1
|
Scott C, Porteus R, Takeuchi S, Osaki T, Lee S. Electrophysiological Characterization of Monoolein-Fatty Acid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2293-2299. [PMID: 39865883 PMCID: PMC11803713 DOI: 10.1021/acs.langmuir.4c03814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Understanding the evolution of protocells, primitive compartments that distinguish self from nonself, is crucial for exploring the origin of life. Fatty acids and monoglycerides have been proposed as key components of protocell membranes due to their ability to self-assemble into bilayers and vesicles capable of nutrient exchange. In this study, we investigate the electrophysiological properties of planar bilayers composed of monoglyceride and fatty acid mixtures, using a droplet interface bilayer system. Three fatty acids with varying hydrocarbon chain lengths─oleic acid (C18), palmitoleic acid (C16), and myristoleic acid (C14)─in combination with monoolein (C18) are examined to evaluate the influence of chain length and composition on bilayer stability, thickness, and ion permeability. The results show that pure monoolein bilayers exhibit enhanced ion permeability compared to phospholipid bilayers, which are characteristic of modern cellular membranes. Furthermore, the incorporation of fatty acids into monoolein bilayers destabilizes the membrane structure and further increases ion permeability. We consider that this increased permeability is likely driven by three molecular characteristics. First, the wedge-like shape of monoolein may disrupt bilayer packing and induce transient pore formation. Second, the rapid flip-flop of fatty acids between bilayer leaflets likely facilitates ion transport. Third, the chain-length mismatch between monoolein and myristoleic acid further destabilizes the bilayer, promoting the formation of structural defects. These findings suggest that compositional motifs in monoglyceride-fatty acid bilayers may provide an alternative ion transport mechanism, such as the flip-flop of amphiphilic molecules, in early protocell membranes before the evolution of protein-based transporters.
Collapse
Affiliation(s)
- Caroline Scott
- Department
of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Riley Porteus
- Department
of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Shoji Takeuchi
- Artificial
Cell Membrane Systems Group, Kanagawa Institute
of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan
- Institute
of Industrial Science, The University of
Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
- Department
of Mechano-Informatics, Graduate School of Information Science and
Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Toshihisa Osaki
- Artificial
Cell Membrane Systems Group, Kanagawa Institute
of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan
- Institute
of Industrial Science, The University of
Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Sunghee Lee
- Department
of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
2
|
Gudyka J, Ceja-Vega J, Krmic M, Porteus R, Lee S. The Role of Lipid Intrinsic Curvature in the Droplet Interface Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11428-11435. [PMID: 38764431 PMCID: PMC11155247 DOI: 10.1021/acs.langmuir.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Model bilayers are constructed from lipids having different intrinsic curvatures using the droplet interface bilayer (DIB) method, and their static physicochemical properties are determined. Geometrical and tensiometric measurements are used to derive the free energy of formation (ΔF) of a two-droplet DIB relative to a pair of isolated aqueous droplets, each decorated with a phospholipid monolayer. The lipid molecules employed have different headgroup sizes but identical hydrophobic tail structure, and each is characterized by an intrinsic curvature value (c0) that increases in absolute value with decreasing size of headgroup. Mixtures of lipids at different ratios were also investigated. The role of curvature stress on the values of ΔF of the respective lipid bilayers in these model membranes is discussed and is illuminated by the observation of a decrement in ΔF that scales as a near linear function of c02. Overall, the results reveal an association that should prove useful in studies of ion channels and other membrane proteins embedded in model droplet bilayer systems that will impact the understanding of protein function in cellular membranes composed of lipids of high and low curvature.
