey MP, Baidya M. Metal-free site-selective functionalization with cyclic diaryl λ 3-chloranes: suppression of benzyne formation for ligand-coupling reactions. Chem Sci 2024:d4sc04108a. [PMID: 39309097 PMCID: PMC11414830 DOI: 10.1039/d4sc04108a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
While hypervalent halogens are versatile reagents enabling diverse reactions in organic synthesis, the utility of hypervalent chlorine compounds, particularly cyclic λ3-chloranes, remains underdeveloped despite their unique electronic properties and innate enhanced reactivity. Herein, we illustrate the elusive ligand coupling reaction of cyclic λ3-chloranes that suppresses the more facile competing reaction modality involving benzyne intermediates. The methodology can be performed in three-component as well as two-component fashions, offering direct access to a wide range of unsymmetrically substituted biaryl molecules in very high yields and excellent ortho-regioselectivity. The reactions were scalable, and the versatility was demonstrated by constructing different types of C-S and C-N bonds under mild conditions. The reaction outcomes were also compared with those of corresponding λ3-iodanes and λ3-bromanes, demonstrating the superiority of cyclic λ3-chloranes in ligand-coupling reactions under metal-free conditions.
Collapse
Affiliation(s)
- Koushik Patra
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600 036 Tamil Nadu India
| | - Manas Pratim Dey
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600 036 Tamil Nadu India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600 036 Tamil Nadu India
| |
Collapse
|
6
|
Liu J, Guo L, Chen Z, Guo Y, Zhang W, Peng X, Wang Z, Zeng YF. Photoredox-catalyzed unsymmetrical diamination of alkenes for access to vicinal diamines. Chem Commun (Camb) 2024; 60:3413-3416. [PMID: 38441256 DOI: 10.1039/d4cc00330f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A photoredox-catalyzed unsymmetrical diamination of alkenes by using N-aminopyridinium salts and nitriles as the amination reagents has been developed. Various vicinal diamines were obtained in moderate to excellent yields under mild reaction conditions. Furthermore, this protocol could be applied in the late-stage modification of pharmaceuticals and natural products. Preliminary mechanistic studies suggested that this methodology may undergo a radical pathway followed by a Ritter-type reaction.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Lu Guo
- Department of Sports Medicine, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhang Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yu Guo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Wei Zhang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- MOE Key Lab of Rare Pediatric Diseases, University of South China, Hengyang, Hunan, 421001, China
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
7
|
Kiyokawa K, Kawanaka K, Minakata S. Amino-λ 3 -iodane-Enabled Electrophilic Amination of Arylboronic Acid Derivatives. Angew Chem Int Ed Engl 2024; 63:e202319048. [PMID: 38272833 DOI: 10.1002/anie.202319048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
In this report, we describe the use of amino-λ3 -iodanes in the electrophilic amination of arylboronic acids and boronates. Iodine(III) reagents with transferable amino groups, including one with an NH2 group, were synthesized and used in the amination, allowing the synthesis of a wide range of primary and secondary (hetero)arylamines. Mechanistic studies by DFT calculations indicate that the reaction proceeds through an electrophilic amination process from a tetravalent borate complex with a B-N dative bond.
Collapse
Affiliation(s)
- Kensuke Kiyokawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Kazuki Kawanaka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| | - Satoshi Minakata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Urbiña-Alvarez J, Rincón-Carvajal S, Gamba-Sánchez D. Ammonia surrogates in the synthesis of primary amines. Org Biomol Chem 2023; 21:7036-7051. [PMID: 37575051 DOI: 10.1039/d3ob01202f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Primary amines are derivatives of ammonia in which one hydrogen atom is replaced by an alkyl or aryl group. Ammonia serves as the primary nitrogen source in amination reactions, and its utilization in solution or as a pure gas has witnessed notable advancements. However, the use of gaseous ammonia remains problematic in academic laboratory settings, while employing aqueous ammonia poses challenges in highly water-sensitive transformations. Consequently, the search for alternative sources of ammonia has garnered considerable attention among the organic chemistry community. This comprehensive literature review focuses on the use of ammonia surrogates in amination reactions, irrespective of the resulting intermediate. The review emphasizes the formation of the C-N bond and underscores the importance of generating intermediate products that can be readily transformed into primary amines through well-established reactions.
Collapse
Affiliation(s)
- Julia Urbiña-Alvarez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de Los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia.
| | - Sergio Rincón-Carvajal
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de Los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia.
| | - Diego Gamba-Sánchez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de Los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia.
