1
|
Kariuki R, Bryant SJ, Shepherd TP, Meftahi N, Bryant G, Conn CE, Christofferson AJ, Elbourne A. Single-particle adsorption of ultra-small gold nanoparticles at the biomembrane phase boundary. Colloids Surf B Biointerfaces 2025; 253:114734. [PMID: 40318394 DOI: 10.1016/j.colsurfb.2025.114734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/12/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Nanomaterials are revolutionizing biomedical research by enabling the development of novel therapies, with applications ranging from drug delivery and diagnostics to the modulation of specific biological processes. Current research focuses on tasks such as enhancing cellular uptake of materials while preserving their functionality. However, the mechanisms governing interactions between nanomaterials and biological systems-particularly cellular membranes-remain challenging to elucidate due to the complex, dynamic nature of the lipid bilayer environment. This complexity arises from factors such as coexisting lipid domains (conserved regions of lipids) or lipid rafts, as well as cellular behaviors that induce state changes. The heterogeneous membrane landscape may offer unique adsorption properties and other functional effects, making it crucial to understand these interactions for greater biological control in nanotherapeutics. In this work, we systematically expose a phase-separated phospholipid-supported lipid bilayer (SLB)-specifically, a fluid-gel DOPC:DPPC bilayer-to low concentrations of citrate-capped 5 nm gold nanoparticles (AuNPs) to observe the adsorption process of individual AuNPs at the molecular scale. Using atomic force microscopy (AFM), we experimentally detect the adsorption of some AuNPs at the phase boundary. Complementary molecular dynamics (MD) simulations further elucidate the mechanism of single AuNP adsorption at lipid phase boundaries. Our findings indicate that the AuNP preferentially incorporates into the fluid-phase DOPC lipids while maintaining partial association with the gel-phase DPPC lipids due to diffusion effects. During adsorption, the AuNP disrupts lipid organization by increasing lateral lipid mixing across the phase boundary. This disruption to lipid molecular ordering is further evident upon AuNP incorporation into the bilayer. The ability to modulate the spatial organization and structure of lipid molecules has significant implications for therapeutics that leverage lipid diffusion pathways for alternative drug delivery mechanisms or to induce specific lipid behaviors.
Collapse
Affiliation(s)
- Rashad Kariuki
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Saffron J Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Tilly P Shepherd
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Nastaran Meftahi
- Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne, VIC Australia
| | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Andrew J Christofferson
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia; ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia.
| | - Aaron Elbourne
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
2
|
Swindell WR, Bojanowski K, Quijas G, Chaudhuri RK. A Novel Butyrate Derivative, Zinc Dibutyroyllysinate, Blunts Microphthalmia-Associated Transcription Factor Expression and Up-Regulates Retinol and Differentiation Pathway mRNAs in a Full-Thickness Human Skin Model. Int J Mol Sci 2025; 26:2442. [PMID: 40141086 PMCID: PMC11942002 DOI: 10.3390/ijms26062442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Lysine, butyric acid, and zinc play important roles in skin homeostasis, which involves aging, inflammation, and prevention of skin barrier disruption. This bioactivity spectrum is not replicated by any one topical compound currently in use. Our purpose in this study was to characterize a novel compound, zinc dibutyroyllysinate (ZDL), consisting of zinc with lysine and butyric acid moieties. We used RNA-seq to evaluate its effect on gene expression in a full-thickness skin model. We show that lysine alone has minimal effects on gene expression, whereas ZDL had greater transcriptional bioactivity. The effects of ZDL included an increased expression of genes promoting epidermal differentiation and retinol metabolism, along with a decreased expression of microphthalmia-associated transcription factor (MITF) and other melanogenesis genes. These effects were not replicated by an alternative salt compound (i.e., calcium dibutyroyllysinate). ZDL additionally led to a dose-dependent increase in skin fibroblast extracellular matrix proteins, including collagen I, collagen IV, and prolidase. Loss of melanin secretion was also seen in ZDL-treated melanocytes. These results provide an initial characterization of ZDL as a novel topical agent. Our findings support a rationale for the development of ZDL as a skincare ingredient, with potential applications for diverse conditions, involving melanocyte hyperactivity, pigmentation, inflammation, or aging.
Collapse
Affiliation(s)
- William R. Swindell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Geovani Quijas
- Sunny BioDiscovery Inc., Santa Paula, CA 93060, USA; (K.B.); (G.Q.)
| | | |
Collapse
|
3
|
Mayorga LS, Mascotti ML, Bruininks BMH, Masone D. Confinement Induces Morphological and Topological Transitions in Multivesicles. ACS NANO 2025; 19:4515-4527. [PMID: 39838717 DOI: 10.1021/acsnano.4c14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The study of self-assembly in confined spaces has gained significant attention among amphiphilic superstructures and colloidal design. The additional complexity introduced by interactions between contents and their containers, along with the effects of shape and lipid mixing, makes multivesicular bodies an interesting subject of study. Despite its promising applications in biomedicine, such as drug delivery and biomimetic materials, much remains unexplored. Here we investigate the effects of confinement on vesicles with varying lipid tail lengths. We first analyze the morphological changes of single spherical vesicles undergoing dehydration, which leads to a prolate-to-oblate transition. Our findings reveal that reductions in water content induce changes of shape while minimally affecting the surface area needed to maintain the hydration layer of lipid phosphate groups. Additionally, using extensive coarse-grained molecular dynamics simulations, we explore how vesicles confined within other vesicles evolve through topological changes into unexpected structures, mainly influenced by the lipid hydrocarbon lengths. Our results highlight the interplay between confinement, curvature-induced lipid sorting, and lipid-mixing entropy, leading to exquisitely self-assembled superstructures.