Collapse
Affiliation(s)
- Jamie Gudyka
- Department of Chemistry and
Biochemistry, Iona University, New Rochelle, New York 10801, United States
| | - Jasmin Ceja-Vega
- Department of Chemistry and
Biochemistry, Iona University, New Rochelle, New York 10801, United States
| | - Michael Krmic
- Department of Chemistry and
Biochemistry, Iona University, New Rochelle, New York 10801, United States
| | - Riley Porteus
- Department of Chemistry and
Biochemistry, Iona University, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry and
Biochemistry, Iona University, New Rochelle, New York 10801, United States
| |
Collapse
|
3
|
Gudyka J, Ceja-Vega J, Ivanchenko K, Morocho Z, Panella M, Gamez Hernandez A, Clarke C, Perez E, Silverberg S, Lee S. Concentration-Dependent Effects of Curcumin on Membrane Permeability and Structure. ACS Pharmacol Transl Sci 2024; 7:1546-1556. [PMID: 38751632 PMCID: PMC11091966 DOI: 10.1021/acsptsci.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024]
Abstract
Growing evidence suggests that many bioactive molecules can nonspecifically modulate the physicochemical properties of membranes and influence the action of embedded membrane proteins. This study investigates the interactions of curcumin with protein-free model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and DOPC with cholesterol (4/1 mol ratio). The focus is on the capability of curcumin to modify membrane barrier properties such as water permeability assayed through the droplet interface bilayer (DIB) model membrane. For pure DOPC, our findings show a concentration-dependent biphasic effect: a reduction in water permeability is observed at low concentrations (up to 2 mol %), whereas at high concentrations of curcumin, water permeability increases. In the presence of cholesterol, we observed an overall reduction in water permeability. A combination of complementary experimental methods, including phase transition parameters studied by differential scanning calorimetry (DSC) and structural properties measured by attenuated total reflectance (ATR)-FTIR, provides a deeper understanding of concentration-dependent interactions of curcumin with DOPC bilayers in the absence and presence of cholesterol. Our experimental findings align with a molecular mechanism of curcumin's interaction with model membranes, wherein its effect is contingent on its concentration. At low concentrations, curcumin binds to the lipid-water interface through hydrogen bonding with the phosphate headgroup, thereby obstructing the transport of water molecules. Conversely, at high concentrations, curcumin permeates the acyl chain region, inducing packing disorders and demonstrating evidence of phase separation. Enhanced knowledge of the impact of curcumin on membranes, which, in turn, can affect protein function, is likely to be beneficial for the successful translation of curcumin into effective medicine.
Collapse
Affiliation(s)
- Jamie Gudyka
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jasmin Ceja-Vega
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Katherine Ivanchenko
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Zachary Morocho
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Micaela Panella
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alondra Gamez Hernandez
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Colleen Clarke
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Escarlin Perez
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Shakinah Silverberg
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
4
|
Gudyka J, Ceja-Vega J, Ivanchenko K, Perla W, Poust C, Gamez Hernandez A, Clarke C, Silverberg S, Perez E, Lee S. Differential Effects of Soy Isoflavones on the Biophysical Properties of Model Membranes. J Phys Chem B 2024; 128:2412-2424. [PMID: 38417149 PMCID: PMC10945484 DOI: 10.1021/acs.jpcb.3c08390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/01/2024]
Abstract
The effects that the main soy isoflavones, genistein and daidzein, have upon the biophysical properties of a model lipid bilayer composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or DOPC with cholesterol (4 to 1 mol ratio) have been investigated by transbilayer water permeability, differential scanning calorimetry, and confocal Raman microspectroscopy. Genistein is found to increase water permeability, decrease phase transition temperature, reduce enthalpy of transition, and induce packing disorder in the DOPC membrane with an increasing concentration. On the contrary, daidzein decreases water permeability and shows negligible impact on thermodynamic parameters and packing disorder at comparable concentrations. For a cholesterol-containing DOPC bilayer, both genistein and daidzein exhibit an overall less pronounced effect on transbilayer water permeability. Their respective differential abilities to modify the physical and structural properties of biomembranes with varying lipid compositions signify a complex and sensitive nature to isoflavone interactions, which depends on the initial state of bilayer packing and the differences in the molecular structures of these soy isoflavones, and provide insights in understanding the interactions of these molecules with cellular membranes.