| |
Collapse
|
9
|
Zheng H, Cai L, Pan M, Uyanik M, Ishihara K, Xue XS. Catalyst-Substrate Helical Character Matching Determines the Enantioselectivity in the Ishihara-Type Iodoarenes Catalyzed Asymmetric Kita-Dearomative Spirolactonization. J Am Chem Soc 2023; 145:7301-7312. [PMID: 36940192 DOI: 10.1021/jacs.2c13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Catalyst design has traditionally focused on rigid structural elements to prevent conformational flexibility. Ishihara's elegant design of conformationally flexible C2-symmetric iodoarenes, a new class of privileged organocatalysts, for the catalytic asymmetric dearomatization (CADA) of naphthols is a notable exception. Despite the widespread use of the Ishihara catalysts for CADAs, the reaction mechanism remains the subject of debate, and the mode of asymmetric induction has not been well established. Here, we report an in-depth computational investigation of three possible mechanisms in the literature. Our results, however, reveal that this reaction is best rationalized by a fourth mechanism called "proton-transfer-coupled-dearomatization (PTCD)", which is predicted to be strongly favored over other competing pathways. The PTCD mechanism is consistent with a control experiment and further validated by applying it to rationalize the enantioselectivities. Oxidation of the flexible I(I) catalyst to catalytic active I(III) species induces a defined C2-symmetric helical chiral environment with a delicate balance between flexibility and rigidity. A match/mismatch effect between the active catalyst and the substrate's helical shape in the dearomatization transition states was observed. The helical shape match allows the active catalyst to adapt its conformation to maximize attractive noncovalent interactions, including I(III)···O halogen bond, N-H···O hydrogen bond, and π···π stacking, to stabilize the favored transition state. A stereochemical model capable of rationalizing the effect of catalyst structural variation on the enantioselectivities is developed. The present study enriches our understanding of how flexible catalysts achieve high stereoinduction and may serve as an inspiration for the future exploration of conformational flexibility for new catalyst designs.
Collapse
Affiliation(s)
- Hanliang Zheng
- Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Liu Cai
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ming Pan
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Muhammet Uyanik
- Graduate School of Engineering, Nagoya University Furocho, Chikusaku, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University Furocho, Chikusaku, Nagoya 464-8603, Japan
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| |
Collapse
|
10
|
Kraszewski K, Tomczyk I, Kalek M. Intermolecular enantioselective dearomatizing para-methoxylation of phenols using 2-iodoresorcinol/lactamide catalysts. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Sunagawa S, Morisaki F, Baba T, Tsubouchi A, Yoshimura A, Miyamoto K, Uchiyama M, Saito A. In Situ Generation of N-Triflylimino-λ 3-iodanes: Application to Imidation of Phosphines and Catalytic α-Amidation of 1,3-Dicarbonyl Compounds. Org Lett 2022; 24:5230-5234. [PMID: 35822905 DOI: 10.1021/acs.orglett.2c02264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the imidation of phosphines and α-amidation of 1,3-dicarbonyl compounds using N-triflylimino-λ3-iodane, which is generated in situ from iodosylarene and triflylamide without any other additives. Furthermore, the imino-λ3-iodane catalytically generated from an iodoarene precatalyst with oxone and triflylamide promotes α-amidation of 1,3-dicarbonyl compounds, representing the first method catalyzed by imino-λ3-iodane.
Collapse
Affiliation(s)
- Shun Sunagawa
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Fumiya Morisaki
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Takafumi Baba
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Akira Tsubouchi
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Akira Yoshimura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Research Initiative for Supra-Materials (RISM), Shinshu University, Ueda 386-8567, Japan
| | - Akio Saito
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
12
|
Chen Y, Gu Y, Meng H, Shao Q, Xu Z, Bao W, Gu Y, Xue X, Zhao Y. Metal‐Free C−H Functionalization via Diaryliodonium Salts with a Chemically Robust Dummy Ligand. Angew Chem Int Ed Engl 2022; 61:e202201240. [DOI: 10.1002/anie.202201240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yixuan Chen
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yuefei Gu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Huan Meng
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Qianzhen Shao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Wenjing Bao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY UK
| | - Xiao‐Song Xue
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
- Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
13
|
Ramiro JL, Neo AG, Marcos CF. Synthesis of imidazolocoumarins by the amide-directed oxidative cyclisation of enol-Ugi derivatives. Org Biomol Chem 2022; 20:5293-5307. [PMID: 35722807 DOI: 10.1039/d2ob00518b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidative C(sp3)-H intramolecular imination of hydroxycoumarin enol-Ugi adduct derivatives affords selectively diversely substituted imidazolocoumarins in one pot. The amide group derived from the enol-Ugi isocyanide component directs the functionalisation of the adjacent C(sp3)-H and then is lost as an isocyanate molecule in an unprecedented transformation. This strategy was applied for the synthesis of potential modulators of innate immune system receptor TLR7, which showed high binding affinities in the molecular docking studies.
Collapse
Affiliation(s)
- José Luis Ramiro
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.). Departamento de Química Orgánica e Inorgánica. Universidad de Extremadura, 10003 Cáceres, Spain.
| | - Ana G Neo
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.). Departamento de Química Orgánica e Inorgánica. Universidad de Extremadura, 10003 Cáceres, Spain.