Collapse
Affiliation(s)
- Luis S Mayorga
- Instituto de Histología y Embriología de Mendoza (IHEM)─Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| | - Maria L Mascotti
- Instituto de Histología y Embriología de Mendoza (IHEM)─Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| | - Bart M H Bruininks
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9712 Groningen, The Netherlands
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM)─Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| |
Collapse
|
4
|
Zhang N, Song J, Han Y. Research Progress of Phospholipid Vesicles in Biological Field. Biomolecules 2024; 14:1628. [PMID: 39766335 PMCID: PMC11726895 DOI: 10.3390/biom14121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Due to their high biocompatibility, biodegradability, and facile surface functionalization, phospholipid vesicles as carriers have garnered significant attention in the realm of disease diagnosis and treatment. On the one hand, phospholipid vesicles can function as probes for the detection of various diseases by encapsulating nanoparticles, thereby enabling the precise localization of pathological changes and the monitoring of disease progression. On the other hand, phospholipid vesicles possess the capability to selectively target and deliver therapeutic agents, including drug molecules, genes and immune modulators, to affected sites, thereby enhancing the sustained release of these agents and improving therapeutic efficacy. Recent advancements in nanotechnology have led to an increased focus on the application of phospholipid vesicles in drug delivery, biological detection, gene therapy, and cell mimics. This review aims to provide a concise overview of the structure, characteristics, and preparation techniques of phospholipid vesicles of varying sizes. Furthermore, we will summarize the latest research developments regarding their use as nanomedicines and gene carriers in disease treatment. Additionally, we will elucidate the potential of phospholipid vesicles in facilitating the internalization, controlled release, and targeted delivery of therapeutic substrates. Through this review, we aspire to enhance the understanding of the evolution of phospholipid vesicles within the biological field, outline prospective research, and address the forthcoming challenges associated with phospholipid vesicles in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Na Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
| | - Jie Song
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
| | - Yuchun Han
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Agrawal S, Singh GK, Tiwari S. Focused starvation of tumor cells using glucose oxidase: A comprehensive review. Int J Biol Macromol 2024; 281:136444. [PMID: 39389487 DOI: 10.1016/j.ijbiomac.2024.136444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Starvation therapy targets the high metabolic demand of tumor cells. It primarily leans over the consumption of intracellular glucose and simultaneous blockade of alternative metabolic pathways. The strategy involves the use of glucose oxidase (GOx) for catalyzing the conversion of glucose into gluconic acid and hydrogen peroxide. Under these conditions, metabolic re-programming of tumor cells enables the utilization of substrates such as amino acids, fatty acids and lipids. This can be overcome by co-administration of chemo-, photo- and immuno-therapeutics together with glucose oxidase. Targeted delivery of glucose oxidase at tumor site can be enabled with the use of nanoformulations. In this review, we highlight that the outcomes of starvation therapy can be improved using rationally developed nano-formulations. It is possible to load synergistically acting bioactives in these formulations and deliver in site-specific manner and hence achieve the elimination of tumors cells with greater efficacy.
Collapse
Affiliation(s)
- Shivanshu Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Gireesh K Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya 824236, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India.
| |
Collapse
|
6
|
Baba B, Ceylani T, Gurbanov R, Acikgoz E, Keskin S, Allahverdi H, Samgane G, Tombuloglu H, Teker HT. Promoting longevity in aged liver through NLRP3 inflammasome inhibition using tauroursodeoxycholic acid (TUDCA) and SCD probiotics. Arch Gerontol Geriatr 2024; 125:105517. [PMID: 38851091 DOI: 10.1016/j.archger.2024.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
This investigation explores the combined influence of SCD Probiotics and tauroursodeoxycholic acid (TUDCA) on liver health in elderly male Sprague-Dawley rats. Through the administration of intravenous TUDCA (300 mg/kg) and oral SCD Probiotics (3 mL at 1 × 10^8 CFU) daily for one week, this study evaluates the biomolecular composition, histopathological alterations, and inflammasome activity in the liver. Analytical methods encompassed ATR-FTIR spectroscopy integrated with machine learning for the assessment of biomolecular structures, RT-qPCR for quantifying inflammasome markers (NLRP3, ASC, Caspase-1, IL18, IL1β), and histological examinations to assess liver pathology. The findings reveal that TUDCA prominently enhanced lipid metabolism by reducing cholesterol esters, while SCD Probiotics modulated both lipid and protein profiles, notably affecting fatty acid chain lengths and protein configurations. Histological analysis showed significant reductions in cellular degeneration, lymphatic infiltration, and hepatic fibrosis. Furthermore, the study noted a decrease in the immunoreactivity for NLRP3 and ASC, suggesting suppressed inflammasome activity. While SCD Probiotics reduced the expression of certain inflammasome-related genes, they also paradoxically increased AST and LDH levels. Conversely, an exclusive elevation in albumin levels was observed in the group treated with SCD Probiotics, implying a protective role against liver damage. These results underscore the therapeutic potential of TUDCA and SCD Probiotics for managing age-associated liver disorders, illustrating their individual and synergistic effects on liver health and pathology. This study provides insights into the complex interactions of these agents, advocating for customized therapeutic approaches to combat liver fibrosis, enhance liver functionality, and decrease inflammation in aging populations.