Collapse
Affiliation(s)
- Jamie Gudyka
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jasmin Ceja-Vega
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Katherine Ivanchenko
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Wilber Perla
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Christopher Poust
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alondra Gamez Hernandez
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Colleen Clarke
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Shakinah Silverberg
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Escarlin Perez
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry and
Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
5
|
Krmic M, Perez E, Scollan P, Ivanchenko K, Gamez Hernandez A, Giancaspro J, Rosario J, Ceja-Vega J, Gudyka J, Porteus R, Lee S. Aspirin Interacts with Cholesterol-Containing Membranes in a pH-Dependent Manner. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16444-16456. [PMID: 37939382 PMCID: PMC10666536 DOI: 10.1021/acs.langmuir.3c02242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Aspirin has been used for broad therapeutic treatment, including secondary prevention of cardiovascular disease associated with increased cholesterol levels. Aspirin and other nonsteroidal anti-inflammatory drugs have been shown to interact with lipid membranes and change their biophysical properties. In this study, mixed lipid model bilayers made from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) or 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) comprising varying concentrations of cholesterol (10:1, 4:1, and 1:1 mole ratio of lipid:chol), prepared by the droplet interface bilayer method, were used to examine the effects of aspirin at various pH on transbilayer water permeability. The presence of aspirin increases the water permeability of POPC bilayers in a concentration-dependent manner, with a greater magnitude of increase at pH 3 compared to pH 7. In the presence of cholesterol, aspirin is similarly shown to increase water permeability; however, the extent of the increase depends on both the concentration of cholesterol and the pH, with the least pronounced enhancement in water permeability at high cholesterol levels at pH 7. A fusion of data from differential scanning calorimetry, confocal Raman microspectrophotometry, and interfacial tensiometric measurements demonstrates that aspirin can promote significant thermal, structural, and interfacial property perturbations in the mixed-lipid POPC or DOPC membranes containing cholesterol, indicating a disordering effect on the lipid membranes. Our findings suggest that aspirin fluidizes phosphocholine membranes in both cholesterol-free and cholesterol-enriched states and that the overall effect is greater when aspirin is in a neutral state. These results confer a deeper comprehension of the divergent effects of aspirin on biological membranes having heterogeneous compositions, under varying physiological pH and different cholesterol compositions, with implications for a better understanding of the gastrointestinal toxicity induced by the long term use of this important nonsteroidal anti-inflammatory molecule.
Collapse
Affiliation(s)
- Michael Krmic
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Escarlin Perez
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Patrick Scollan
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Katherine Ivanchenko
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alondra Gamez Hernandez
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Joseph Giancaspro
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Juan Rosario
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jasmin Ceja-Vega
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jamie Gudyka
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Riley Porteus
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry and Biochemistry, Iona University, 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
6
|
Ceja-Vega J, Perez E, Scollan P, Rosario J, Gamez Hernandez A, Ivanchenko K, Gudyka J, Lee S. Trans-Resveratrol Decreases Membrane Water Permeability: A Study of Cholesterol-Dependent Interactions. J Membr Biol 2022; 255:575-590. [PMID: 35748919 DOI: 10.1007/s00232-022-00250-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/28/2022] [Indexed: 11/27/2022]
Abstract
Resveratrol (RSV), a biologically active plant phenol, has been extensively investigated for cancer prevention and treatment due to its ability to regulate intracellular targets and signaling pathways which affect cell growth and metastasis. The non-specific interactions between RSV and cell membranes can modulate physical properties of membranes, which in turn can affect the conformation of proteins and perturb membrane-hosted biological functions. This study examines non-specific interactions of RSV with model membranes having varying concentrations of cholesterol (Chol), mimicking normal and cancerous cells. The perturbation of the model membrane by RSV is sensed by changes in water permeability parameters, using Droplet Interface Bilayer (DIB) models, thermotropic properties from Differential Scanning Calorimetry, and structural properties from confocal Raman spectroscopy, all of which are techniques not complicated by the use of probes which may themselves perturb the membrane. The nature and extent of interactions greatly depend on the presence and absence of Chol as well as the concentration of RSV. Our results indicate that the presence of RSV decreases water permeability of lipid membranes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), indicating a capability for RSV in stiffening fluidic membranes. When Chol is present, however, (at 4:1 and 2:1 mol ratio DOPC to cholesterol), the addition of RSV has no significant effect upon the water permeability. DSC thermograms show that RSV interacts with DOPC and DOPC/Chol bilayers and influences their thermotropic phase behavior in a concentration-dependent manner, by decreasing the main phase transition temperature and enthalpy, with a phase separation shown at the higher concentrations of RSV. Raman spectroscopic studies indicate an ordering effect of RSV on DOPC supported bilayer, with a lesser extent of ordering in the presence of Chol. Combined results from these investigations highlight a differential effect of RSV on Chol-free and Chol-enriched membranes, respectively, which results constitute a bellwether for increased understanding and effective use of resveratrol in disease therapy including cancer.