| | - Carlos F Marcos
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.). Departamento de Química Orgánica e Inorgánica. Universidad de Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|
14
|
Chen Y, Gu Y, Meng H, Shao Q, Xu Z, Bao W, Gu Y, Xue X, Zhao Y. Metal‐Free C−H Functionalization via Diaryliodonium Salts with a Chemically Robust Dummy Ligand. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yixuan Chen
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yuefei Gu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Huan Meng
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Qianzhen Shao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Wenjing Bao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY UK
| | - Xiao‐Song Xue
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
- Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
15
|
Wang Y, Sun YY, Cui YM, Yu YX, Wu ZG. Construction of Benzimidazolone Derivatives via Aryl Iodide Catalyzed Intramolecular Oxidative C-H Amination. J Org Chem 2022; 87:3234-3241. [PMID: 35170306 DOI: 10.1021/acs.joc.1c02929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The first aryl iodide catalyzed intramolecular C-H amination of phenylurea has been disclosed for high-efficiency synthesis of benzimidazolone derivatives in excellent yields (up to 97%) by an operationally simple one-step organocatalytic oxidative process. Fluorinated protic alcohols can efficiently accelerate the conversion of this transformation. The straightforward method has good functional group tolerance and can be performed with an inexpensive and readily accessible catalyst with high proficiency.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yuan-Yuan Sun
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Yi-Mo Cui
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Ying-Xin Yu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Zheng-Guang Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
16
|
Wang Q, Ni S, Wang X, Wang Y, Pan Y. Visible-light-mediated tungsten-catalyzed C-H amination of unactivated alkanes with nitroarenes. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1170-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Poeira DL, Negrão ACR, Faustino H, Coelho JAS, Gomes CSB, Gois PMP, Marques MMB. Hypervalent Iodine(III) Reagents with Transferable Primary Amines: Structure and Reactivity on the Electrophilic α-Amination of Stabilized Enolates. Org Lett 2022; 24:776-781. [PMID: 34978835 DOI: 10.1021/acs.orglett.1c04312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A new family of hypervalent iodine reagents containing transferable primary amine groups is described. Benziodoxolone-based reagents were synthesized on the gram-scale through operationally simple reactions in up to quantitative yields. These bench-stable solids were characterized by X-ray analysis and successfully employed in the α-amination of indanone-based β-ketoesters in up to 83% yield. Mechanistic studies indicate a substitution mechanism involving an electrophilic amine.
Collapse
Affiliation(s)
- Diogo L Poeira
- LAQV@REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Cláudia R Negrão
- LAQV@REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Hélio Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Jaime A S Coelho
- Centro de Química Estrutural, Faculty of Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Clara S B Gomes
- LAQV@REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - M Manuel B Marques
- LAQV@REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
18
|
Patel BK, Dahiya A, Sahoo AK, Chakraborty N, Das B. Updates on hypervalent-iodine reagents in metal-free organic synthesis. Org Biomol Chem 2022; 20:2005-2027. [DOI: 10.1039/d1ob02233d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypervalent iodine (HVI) chemistry is a rapidly growing subdomain of contemporary organic chemistry because of its enormous synthetic applications. The high nucleofugality of the phenyliodonio group (I+Ph) and their radical...
Collapse
|
19
|
Hui C, Antonchick AP. Iodonitrene: a direct metal-free electrophilic aminating reagent. Org Chem Front 2022. [DOI: 10.1039/d2qo00739h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iodonitrene is a new type of reactive electrophilic aminating reagent that opens up opportunities for new discoveries.
Collapse
Affiliation(s)
- Chunngai Hui
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Andrey P. Antonchick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
- Nottingham Trent University, School of Science and Technology, Department of Chemistry and Forensics, Clifton Lane, NG11 8NS Nottingham, UK
| |
Collapse
|
20
|
Li J, Wang X, Wang Z, Shi Y. A Cu-Promoted C-N Coupling of Boron Esters and Diaziridinone: An Approach to Aryl Ureas. Org Lett 2021; 23:8958-8962. [PMID: 34756047 DOI: 10.1021/acs.orglett.1c03468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel Cu-promoted C-N coupling between boron esters and di-tert-butyldiaziridinone is described. A wide variety of aryl ureas can be readily obtained under mild conditions with up to a 92% yield.