Collapse
Affiliation(s)
- Burcu Baba
- Department of Medical Biochemistry, Yüksek İhtisas University, Ankara, Turkey
| | - Taha Ceylani
- Department of Molecular Biology and Genetics, Muş Alparslan University Muş, Turkey; Department of Food Quality Control and Analysis, Muş Alparslan University Muş, Turkey.
| | - Rafig Gurbanov
- Department of Bioengineering, Bilecik Şeyh Edebali University Bilecik, Turkey; Central Research Laboratory, Bilecik Şeyh Edebali University Bilecik, Turkey
| | - Eda Acikgoz
- Department of Neuroscience, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey.
| | - Seda Keskin
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Hüseyin Allahverdi
- Department of Molecular Biology and Genetics, Muş Alparslan University Muş, Turkey
| | - Gizem Samgane
- Department of Bioengineering, Bilecik Şeyh Edebali University Bilecik, Turkey
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hikmet Taner Teker
- Department of Medical Biology and Genetics, Ankara Medipol University Ankara, Turkey.
| |
Collapse
|
7
|
Vergoz D, Schaumann A, Schmitz I, Afonso C, Dé E, Loutelier-Bourhis C, Alexandre S. Lipidome of Acinetobacter baumannii antibiotic persister cells. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159539. [PMID: 39067686 DOI: 10.1016/j.bbalip.2024.159539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Persister cells constitute a bacterial subpopulation able to survive to high concentrations of antibiotics. This phenotype is temporary and reversible, and thus could be involved in the recurrence of infections and emergence of antibiotic resistance. To better understand how persister cells survive to such high antibiotic concentration, we examined changes in their lipid composition. We thus compared the lipidome of Acinetobacter baumannii ATCC 19606T persister cells formed under ciprofloxacin treatment with the lipidome of control cells grown without antibiotic. Using matrix assisted laser desorption ionisation-Fourier transform ion cyclotron resonance mass spectrometry, we observed a higher abundance of short chains and secondary chains without hydroxylation for lipid A in persister cells. Using liquid chromatography-tandem mass spectrometry, we found that persister cells produced particular phosphatidylglycerols, as LPAGPE and PAGPE, but also lipids with particular acyl chains containing additional hydroxyl group or uncommon di-unsaturation on C18 and C16 acyl chains. In order to determine the impact of these multiple lipidome modifications on membrane fluidity, fluorescence anisotropy assays were performed. They showed an increase of rigidity for the membrane of persister cells, inducing likely a decrease membrane permeability to protect cells during dormancy. Finally, we highlighted that A. baumannii persister cells also produced particular wax esters, composed of two fatty acids and a fatty diol. These uncommon storage lipids are key metabolites allowing a rapid bacterial regrow when antibiotic pressure disappears. These overall changes in persister lipidome may constitute new therapeutic targets to combat these particular dormant cells.
Collapse
Affiliation(s)
- Delphine Vergoz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France; Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Annick Schaumann
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France
| | - Isabelle Schmitz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France; Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Carlos Afonso
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Emmanuelle Dé
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France
| | - Corinne Loutelier-Bourhis
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France
| | - Stéphane Alexandre
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Polymers, Biopolymers, Surfaces Lab., F-76000 Rouen, France.
| |
Collapse
|
8
|
Myers MN, Chirivi M, Gandy JC, Tam J, Zachut M, Contreras GA. Lipolysis pathways modulate lipid mediator release and endocannabinoid system signaling in dairy cows' adipocytes. J Anim Sci Biotechnol 2024; 15:103. [PMID: 39095900 PMCID: PMC11297689 DOI: 10.1186/s40104-024-01062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND As cows transition from pregnancy to lactation, free fatty acids (FFA) are mobilized from adipose tissues (AT) through lipolysis to counter energy deficits. In clinically healthy cows, lipolysis intensity is reduced throughout lactation; however, if FFA release exceeds tissue demands or the liver's metabolic capacity, lipid byproducts accumulate, increasing cows' risk of metabolic and infectious disease. Endocannabinoids (eCBs) and their congeners, N-acylethanolamines (NAEs), are lipid-based compounds that modulate metabolism and inflammation. Their synthesis and release depend upon the availability of FFA precursors and the abundance of synthesizing and degrading enzymes and transporters. Therefore, we hypothesized that eCB production and transcription of endocannabinoid system components are modulated by lipolysis pathways in adipocytes. To test this hypothesis, we stimulated canonical (isoproterenol, 1 µmol/L; ISO) and inflammatory (lipopolysaccharide, 1 µg/mL; LPS) lipolysis pathways in adipocytes isolated from the AT of 5 Holstein dairy cows. Following, we assessed lipolysis intensity, adipocytes' release of eCBs, and transcription of endocannabinoid system components. RESULTS We found that ISO and LPS stimulated lipolysis at comparable intensities. Exposure to either