Collapse
Affiliation(s)
- Jasmin Ceja-Vega
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, NY, 10801, USA
| | - Escarlin Perez
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, NY, 10801, USA
| | - Patrick Scollan
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, NY, 10801, USA
| | - Juan Rosario
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, NY, 10801, USA
| | - Alondra Gamez Hernandez
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, NY, 10801, USA
| | - Katherine Ivanchenko
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, NY, 10801, USA
| | - Jamie Gudyka
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, NY, 10801, USA
| | - Sunghee Lee
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, NY, 10801, USA.
| |
Collapse
|
7
|
Huang Y, Fuller G, Chandran Suja V. Physicochemical characteristics of droplet interface bilayers. Adv Colloid Interface Sci 2022; 304:102666. [PMID: 35429720 DOI: 10.1016/j.cis.2022.102666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/01/2022]
Abstract
Droplet interface bilayer (DIB) is a lipid bilayer formed when two lipid monolayer-coated aqueous droplets are brought in contact within an oil phase. DIBs, especially post functionalization, are a facile model system to study the biophysics of the cell membrane. Continued advances in enhancing and functionalizing DIBs to be a faithful cell membrane mimetic requires a deep understanding of the physicochemical characteristics of droplet interface bilayers. In this review, we provide a comprehensive overview of the current scientific understanding of DIB characteristics starting with the key experimental frameworks for DIB generation, visualization and functionalization. Subsequently we report experimentally measured physical, electrical and transport characteristics of DIBs across physiologically relevant lipids. Advances in simulations and mathematical modelling of DIBs are also discussed, with an emphasis on revealing principles governing the key physicochemical characteristics. Finally, we conclude the review with important outstanding questions in the field.
Collapse
|
8
|
Perez E, Ceja-Vega J, Krmic M, Gamez Hernandez A, Gudyka J, Porteus R, Lee S. Differential Interaction of Cannabidiol with Biomembranes Dependent on Cholesterol Concentration. ACS Chem Neurosci 2022; 13:1046-1054. [PMID: 35298887 DOI: 10.1021/acschemneuro.2c00040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cannabidiol (CBD), the major nonpsychoactive component of plant-derived cannabinoids, has been reported to have a broad range of potential beneficial pharmacological effects on the central nervous system (CNS). In this study, the droplet interface bilayer, a model cell membrane, is used to examine the effects of CBD on passive water permeability, a fundamental membrane biophysical property. The presence of CBD decreases the water permeability of model lipid membranes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and at low concentrations of cholesterol (Chol) (20 mol %) in DOPC, whereas when higher concentrations of Chol are present (33 mol %), CBD has an opposing effect, increasing water permeability. The diametric effect in water permeability change upon addition of CBD to Chol-low and Chol-high bilayers signifies a variant interaction of CBD, depending on the initial state of bilayer packing and fluidity. Additionally, differential scanning calorimetry studies provide evidence that there are selective changes in thermotropic behavior for CBD with DOPC and with DOPC/Chol membranes, respectively, supportive of these varying membrane interactions of CBD dependent upon cholesterol. The intriguing ability of CBD to sensitively respond to membrane Chol concentrations in modifying physical properties highlights the significant impact that CBD can have on heterogeneous biomembranes including those of the CNS, the neurons of which are enriched in Chol to a point where up to a quarter of the body's total Chol is in the brain, and defective brain Chol homeostasis is implicated in neurodegenerative diseases.