Collapse
Affiliation(s)
- Jing Li
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Xiaoyu Wang
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Zhanwei Wang
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| |
Collapse
|
21
|
Wang Y, Yang M, Sun YY, Wu ZG, Dai H, Li S. An Efficient Approach for 3,3-Disubstituted Oxindoles Synthesis: Aryl Iodine Catalyzed Intramolecular C-N Bond Oxidative Cross-Coupling. Org Lett 2021; 23:8750-8754. [PMID: 34709841 DOI: 10.1021/acs.orglett.1c03224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report the first intramolecular C-N bond formation of phenylpropanamide derivatives via organocatalytic oxidative reactions, affording 3,3-disubstituted oxindole derivatives with up to 99% yield. The high efficiency of this reaction is exemplified by the transition metal-free mild conditions and the ability to perform the reaction on a gram scale. Meanwhile, the DFT calculation of the catalytic oxidative transformation pathway has also been studied.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Mo Yang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yuan-Yuan Sun
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Zheng-Guang Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Hong Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
22
|
Hu Y, Zheng S, Fan W, Yuan W. Copper‐Catalysed Electrophilic Amination of Aryl(alkenyl) Boronic Acids with Nitrogen‐Containing Hypervalent Iodine (III) Reagent. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuanyuan Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 People's Republic of China
| | - Songlin Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 People's Republic of China
| | - Wu Fan
- Key Laboratory of Tobacco Flavor Basic Research Zhengzhou Tobacco Research Institute of CNTC No. 2 Fengyang Street High-Tech Zone Zhengzhou 450001 People's Republic of China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 People's Republic of China
- Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| |
Collapse
|
23
|
Sun X, Yu M, Mu X, Zhou Z, Wang L, Liu J, Liu X. A facile approach to [1,2,4]triazolo[3,4‐i]purine via
PIDA
oxidation ring‐closing reaction. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiangbin Sun
- School of Chemistry and Materials Science Ludong University Yantai China
| | - Mingwu Yu
- School of Chemistry and Materials Science Ludong University Yantai China
| | - Xianfeng Mu
- School of Chemistry and Materials Science Ludong University Yantai China
| | - Zheng Zhou
- School of Chemistry and Materials Science Ludong University Yantai China
| | - Linqing Wang
- School of Chemistry and Materials Science Ludong University Yantai China
| | - Jianhui Liu
- Yantai Center of Ecology and Environment Monitoring of Shandong Province Yantai China
| | - Xiguang Liu
- School of Chemistry and Materials Science Ludong University Yantai China
| |
Collapse
|
24
|
Hu L, Gao T, Deng Q, Xiong Y. Organoiodine-induced hydroxylation as well as enantioselective alkoxylation/hydroxylation of allylic alcohols via 1,2- aryl migration. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Pan HJ, Lin Y, Gao T, Lau KK, Feng W, Yang B, Zhao Y. Catalytic Diastereo- and Enantioconvergent Synthesis of Vicinal Diamines from Diols through Borrowing Hydrogen. Angew Chem Int Ed Engl 2021; 60:18599-18604. [PMID: 34125475 DOI: 10.1002/anie.202101517] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/13/2021] [Indexed: 01/23/2023]
Abstract
We present herein an unprecedented diastereoconvergent synthesis of vicinal diamines from diols through an economical, redox-neutral process. Under cooperative ruthenium and Lewis acid catalysis, readily available anilines and 1,2-diols (as a mixture of diastereomers) couple to forge two C-N bonds in an efficient and diastereoselective fashion. By identifying an effective chiral iridium/phosphoric acid co-catalyzed procedure, the first enantioconvergent double amination of racemic 1,2-diols has also been achieved, resulting in a practical access to highly valuable enantioenriched vicinal diamines.
Collapse
Affiliation(s)
- Hui-Jie Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Yamei Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Taotao Gao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Kai Kiat Lau
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Wei Feng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Binmiao Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
26
|
Pan H, Lin Y, Gao T, Lau KK, Feng W, Yang B, Zhao Y. Catalytic Diastereo‐ and Enantioconvergent Synthesis of Vicinal Diamines from Diols through Borrowing Hydrogen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hui‐Jie Pan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yamei Lin
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University 1 Wenyuan Road Nanjing 210023 P. R. China
| | - Taotao Gao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Kai Kiat Lau
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Wei Feng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Binmiao Yang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yu Zhao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| |
Collapse
|
27
|
Maria Faisca Phillips A, Pombeiro AJL. Recent Developments in Enantioselective Organocatalytic Cascade Reactions for the Construction of Halogenated Ring Systems. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ana Maria Faisca Phillips
- Centro de Química Estrutural Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
- Рeoples' Friendship University of Russia RUDN University) 6 Miklukho-Maklaya Street Moscow 117198 Russian Federation
| |
Collapse
|
28
|
Pan D, Luo G, Yu Y, Yang J, Luo Y. Computational insights into Ir(iii)-catalyzed allylic C-H amination of terminal alkenes: mechanism, regioselectivity, and catalytic activity. RSC Adv 2021; 11:19113-19120. [PMID: 35478613 PMCID: PMC9033584 DOI: 10.1039/d1ra03842g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/10/2023] Open
Abstract
Computational studies on Ir(iii)-catalyzed intermolecular branch-selective allylic C–H amination of terminal olefins with methyl dioxazolone have been carried out to investigate the mechanism, including the origins of regioselectivity and catalytic activity difference. The result suggests that the reaction proceeds through generation of active species, alkene coordination, allylic C–H activation, decarboxylation, migratory insertion, and protodemetalation. The presence of AgNTf2 could thermodynamically promote the formation of catalytically active species [Cp*Ir(OAc)]+. Both the weaker Ir–C(internal) bond and the closer interatomic distance of N⋯C(internal) in the key allyl-Ir(v)-nitrenoid intermediate make the migratory insertion into Ir–C(internal) bond easier than into the Ir–C(terminal) bond, leading to branch-selective allylic C–H amidation. The high energy barrier for allylic C–H activation in the Co system could account for the observed sluggishness, which is mainly ascribed to the weaker coordination capacity of alkenes to the triplet Cp*Co(OAc)+ and the deficient metal⋯H interaction to assist hydrogen transfer. DFT studies on Ir(iii)-catalyzed branch-selective allylic C–H amination of terminal olefins with methyl dioxazolone have been carried out to investigate the mechanism, including the origins of regioselectivity and catalytic activity difference.![]()
Collapse
Affiliation(s)
- Deng Pan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Yang Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Jimin Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China .,PetroChina Petrochemical Research Institute Beijing 102206 China
| |
Collapse
|
29
|
Sarkar S, Chatterjee R, Pal S, Majee A. Mild, Efficient and Metal‐Free Strategies for Direct Diamination of α, β‐Unsaturated Ketones Using Different Iodine Sources. ChemistrySelect 2021. [DOI: 10.1002/slct.202100910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Subhankar Sarkar
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Rana Chatterjee
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Satyajit Pal
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Adinath Majee
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|
30
|
Guo P, Han JF, Yuan GC, Chen L, Liao JB, Ye KY. Cobalt-Catalyzed Divergent Aminofluorination and Diamination of Styrenes with N-Fluorosulfonamides. Org Lett 2021; 23:4067-4071. [PMID: 33970648 DOI: 10.1021/acs.orglett.1c01308] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A cobalt-catalyzed aminofluorination reaction of styrenes with N-fluorosulfonamides serving as both the amination and fluorination agents has been developed. The switch of selectivity in this catalytic reaction from aminofluorination to diamination could be easily achieved by the addition of 1.0 equiv of PPh3. Both transformations tolerated a wide array of substrates under mild reaction conditions.