treatment tended to elevate the release of eCBs and NAEs by cultured adipocytes; however, specific eCBs and NAEs and the transcriptional profiles differed by treatment. On one hand, ISO enhanced adipocytes' release of 2-arachidonoylglycerol (2-AG) but reduced NAE production. Notably, ISO enhanced the cells' expression of enzymes associated with 2-AG biosynthesis (INPP5F, GDPD5, GPAT4), transport (CD36), and adipogenesis (PPARG). Conversely, LPS enhanced adipocytes' synthesis and release of N-arachidonoylethanolamide (AEA). This change coincided with enhanced transcription of the NAE-biosynthesizing enzyme, PTPN22, and adipocytes' transcription of genes related to eCB degradation (PTGS2, MGLL, CYP27B1). Furthermore, LPS enhanced adipocytes' transcription of eCB and NAE transporters (HSPA1A, SCP2) and the expression of the anti-adipogenic ion channel, TRPV3. CONCLUSIONS Our data provide evidence for distinct modulatory roles of canonical and inflammatory lipolysis pathways over eCB release and transcriptional regulation of biosynthesis, degradation, transport, and ECS signaling in cows' adipocytes. Based on our findings, we conclude that, within adipocytes, eCB production and ECS component expression are, at least in part, mediated by lipolysis in a pathway-dependent manner. These findings contribute to a deeper understanding of the molecular mechanisms underlying metabolic regulation in dairy cows' AT, with potential implications for prevention and treatment of inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Madison N Myers
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Miguel Chirivi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Jeff C Gandy
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112001, Israel
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization Volcani Institute, Rishon LeZion, 7505101, Israel
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Mayorga LS, Masone D. The Secret Ballet Inside Multivesicular Bodies. ACS NANO 2024; 18:15651-15660. [PMID: 38830824 DOI: 10.1021/acsnano.4c01590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Lipid bilayers possess the capacity for self-assembly due to the amphipathic nature of lipid molecules, which have both hydrophobic and hydrophilic regions. When confined, lipid bilayers exhibit astonishing versatility in their forms, adopting diverse shapes that are challenging to observe through experimental means. Exploiting this adaptability, lipid structures motivate the development of bio-inspired mechanomaterials and integrated nanobio-interfaces that could seamlessly merge with biological entities, ultimately bridging the gap between synthetic and biological systems. In this work, we demonstrate how, in numerical simulations of multivesicular bodies, a fascinating evolution unfolds from an initial semblance of order toward states of higher entropy over time. We observe dynamic rearrangements in confined vesicles that reveal unexpected limit shapes of distinct geometric patterns. We identify five structures as the basic building blocks that systematically repeat under various conditions of size and composition. Moreover, we observe more complex and less frequent shapes that emerge in confined spaces. Our results provide insights into the dynamics of multivesicular systems, offering a richer understanding of how confined lipid bodies spontaneously self-organize.
Collapse
Affiliation(s)
- Luis S Mayorga
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| |
Collapse
|
10
|
Bahammou D, Recorbet G, Mamode Cassim A, Robert F, Balliau T, Van Delft P, Haddad Y, Mongrand S, Fouillen L, Simon-Plas F. A combined lipidomic and proteomic profiling of Arabidopsis thaliana plasma membrane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38761101 DOI: 10.1111/tpj.16810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/20/2024]
Abstract
The plant plasma membrane (PM) plays a key role in perception of environmental signals, and set-up of adaptive responses. An exhaustive and quantitative description of the whole set of lipids and proteins constituting the PM is necessary to understand how these components allow to fulfill such essential physiological functions. Here we provide by state-of-the-art approaches the first combined reference of the plant PM lipidome and proteome from Arabidopsis thaliana suspension cell culture. We identified and quantified a reproducible core set of 2165 proteins, which is by far the largest set of available data concerning this plant PM proteome. Using the same samples, combined lipidomic approaches, allowing the identification and quantification of an unprecedented repertoire of 414 molecular species of lipids showed that sterols, phospholipids, and sphingolipids are present in similar proportions in the plant PM. Within each lipid class, the precise amount of each lipid family and the relative proportion of each molecular species were further determined, allowing to establish the complete lipidome of Arabidopsis PM, and highlighting specific characteristics of the different molecular species of lipids. Results obtained point to a finely tuned adjustment of the molecular characteristics of lipids and proteins. More than a hundred proteins related to lipid metabolism, transport, or signaling have been identified and put in perspective of the lipids with which they are associated. This set of data represents an innovative resource to guide further research relative to the organization and functions of the plant PM.