Collapse
Affiliation(s)
- Escarlin Perez
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jasmin Ceja-Vega
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Michael Krmic
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alondra Gamez Hernandez
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Jamie Gudyka
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Riley Porteus
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry and Biochemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
9
|
Thakur S, Dasmahapatra AK, Bandyopadhyay D. Functional liquid droplets for analyte sensing and energy harvesting. Adv Colloid Interface Sci 2021; 294:102453. [PMID: 34120038 DOI: 10.1016/j.cis.2021.102453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Over the past century, rapid miniaturization of technologies has helped in the development of efficient, flexible, portable, robust, and compact applications with minimal wastage of materials. In this direction, of late, the usage of mesoscale liquid droplets has emerged as an alternative platform because of the following advantages: (i) a droplet is incompressible and at the same time deformable, (ii) interfacial area of a spherical droplet is minimum for a given amount of mass; and (iii) a droplet interface allows facile mass, momentum, and energy transfer. Subsequently, such attributes have aided towards the design of diverse droplet-based microfluidic technologies. For example, the microdroplets have been utilized as micro-reactors, colorimetric or electrochemical (EC) sensors, drug-delivery vehicles, and energy harvesters. Further, a number of recently reported lab-on-a-chip technologies exploit the motility, storage, and mixing capacities of the microdroplets. In view of this background, the review initiates discussion by highlighting the different attributes of the microdroplets such as size, shape, surface to volume ratio, wettability, and contact line. Thereafter, the effects of the surface or body forces on the properties of the droplets have been elaborated. Finally, the different aspects of such liquid droplet systems towards technological adaptations in health care, sensing, and energy harvesting have been presented. The review concludes with a tight summary on the potential avenues for further developments.
Collapse
Affiliation(s)
- Siddharth Thakur
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dipankar Bandyopadhyay
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
10
|
Wood M, Morales M, Miller E, Braziel S, Giancaspro J, Scollan P, Rosario J, Gayapa A, Krmic M, Lee S. Ibuprofen and the Phosphatidylcholine Bilayer: Membrane Water Permeability in the Presence and Absence of Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4468-4480. [PMID: 33826350 DOI: 10.1021/acs.langmuir.0c03638] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The interactions between drugs and cell membranes can modulate the structural and physical properties of membranes. The resultant perturbations of the membrane integrity may affect the conformation of the proteins inserted within the membrane, disturbing the membrane-hosted biological functions. In this study, the droplet interface bilayer (DIB), a model cell membrane, is used to examine the effects of ibuprofen, a nonsteroidal anti-inflammatory drug (NSAID), on transbilayer water permeability, which is a fundamental membrane biophysical property. Our results indicate that the presence of neutral ibuprofen (pH 3) increases the water permeability of the lipid membranes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). When cholesterol is present with the DOPC, however, the water permeability is not influenced by addition of ibuprofen, regardless of the cholesterol content in DOPC. Given the fact that cholesterol is generally considered to impact packing in the hydrocarbon chain regions, our findings suggest that a potential competition between opposing effects of ibuprofen molecules and cholesterol on the hydrocarbon core environment of the phospholipid assembly may influence the overall water transport phenomena. Results from confocal Raman microspectroscopy and interfacial tensiometry show that ibuprofen molecules induce substantial structural and dynamic changes in the DOPC lipid bilayer. These results, demonstrating that the presence of ibuprofen increases the water permeability of pure DOPC but not that of DOPC-cholesterol mixtures, provide insight into the differential effect of a representative NSAID on heterogeneous biological membranes, depending upon the local composition and structure, results which will signal increased understanding of the gastrointestinal damage and toxicity induced by these molecules.