Collapse
Affiliation(s)
- Peng Guo
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Jun-Fa Han
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Guo-Cai Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Lin Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Jia-Bin Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
31
|
Dong M, Wang D, Tong X. PhI(OAc) 2-Mediated Dihalogenative Cyclization of 1,6-Enyne with Lithium Halide. Org Lett 2021; 23:3588-3592. [PMID: 33899488 DOI: 10.1021/acs.orglett.1c00987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dihalogenative cyclization of 1,6-enyne with the assistance of PhI(OAc)2 and lithium halide is presented. A plausible radical mechanism is proposed, which consists of addition of halogen radical to alkene, 5-exo-dig radical cyclization of enyne and halogenation via radical coupling. The alkenyl- and alkyl-halide groups in the resulted pyrrolidine products have been demonstrated to be facile handles for further transformations.
Collapse
Affiliation(s)
- Ming Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiaofeng Tong
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
32
|
Debnath S, Liang L, Lu M, Shi Y. Domino C-N Bond Formation via a Palladacycle with Diaziridinone. An Approach to Indolo[3,2- b]indoles. Org Lett 2021; 23:3237-3242. [PMID: 33886335 DOI: 10.1021/acs.orglett.1c00466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Palladium-catalyzed C-N bond formation is one of the widely used transformations for the synthesis of structurally diverse N-heterocycles. This work describes an efficient palladium-catalyzed multiple-C-N bond formation reaction for the synthesis of highly π-conjugated N-heterocycles, indolo[3,2-b]indoles with di-tert-butyldiaziridinone. The reaction likely proceeds through the initial formation of an indole-fused palladacycle by nucleophilic aminopalladation and subsequent bisamination to give indolo[3,2-b]indoles.
Collapse
Affiliation(s)
- Sudarshan Debnath
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Lingli Liang
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Mei Lu
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China.,Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
33
|
Zhang LW, Deng XJ, Zhang DX, Tian QQ, He W. Aminolactonization of Unactivated Alkenes Catalyzed by Aryl Iodine. J Org Chem 2021; 86:5152-5165. [PMID: 33760610 DOI: 10.1021/acs.joc.1c00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A one-step protocol of the aryl iodine-catalyzed aminolactonization of unactivated alkenes under oxidation conditions was first reported to efficiently construct diverse amino lactones in a short time using HNTs2 as the compatible nitrogen source. In addition, we investigated the influence of the reaction rate based on the structure of the iodoarene precatalyst, which revealed the selective adjustment effect on aminolactonization and oxylactonization. Finally, preliminary experiments verified the feasibility of asymmetric aminolactonization catalyzed by a chiral iodoarene precatalyst.
Collapse
Affiliation(s)
- Lu-Wen Zhang
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-Jun Deng
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Dong-Xu Zhang
- Department of Medicinal Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qin-Qin Tian
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wei He
- Department of Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
34
|
Zhou XY, Chen X, Liu HL. KI catalyzed C–H functionalization of acetone for the synthesis of 2-oxopropyl hetero-aromatic carboxylates. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1892762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Hai-Long Liu
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
35
|
Li HH, Li JQ, Zheng X, Huang PQ. Photoredox-Catalyzed Decarboxylative Cross-Coupling of α-Amino Acids with Nitrones. Org Lett 2021; 23:876-880. [PMID: 33433222 DOI: 10.1021/acs.orglett.0c04101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A decarboxylative cross-coupling reaction of α-amino acids with nitrones via visible-light-induced photoredox catalysis has been established for easy access to β-amino hydroxylamines and vicinal diamines with structural diversity, which is featured with simple operation, mild conditions, readily available α-amino acids, and a broad scope of nitrone substrates. The application of this protocol can furnish efficient synthetic strategies for some valuable vicinal diamine-containing molecules.