Collapse
Affiliation(s)
- Delphine Bahammou
- Laboratoire de Biogenèse Membranaire, CNRS, Université, Bordeaux, (UMR 5200), F-33140, Villenave d'Ornon, France
| | - Ghislaine Recorbet
- UMR Agroécologie, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Adiilah Mamode Cassim
- UMR Agroécologie, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Franck Robert
- UMR Agroécologie, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Thierry Balliau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, PAPPSO, F-91190, Gif-Sur-Yvette, France
| | - Pierre Van Delft
- Laboratoire de Biogenèse Membranaire, CNRS, Université, Bordeaux, (UMR 5200), F-33140, Villenave d'Ornon, France
| | - Youcef Haddad
- Laboratoire de Biogenèse Membranaire, CNRS, Université, Bordeaux, (UMR 5200), F-33140, Villenave d'Ornon, France
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, CNRS, Université, Bordeaux, (UMR 5200), F-33140, Villenave d'Ornon, France
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, CNRS, Université, Bordeaux, (UMR 5200), F-33140, Villenave d'Ornon, France
| | - Françoise Simon-Plas
- UMR Agroécologie, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
11
|
Gunwant V, Gahtori P, Varanasi SR, Pandey R. Protein-Mediated Changes in Membrane Fluidity and Ordering: Insights into the Molecular Mechanism and Implications for Cellular Function. J Phys Chem Lett 2024; 15:4408-4415. [PMID: 38625684 DOI: 10.1021/acs.jpclett.3c03627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Probing protein-membrane interactions is vital for understanding biological functionality for various applications such as drug development, targeted drug delivery, and creation of functional biomaterials for medical and industrial purposes. In this study, we have investigated interaction of Human Serum Albumin (HSA) with two different lipids, dipalmitoylphosphatidylglycerol (dDPPG) and dipalmitoylphosphatidylcholine (dDPPC), using Vibrational Sum Frequency Generation spectroscopy at different membrane fluidity values. In the liquid-expanded (LE) state of the lipid, HSA (at pH 3.5) deeply intercalated lipid chains through a combination of electrostatic and hydrophobic interactions, which resulted in more ordering of the lipid chains. However, in the liquid-condensed (LC) state, protein intercalation is decreased due to tighter lipid packing. Moreover, our findings revealed distinct differences in HSA's interaction with dDPPG and dDPPC lipids. The interaction with dDPPC remained relatively weak compared to dDPPG. These results shed light on the significance of protein mediated changes in lipid characteristics, which hold considerable implications for understanding membrane protein behavior, lipid-mediated cellular processes, and lipid-based biomaterial design.
Collapse
Affiliation(s)
- Vineet Gunwant
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Preeti Gahtori
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Srinivasa Rao Varanasi
- Department of Physics, Sultan Qaboos University, P.O. Box 36, Al-Khoud 123, Muscat, Oman
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
12
|
Teker HT, Ceylani T, Keskin S, Samgane G, Allahverdi H, Acikgoz E, Gurbanov R. Supplementing probiotics during intermittent fasting proves more effective in restoring ileum and colon tissues in aged rats. J Cell Mol Med 2024; 28:e18203. [PMID: 38445809 PMCID: PMC10915827 DOI: 10.1111/jcmm.18203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
This study aimed to explore the impact of SCD Probiotics supplementation on biomolecule profiles and histopathology of ileum and colon tissues during a 30-day intermittent fasting (IF) program. Male Sprague-Dawley rats, aged 24 months, underwent 18-h daily fasting and received 3 mL (1 × 108 CFU) of SCD Probiotics. The differences in biomolecule profiles were determined using FTIR Spectroscopy and two machine learning techniques, Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM), which showed significant differences with high accuracy rates. Spectrochemical bands indicating alterations in lipid, protein and nucleic acid profiles in both tissues. The most notable changes were observed in the group subjected to both IF and SCD Probiotics, particularly in the colon. Both interventions, individually and in combination, decreased protein carbonylation levels. SCD Probiotics exerted a more substantial impact on membrane dynamics than IF alone. Additionally, both IF and SCD Probiotics were found to have protective effects on intestinal structure and stability by reducing mast cell density and levels of TNF-α and NF-κB expression in ileum and colon tissues, thus potentially mitigating age-related intestinal damage and inflammation. Furthermore, our results illustrated that while IF and SCD Probiotics individually instigate unique changes in ileum and colon tissues, their combined application yielded more substantial benefits. This study provides evidence for the synergistic potential of IF and SCD Probiotics in combating age-related intestinal alterations.
Collapse
Affiliation(s)
| | - Taha Ceylani
- Department of Molecular Biology and GeneticsMuş Alparslan UniversityMuşTurkey
- Department of Food Quality Control and AnalysisMuş Alparslan UniversityMuşTurkey
| | - Seda Keskin
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Gizem Samgane
- Department Biotechnology, Institute of Graduate EducationBilecik Şeyh Edebali UniversityBilecikTurkey
| | - Hüseyin Allahverdi
- Department of Molecular Biology and GeneticsMuş Alparslan UniversityMuşTurkey
| | - Eda Acikgoz
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Rafig Gurbanov
- Department of BioengineeringBilecik Şeyh Edebali UniversityBilecikTurkey
- Central Research LaboratoryBilecik Seyh Edebali UniversityBilecikTurkey
| |
Collapse
|
13
|
Zhang YH, Bin Liu, Meng Q, Zhang D, Yang H, Li G, Wang Y, Liu M, Liu N, Yu J, Liu S, Zhou H, Xu ZX, Wang Y. ACOX1 deficiency-induced lipid metabolic disorder facilitates chronic interstitial fibrosis development in renal allografts. Pharmacol Res 2024; 201:107105. [PMID: 38367917 DOI: 10.1016/j.phrs.2024.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Chronic interstitial fibrosis presents a significant challenge to the long-term survival of transplanted kidneys. Our research has shown that reduced expression of acyl-coenzyme A oxidase 1 (ACOX1), which is the rate-limiting enzyme in the peroxisomal fatty acid β-oxidation pathway, contributes to the development of fibrosis in renal allografts. ACOX1 deficiency leads to lipid accumulation and excessive oxidation of polyunsaturated fatty acids (PUFAs), which mediate epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) reorganization respectively, thus causing fibrosis in renal allografts. Furthermore, activation of Toll-like receptor 4 (TLR4)-nuclear factor kappa-B (NF-κB) signaling induced ACOX1 downregulation in a DNA methyltransferase 1 (DNMT1)-dependent manner. Overconsumption of PUFA resulted in endoplasmic reticulum (ER) stress, which played a vital role in facilitating ECM reorganization. Supplementation with PUFAs contributed to delayed fibrosis in a rat model of renal transplantation. The study provides a novel therapeutic approach that can delay chronic interstitial fibrosis in renal allografts by targeting the disorder of lipid metabolism.