Collapse
Affiliation(s)
- Megan Wood
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Michael Morales
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Elizabeth Miller
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Samuel Braziel
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Joseph Giancaspro
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Patrick Scollan
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Juan Rosario
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Alyssa Gayapa
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Michael Krmic
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| | - Sunghee Lee
- Department of Chemistry, Iona College, 715 North Avenue, New Rochelle, New York 10801, United States
| |
Collapse
|
11
|
Foley S, Miller E, Braziel S, Lee S. Molecular organization in mixed SOPC and SDPC model membranes: Water permeability studies of polyunsaturated lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183365. [DOI: 10.1016/j.bbamem.2020.183365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022]
|
12
|
Huang F, Duan R, Zhou Z, Vázquez-González M, Xia F, Willner I. Near-infrared light-activated membrane fusion for cancer cell therapeutic applications. Chem Sci 2020; 11:5592-5600. [PMID: 32874503 PMCID: PMC7441577 DOI: 10.1039/d0sc00863j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The spatiotemporal stimulation of liposome-liposome or liposome-membrane fusion processes attracts growing interest as a means to mimic cell-cell interactions in nature and for using these processes for biomedical applications. We report the use of o-nitrobenzyl phosphate functionalized-cholesterol tethered nucleic acid-modified liposomes as functional photoresponsive units for inducing, by NIR-irradiation, spatiotemporal liposome-liposome or liposome-membrane fusion processes. The liposomes are loaded with upconversion nanoparticles (UCNPs) and their NIR irradiation (λ = 980 nm) yields luminescence at λ = 365 nm, providing a localized light-source to deprotect the o-nitrobenzyl phosphate groups and resulting in the fragmentation of the nucleic acid structures. In one system, the NIR-triggered fusion of two liposomes, L1 and L2, is exemplified. Liposome L1 is loaded with UCNPs and Tb3+ ions, and the liposome boundary is functionalized with a cholesterol-tethered, o-nitrobenzyl phosphate caged hairpin nucleic acid structure. Liposome L2 is loaded with 2,6-pyridinedicarboxylic acid, DPA, and its boundary is modified with a cholesterol-tethered nucleic acid, complementary to a part of the caged hairpin, associated with L1. NIR-irradiation of the L1/L2 mixture resulted in the photocleavage of the hairpin structure, associated with L1, and the resulting fragmented nucleic acid associated with L1 hybridized with the nucleic acid linked to L2, leading to the fusion of the two liposomes. The fusion process was followed by dynamic light scattering, and by monitoring the fluorescence of the Tb3+-DPA complex generated upon the fusion of the liposomes and their exchange of contents (fusion efficiency 30%). In a second system, the fusion of the liposomes L1, loaded with UCNPs and doxorubicin (DOX), with HeLa cancer cells functionalized with nucleic acid tethers, complementary to the hairpin units associated with the boundary of L1, and linked to the MUC-1 receptor sites associated with the HeLa cells, through a MUC-1 aptamer unit is exemplified. The effect of DOX-loaded L1/HeLa cell fusion on the cytotoxicity towards HeLa cells is addressed. The NIR UCNP-stimulated cleavage of the o-nitrobenzyl phosphate caged hairpin units associated with L1 leads to the fragmentation of the hairpin units and the resulting nucleic acid tethers hybridize with the nucleic acid-modified HeLa cells, resulting in the liposome-HeLa cell fusion and the release of DOX into the HeLa cells. Selective spatiotemporal cytotoxicity towards HeLa cells is demonstrated (ca. 40% cell killing within two days). The study presents a comprehensive stepwise set of experiments directed towards the development of NIR-driven liposome-liposome or liposome-membrane fusion processes.
Collapse
Affiliation(s)
- Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education , Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China . ;
| | - Ruilin Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education , Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China . ;
| | - Zhixin Zhou
- Institute of Chemistry , Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel .
| | - Margarita Vázquez-González
- Institute of Chemistry , Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel .
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education , Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China . ;
| | - Itamar Willner
- Institute of Chemistry , Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel .
| |
Collapse
|