Collapse
Affiliation(s)
- Heng-Hui Li
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jia-Qi Li
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiao Zheng
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.,School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Pei-Qiang Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
36
|
Chen R, Liu B, Li W, Wang KK, Miao C, Li Z, Lv Y, Liu L. Synthesis of N-alkoxyphthalimide derivatives via PIDA-promoted cross dehydrogenative coupling reaction. RSC Adv 2021; 11:8051-8054. [PMID: 35423297 PMCID: PMC8695068 DOI: 10.1039/d1ra00375e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
A PIDA-promoted cross-dehydrogenative coupling reaction between N-hydroxyphthalimide (NHPI) and aryl ketones for efficient synthesis of N-alkoxyphthalimide products in moderate to good yields has been described. This methodology is distinguished by catalyst-free conditions, readily available starting materials, wide substrate scope and operational simplicity. In addition, a gram-scale reaction and synthetic transformation of the product into synthetically useful intermediates has been demonstrated. A cross dehydrogenative coupling reaction of aryl ketones with N-hydroxyphthalimide was realized. The reactions afforded a clean and facile access to diverse N-alkoxyphthalimide derivatives in high yields (up to 99%).![]()
Collapse
Affiliation(s)
- Rongxiang Chen
- School of Pharmacy
- Xinxiang University
- Xinxiang 453000
- P. R. China
| | - Bing Liu
- School of Chemistry and Materials Engineering
- Xinxiang University
- Xinxiang 453000
- P. R. China
| | - Wenbo Li
- School of Chemistry and Materials Engineering
- Xinxiang University
- Xinxiang 453000
- P. R. China
| | - Kai-Kai Wang
- School of Pharmacy
- Xinxiang University
- Xinxiang 453000
- P. R. China
| | - Changqing Miao
- School of Chemistry and Materials Engineering
- Xinxiang University
- Xinxiang 453000
- P. R. China
| | - Zhizhuang Li
- School of Chemistry and Materials Engineering
- Xinxiang University
- Xinxiang 453000
- P. R. China
| | - Yingjie Lv
- Xinxiang Tuoxin Pharmaceutical Company Limited
- Xinxiang 453000
- P. R. China
| | - Lantao Liu
- College of Chemistry and Chemical Engineering
- Shangqiu Normal University
- Shangqiu
- P. R. China
| |
Collapse
|
37
|
Fan Z, Wang Z, Shi R, Wang Y. Dirhodium( ii)-catalyzed diamination reaction via a free radical pathway. Org Chem Front 2021. [DOI: 10.1039/d1qo00894c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unlike C–N bond formation through the well-known dirhodium(ii)-nitrenoid pathway, dirhodium(ii)-catalyzed 1,2- and 1,3-diamination reactions are realized by a free radical mechanism.
Collapse
Affiliation(s)
- Zhiying Fan
- College of Chemistry, Sichuan University, Chengdu, 610041, P.R. China
| | - Zhifan Wang
- College of Chemistry, Sichuan University, Chengdu, 610041, P.R. China
| | - Ruoyi Shi
- College of Chemistry, Sichuan University, Chengdu, 610041, P.R. China
| | - Yuanhua Wang
- College of Chemistry, Sichuan University, Chengdu, 610041, P.R. China
| |
Collapse
|
38
|
Deng XJ, Liu HX, Zhang LW, Zhang GY, Yu ZX, He W. Iodoarene-Catalyzed Oxyamination of Unactivated Alkenes to Synthesize 5-Imino-2-Tetrahydrofuranyl Methanamine Derivatives. J Org Chem 2020; 86:235-253. [PMID: 33336571 DOI: 10.1021/acs.joc.0c02047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Reported here is the room-temperature metal-free iodoarene-catalyzed oxyamination of unactivated alkenes. In this process, the alkenes are difunctionalized by the oxygen atom of the amide group and the nitrogen in an exogenous HNTs2 molecule. This mild and open-air reaction provided an efficient synthesis to N-bistosyl-substituted 5-imino-2-tetrahydrofuranyl methanamine derivatives, which are important motifs in drug development and biological studies. Mechanistic study based on experiments and density functional theory calculations showed that this transformation proceeds via activation of the substrate alkene by an in situ generated cationic iodonium(III) intermediate, which is subsequently attacked by an oxygen atom (instead of nitrogen) of amides to form a five-membered ring intermediate. Finally, this intermediate undergoes an SN2 reaction by NTs2 as the nucleophile to give the oxygen and nitrogen difunctionalized 5-imino-2-tetrahydrofuranyl methanamine product. An asymmetric variant of the present alkene oxyamination using chiral iodoarenes as catalysts also gave promising results for some of the substrates.