Collapse
Affiliation(s)
- Yang-He Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Nian Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jinyu Yu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Si Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
14
|
Cao Z, Xu M, Qi S, Xu X, Liu W, Liu L, Bao Q, Zhang Y, Xu Q, Zhao W, Chen G. Lipidomics reveals lipid changes in the intramuscular fat of geese at different growth stages. Poult Sci 2024; 103:103172. [PMID: 37984003 PMCID: PMC10694593 DOI: 10.1016/j.psj.2023.103172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 11/22/2023] Open
Abstract
The quality (color, tenderness, juiciness, protein content, and fat content) of poultry meat is closely linked to age, with older birds typically exhibiting increased intramuscular fat (IMF) deposition. However, specific lipid metabolic pathways involved in IMF deposition remain unknown. To elucidate the mechanisms underlying lipid changes, we conducted a study using meat geese at 2 distinct growth stages (70 and 300 d). Our findings regarding the approximate composition of the meat revealed that as the geese aged 300 d, their meat acquired a chewier texture and displayed higher levels of IMF. Liquid chromatography-mass spectrometry (LC-MS) was employed for lipid profiling of the IMF. Using a lipid database, we identified 849 lipids in the pectoralis muscle of geese. Principal component analysis and orthogonal partial least squares discriminant analysis were used to distinguish between the 2 age groups and identify differential lipid metabolites. As expected, we observed significant changes in 107 lipids, including triglycerides, diglycerides, phosphatidylethanolamine, alkyl-glycerophosphoethanolamine, alkenyl-glycerophosphoethanolamine, phosphatidylcholine, phosphatidylinositol, lysophosphatidylserine, ceramide-AP, ceramide-AS, free fatty acids, cholesterol lipids, and N-acyl-lysophosphatidylethanolamine. Among these, the glyceride molecules exhibited the most pronounced changes and played a pivotal role in IMF deposition. Additionally, increased concentration of phospholipid molecules was observed in breast muscle at 70 d. Unsaturated fatty acids attached to lipid side chain sites enrich the nutritional value of goose meat. Notably, C16:0 and C18:0 were particularly abundant in the 70-day-old goose meat. Pathway analysis demonstrated that glycerophospholipid and glyceride metabolism were the pathways most significantly associated with lipid changes during goose growth, underscoring their crucial role in lipid metabolism in goose meat. In conclusion, this work provides an up-to-date study on the lipid composition and metabolic pathways of goose meat and may provide a theoretical basis for elucidating the nutritional value of goose meat at different growth stages.
Collapse
Affiliation(s)
- Zhi Cao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Maodou Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shangzong Qi
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinlei Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wei Liu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Linyu Liu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qiang Bao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yang Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenming Zhao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China.
| |
Collapse
|
15
|
Teker HT, Ceylani T, Keskin S, Samgane G, Baba B, Acıkgoz E, Gurbanov R. Reduced liver damage and fibrosis with combined SCD Probiotics and intermittent fasting in aged rat. J Cell Mol Med 2024; 28:e18014. [PMID: 37897241 PMCID: PMC10805504 DOI: 10.1111/jcmm.18014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
This study aimed to examine the impact of SCD Probiotics supplementation on liver biomolecule content and histological changes during a 30-day intermittent fasting (IF) program in 24-month-old male Sprague-Dawley rats. Rats underwent 18-h daily fasting and received 1 × 108 CFU of SCD Probiotics daily. Liver tissue biomolecules were analysed using FTIR Spectroscopy, LDA, and SVM techniques, while histopathological evaluations used Haematoxylin and eosin and Masson trichrome-stained tissues. Blood samples were collected for biochemical analysis. Gross alterations in the quantity of biomolecules were observed with individual or combined treatments. LDA and SVM analyses demonstrated a high accuracy in differentiating control and treated groups. The combination treatments led to the most significant reduction in cholesterol ester (1740 cm-1 ) and improved protein phosphorylation (A1239 /A2955 and A1080 /A1545 ) and carbonylation (A1740 /A1545 ). Individually, IF and SCD Probiotics were more effective in enhancing membrane dynamics (Bw2922 /Bw2955 ). In treated groups, histological evaluations showed decreased hepatocyte degeneration, lymphocyticinfiltration, steatosis and fibrosis. Serum ALP, LDH and albumin levels significantly increased in the SCD Probiotics and combined treatment groups. This study offers valuable insights into the potential mechanisms behind the beneficial effects of IF and SCD Probiotics on liver biomolecule content, contributing to the development of personalized nutrition and health strategies.