Collapse
Affiliation(s)
- Xiao-Jun Deng
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Hui-Xia Liu
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Lu-Wen Zhang
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Guan-Yu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wei He
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
39
|
Vicinal difunctionalization of carbon-carbon double bond for the platform synthesis of trifluoroalkyl amines. Nat Commun 2020; 11:5924. [PMID: 33230122 PMCID: PMC7683743 DOI: 10.1038/s41467-020-19748-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Regioselective vicinal diamination of carbon-carbon double bonds with two different amines is a synthetic challenge under transition metal-free conditions, especially for the synthesis of trifluoromethylated amines. However, the synthesis of ethylene diamines and fluorinated amine compounds is demanded, especially in the pharmaceutical sector. Herein, we demonstrate that the controllable double nucleophilic functionalization of an activated alkene synthon, originated from a trifluoropropenyliodonium salt with two distinct nucleophiles, enables the selective synthesis of trifluoromethylated ethylene amines and diamines on broad scale with high efficiency under mild reaction conditions. Considering the chemical nature of the reactants, our synthetic approach brings forth an efficient methodology and provides versatile access to highly fluorinated amines.
Collapse
|
40
|
Ghosh MK, Rout N. Aryl‐Aryl Cross‐Coupling with Hypervalent Iodine Reagents: Aryl Group Transfer Reactions. ChemistrySelect 2020. [DOI: 10.1002/slct.202003396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Manoj Kumar Ghosh
- TCG Lifesciences Private Limited Block BN, Plot 7 Salt Lake city, Kolkata 700091 West Bengal India
| | - Nilendri Rout
- TCG Lifesciences Private Limited Block BN, Plot 7 Salt Lake city, Kolkata 700091 West Bengal India
| |
Collapse
|
41
|
Fujita M, Kobayashi F, Ide T, Egami H, Hamashima Y. Oxidative and Redox‐Neutral Approaches to Symmetrical Diamines and Diols by Single Electron Transfer/Hydrogen Atom Transfer Synergistic Catalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Masashi Fujita
- School of Pharmaceutical Sciences University of Shizuoka 52‐1 Yada, Suruga‐ku 422‐8526 Shizuoka Japan
| | - Fumihisa Kobayashi
- School of Pharmaceutical Sciences University of Shizuoka 52‐1 Yada, Suruga‐ku 422‐8526 Shizuoka Japan
| | - Takafumi Ide
- School of Pharmaceutical Sciences University of Shizuoka 52‐1 Yada, Suruga‐ku 422‐8526 Shizuoka Japan
| | - Hiromichi Egami
- School of Pharmaceutical Sciences University of Shizuoka 52‐1 Yada, Suruga‐ku 422‐8526 Shizuoka Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences University of Shizuoka 52‐1 Yada, Suruga‐ku 422‐8526 Shizuoka Japan
| |
Collapse
|
42
|
Makitalo CL, Yoshimura A, Rohde GT, Mironova IA, Yusubova RY, Yusubov MS, Zhdankin VV, Saito A. Imino‐λ
3
‐iodane and Catalytic Amount of I
2
‐Mediated Synthesis of
N
‐Allylsulfenamides via [2,3]‐Sigmatropic Rearrangement. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Cody L. Makitalo
- Department of Chemistry and Biochemistry University of Minnesota Duluth 55812 Minnesota USA
| | - Akira Yoshimura
- Department of Chemistry and Biochemistry University of Minnesota Duluth 55812 Minnesota USA
- Research School of Chemistry and Applied Biomedical Sciences The Tomsk Polytechnic University 634050 Tomsk Russia
| | | | - Irina A. Mironova
- Research School of Chemistry and Applied Biomedical Sciences The Tomsk Polytechnic University 634050 Tomsk Russia
| | - Rosa Y. Yusubova
- Research School of Chemistry and Applied Biomedical Sciences The Tomsk Polytechnic University 634050 Tomsk Russia
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences The Tomsk Polytechnic University 634050 Tomsk Russia
| | - Viktor V. Zhdankin
- Department of Chemistry and Biochemistry University of Minnesota Duluth 55812 Minnesota USA
| | - Akio Saito
- Division of Applied Chemistry Institute of Engineering Tokyo University of Agriculture and Technology 2‐23‐16 Naka‐cho 184‐8588 Koganei Tokyo Japan
| |
Collapse
|
43
|
Bal A, Maiti S, Mal P. Intermolecular C‐Arylation of 2‐Amidobiphenyls Overcoming Intramolecular N‐Arylation. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ankita Bal
- School of Chemical Sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda Odisha 752050 India
| | - Saikat Maiti
- School of Chemical Sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda Odisha 752050 India
| | - Prasenjit Mal
- School of Chemical Sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda Odisha 752050 India
| |
Collapse
|
44
|
Arava S, Santra SK, Pathe GK, Kapanaiah R, Szpilman AM. Direct Umpolung Morita–Baylis–Hillman like α‐Functionalization of Enones via Enolonium Species. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shlomy Arava
- Department of Chemical Sciences Ariel University Ramat Hagolan 65 Ariel Israel
| | - Sourav K. Santra
- Department of Chemical Sciences Ariel University Ramat Hagolan 65 Ariel Israel
| | - Gulab K. Pathe
- Department of Chemical Sciences Ariel University Ramat Hagolan 65 Ariel Israel
| | - Raja Kapanaiah
- Department of Chemical Sciences Ariel University Ramat Hagolan 65 Ariel Israel
| | - Alex M. Szpilman
- Department of Chemical Sciences Ariel University Ramat Hagolan 65 Ariel Israel
| |
Collapse
|
45
|
Arava S, Santra SK, Pathe GK, Kapanaiah R, Szpilman AM. Direct Umpolung Morita-Baylis-Hillman like α-Functionalization of Enones via Enolonium Species. Angew Chem Int Ed Engl 2020; 59:15171-15175. [PMID: 32394609 DOI: 10.1002/anie.202005286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Indexed: 12/13/2022]
Abstract
Herein we report on the umpolung of Morita-Baylis-Hillman type intermediates and application to the α-functionalization of enone C-H bonds. This reaction gives direct access to α-chloro-enones, 1,2-diketones and α-tosyloxy-enones. The latter are important intermediates for cross-coupling reaction and, to the best of our knowledge, cannot be made in a single step from enones in any other way. The proposed mechanism is supported by spectroscopic studies. The key initial step involves conjugate attack of an amine (DABCO or pyridine), likely assisted by hypervalent iodine acting as a Lewis acid leading to formation of an electrophilic β-ammonium-enolonium species. Nucleophilic attack by acetate, tosylate, or chloride anion is followed by base induced elimination of the ammonium species to give the noted products. Hydrolysis of α-acetoxy-enones lead to formation of 1,2-diketones. The α-tosyl-enones participate in Negishi coupling reactions under standard conditions.