Collapse
Affiliation(s)
- Hikmet Taner Teker
- Department of Medical Biology and GeneticsAnkara Medipol UniversityAnkaraTurkey
| | - Taha Ceylani
- Department of Molecular Biology and GeneticsMuş Alparslan UniversityMuşTurkey
- Department of Food Quality Control and AnalysisMuş Alparslan UniversityMuşTurkey
| | - Seda Keskin
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Gizem Samgane
- Department of BioengineeringBilecik Şeyh Edebali UniversityBilecikTurkey
| | - Burcu Baba
- Department of Medical BiochemistryYüksek İhtisas UniversityAnkaraTurkey
| | - Eda Acıkgoz
- Department of Histology and EmbryologyVan Yuzuncu Yil UniversityVanTurkey
| | - Rafig Gurbanov
- Department of BioengineeringBilecik Şeyh Edebali UniversityBilecikTurkey
- Central Research Laboratory (BARUM)Bilecik Şeyh Edebali UniversityBilecikTurkey
| |
Collapse
|
16
|
Sun R, Tang W, Li P, Li B. Development of an Efficient On-Tissue Epoxidation Reaction Mediated by Urea Hydrogen Peroxide for MALDI MS/MS Imaging of Lipid C═C Location Isomers. Anal Chem 2023; 95:16004-16012. [PMID: 37844132 DOI: 10.1021/acs.analchem.3c03262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Unsaturated lipids containing different numbers and locations of C═C bonds are significantly associated with a variety of cellular and metabolic functions. Although matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) has been used to visualize the spatial distribution patterns of various lipids in biological tissues, in situ identification, discrimination, and visualization of lipid C═C location isomers remain challenging. Herein, an efficient and fast on-tissue chemical derivatization (OTCD) approach was developed to pinpoint the locations of C═C bonds in complex lipids in situ via methyltrioxorhenium (MTO)-catalyzed epoxidation of C═C with a urea hydrogen peroxide (UHP)/hexafluoroisopropanol (HFIP) system. The efficiency of OTCD could reach 100% via one-step spray deposition of the solution mixture of MTO/UHP/HFIP at room temperature. The developed OTCD method provided rich structural information on lipid C═C location isomers, and their accurate spatial distribution patterns were resolved in mouse brain tissues. Tissue-specific distributions and changes of lipid C═C location isomers in the liver sections of obese ob/ob and diabetic db/db mice were further investigated, and their correlation in two animal models was revealed. The simplicity and high efficiency of the OTCD method developed for MALDI tandem MSI of lipid C═C location isomers possess great potential for functional spatial lipidomics.
Collapse
Affiliation(s)
- Ruiyang Sun
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Weiwei Tang
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
17
|
Speer D, Salvador-Castell M, Huang Y, Liu GY, Sinha SK, Parikh AN. Surfactant-Mediated Structural Modulations to Planar, Amphiphilic Multilamellar Stacks. J Phys Chem B 2023; 127:7497-7508. [PMID: 37584633 PMCID: PMC10476200 DOI: 10.1021/acs.jpcb.3c01654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/01/2023] [Indexed: 08/17/2023]
Abstract
The hydrophobic effect, a ubiquitous process in biology, is a primary thermodynamic driver of amphiphilic self-assembly. It leads to the formation of unique morphologies including two highly important classes of lamellar and micellar mesophases. The interactions between these two types of structures and their involved components have garnered significant interest because of their importance in key biochemical technologies related to the isolation, purification, and reconstitution of membrane proteins. This work investigates the structural organization of mixtures of the lamellar-forming phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and two zwitterionic micelle-forming surfactants, being n-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (Zwittergent 3-12 or DDAPS) and 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine (O-Lyso-PC), when assembled by water vapor hydration with X-ray diffraction measurements, brightfield optical microscopy, wide-field fluorescence microscopy, and atomic force microscopy. The results reveal that multilamellar mesophases of these mixtures can be assembled across a wide range of POPC to surfactant (POPC:surfactant) concentration ratios, including ratios far surpassing the classical detergent-saturation limit of POPC bilayers without significant morphological disruptions to the lamellar motif. The mixed mesophases generally decreased in lamellar spacing (D) and headgroup-to-headgroup distance (Dhh) with a higher concentration of the doped surfactant, but trends in water layer thickness (Dw) between each bilayer in the stack are highly variable. Further structural characteristics including mesophase topography, bilayer thickness, and lamellar rupture force were revealed by atomic force microscopy (AFM), exhibiting homogeneous multilamellar stacks with no significant physical differences with changes in the surfactant concentration within the mesophases. Taken together, the outcomes present the assembly of unanticipated and highly unique mixed mesophases with varied structural trends from the involved surfactant and lipidic components. Modulations in their structural properties can be attributed to the surfactant's chemical specificity in relation to POPC, such as the headgroup hydration and the hydrophobic chain tail mismatch. Taken together, our results illustrate how specific chemical complexities of surfactant-lipid interactions can alter the morphologies of mixed mesophases and thereby alter the kinetic pathways by which surfactants dissolve lipid mesophases in bulk aqueous solutions.