Collapse
Affiliation(s)
- Shlomy Arava
- Department of Chemical Sciences, Ariel University, Ramat Hagolan 65, Ariel, Israel
| | - Sourav K Santra
- Department of Chemical Sciences, Ariel University, Ramat Hagolan 65, Ariel, Israel
| | - Gulab K Pathe
- Department of Chemical Sciences, Ariel University, Ramat Hagolan 65, Ariel, Israel
| | - Raja Kapanaiah
- Department of Chemical Sciences, Ariel University, Ramat Hagolan 65, Ariel, Israel
| | - Alex M Szpilman
- Department of Chemical Sciences, Ariel University, Ramat Hagolan 65, Ariel, Israel
| |
Collapse
|
46
|
Govaerts S, Angelini L, Hampton C, Malet‐Sanz L, Ruffoni A, Leonori D. Photoinduced Olefin Diamination with Alkylamines. Angew Chem Int Ed Engl 2020; 59:15021-15028. [PMID: 32432808 PMCID: PMC7497254 DOI: 10.1002/anie.202005652] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/19/2020] [Indexed: 11/07/2022]
Abstract
Vicinal diamines are ubiquitous materials in organic and medicinal chemistry. The direct coupling of olefins and amines would be an ideal approach to construct these motifs. However, alkene diamination remains a long-standing challenge in organic synthesis, especially when using two different amine components. We report a general strategy for the direct and selective assembly of vicinal 1,2-diamines using readily available olefin and amine building blocks. This mild and straightforward approach involves in situ formation and photoinduced activation of N-chloroamines to give aminium radicals that enable efficient alkene aminochlorination. Owing to the ambiphilic nature of the β-chloroamines produced, conversion into tetra-alkyl aziridinium ions was possible, thus enabling diamination by regioselective ring-opening with primary or secondary amines. This strategy streamlines the preparation of vicinal diamines from multistep sequences to a single chemical transformation.
Collapse
Affiliation(s)
- Sebastian Govaerts
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Lucrezia Angelini
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Charlotte Hampton
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Laia Malet‐Sanz
- Eli Lilly and Company LimitedErl Wood ManorWindleshamSurreyGU20 6PHUK
| | - Alessandro Ruffoni
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Daniele Leonori
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
47
|
|
48
|
Ren ZL, Cai S, Liu YY, Xie YQ, Yuan D, Lei M, He P, Wang L. C(sp2)–H Functionalization of Imidazole at the C2- and C4-Position via Palladium-Catalyzed Isocyanide Insertion Leading to Indeno[1,2-d]imidazole and Imidazo[1,2-a]indole Derivatives. J Org Chem 2020; 85:11014-11024. [DOI: 10.1021/acs.joc.0c01454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhi-Lin Ren
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Shuang Cai
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Ying-Ying Liu
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Yin-Qing Xie
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Ding Yuan
- School of Biology and Chemical Engineering, Panzhihua University, Panzhihua, Sichuan Province, 617000, P. R. of China
| | - Min Lei
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Ping He
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, P. R. of China
| | - Long Wang
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei Province, 443002, P. R. of China
| |
Collapse
|
49
|
Hu X, Shao Y, Xie H, Chen X, Chen F, Ke Z, Jiang H, Zeng W. Direct Carbon–Carbon σ Bond Amination of Unstrained Arylalkylketones. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02683] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xinwei Hu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Youxiang Shao
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Haisheng Xie
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fengjuan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
50
|
Hu K, Zhang Y, Zhou Z, Yang Y, Zha Z, Wang Z. Iodine-Mediated Electrochemical C(sp2)–H Amination: Switchable Synthesis of Indolines and Indoles. Org Lett 2020; 22:5773-5777. [DOI: 10.1021/acs.orglett.0c01821] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Kangfei Hu
- University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Yan Zhang
- University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Zhenghong Zhou
- University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Yu Yang
- University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Zhenggen Zha
- University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Science at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Science, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|