Collapse
Affiliation(s)
- Daniel
J. Speer
- Chemistry
Graduate Group, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Marta Salvador-Castell
- Department
of Physics, University of California, San
Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yuqi Huang
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Gang-Yu Liu
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Sunil K. Sinha
- Department
of Physics, University of California, San
Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Atul N. Parikh
- Chemistry
Graduate Group, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
- Department
of Biomedical Engineering, University of
California, Davis, One
Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
18
|
Hamadani CM, Dasanayake GS, Chism CM, Gorniak ME, Monroe WG, Merrell A, Pride MC, Heintz R, Wong K, Hossain M, Taylor G, Edgecomb SX, Jones D, Dhar J, Banka A, Singh G, Vashisth P, Randall J, Darlington DS, Everett J, Jarrett E, Werfel TA, Eniola-Adefeso O, Tanner EEL. Selective Blood Cell Hitchhiking in Whole Blood with Ionic Liquid-Coated PLGA Nanoparticles to Redirect Biodistribution After Intravenous Injection. RESEARCH SQUARE 2023:rs.3.rs-3146716. [PMID: 37502854 PMCID: PMC10371090 DOI: 10.21203/rs.3.rs-3146716/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Less than 5% of intravenously-injected nanoparticles (NPs) reach destined sites in the body due to opsonization and immune-based clearance in vascular circulation. By hitchhiking in situ onto specific blood components post-injection, NPs can selectively target tissue sites for unprecedentedly high drug delivery rates. Choline carboxylate ionic liquids (ILs) are biocompatible liquid salts <100X composed of bulky asymmetric cations and anions. This class of ILs has been previously shown to significantly extend circulation time and redirect biodistribution in BALB/c mice post-IV injection via hitchhiking on red blood cell (RBC) membranes. Herein, we synthesized & screened 60 choline carboxylic acid-based ILs to coat PLGA NPs and present the impact of structurally engineering the coordinated anion identity to selectively interface and hitchhike lymphocytes, monocytes, granulocytes, platelets, and RBCs in whole mouse blood for in situ targeted drug delivery. Furthermore, we find this nanoparticle platform to be biocompatible (non-cytotoxic), translate to human whole blood by resisting serum uptake and maintaining modest hitchhiking, and also significantly extend circulation retention over 24 hours in BALB/c healthy adult mice after IV injection. Because of their altered circulation profiles, we additionally observe dramatically different organ accumulation profiles compared to bare PLGA NPs. This study establishes an initial breakthrough platform for a modular and transformative targeting technology to hitchhike onto blood components with high efficacy and safety in the bloodstream post-IV administration.
Collapse
|
19
|
Szczerbowska-Boruchowska M, Piana K, Surowka AD, Czyzycki M, Wrobel P, Szymkowski M, Ziomber-Lisiak A. A combined X-ray fluorescence and infrared microspectroscopy study for new insights into elemental-biomolecular obesity-induced changes in rat brain structures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122478. [PMID: 36801735 DOI: 10.1016/j.saa.2023.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The objective of our research was to determine the brain changes at the molecular and elemental levels typical of early-stage obesity. Therefore a combined approach using Fourier transform infrared micro-spectroscopy (FTIR-MS) and synchrotron radiation induced X-ray fluorescence (SRXRF) was introduced to evaluate some brain macromolecular and elemental parameters in high-calorie diet (HCD)- induced obese rats (OB, n = 6) and in their lean counterparts (L, n = 6). A HCD was found to alter the lipid- and protein- related structure and elemental composition of the certain brain areas important for energy homeostasis. The increased lipid unsaturation in the frontal cortex and ventral tegmental area, the increased fatty acyl chain length in the lateral hypothalamus and substantia nigra as well as the decreased both protein α helix to protein β- sheet ratio and the percentage fraction of β-turns and β-sheets in the nucleus accumbens were revealed in the OB group reflecting obesity-related brain biomolecular aberrations. In addition, the certain brain elements including P, K and Ca were found to differentiate the lean and obese groups at the best extent. We can conclude that HCD-induced obesity triggers lipid- and protein- related structural changes as well as elemental redistribution within various brain structures important for energy homeostasis. In addition, an approach applying combined X-ray and infrared spectroscopy was shown to be a reliable tool for identifying elemental-biomolecular rat brain changes for better understanding the interplay between the chemical and structural processes involved in appetite control.
Collapse
Affiliation(s)
| | - Kaja Piana
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Artur D Surowka
- Elettra-Sincrotrone Trieste SCpA, SS 14, km 163.5, Basovizza, TS 34149 Trieste, Italy
| | - Mateusz Czyzycki
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland; Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; International Atomic Energy Agency, Nuclear Science and Instrumentation Laboratory, Friedensstrasse 1, 2444 Seibersdorf, Austria
| | - Pawel Wrobel
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Maciej Szymkowski
- Bialystok University of Technology, Faculty of Computer Science, ul. Wiejska 45A, 15-351 Białystok, Poland
| | - Agata Ziomber-Lisiak
- Chair of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Krakow, Poland
| |
Collapse
|
20
|
Lin K, Cheng W, Shen Q, Wang H, Wang R, Guo S, Wu X, Wu W, Chen P, Wang Y, Ye H, Zhang Q, Wang R. Lipid Profiling Reveals Lipidomic Signatures of Weight Loss Interventions. Nutrients 2023; 15:nu15071784. [PMID: 37049623 PMCID: PMC10097218 DOI: 10.3390/nu15071784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Obesity is an epidemic all around the world. Weight loss interventions that are effective differ from each other with regard to various lipidomic responses. Here, we aimed to find lipidomic biomarkers that are related to beneficial changes in weight loss. We adopted an untargeted liquid chromatography with tandem mass spectrometry (LC-MS/MS) method to measure 953 lipid species for Exercise (exercise intervention cohort, N = 25), 1388 lipid species for LSG (laparoscopic sleeve gastrectomy cohort, N = 36), and 886 lipid species for Cushing (surgical removal of the ACTH-secreting pituitary adenomas cohort, N = 25). Overall, the total diacylglycerol (DG), triacylglycerol (TG), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and sphingomyelin (SM) levels were associated with changes in BMI, glycated hemoglobin (HbA1c), triglyceride, and total cholesterol according to weight loss interventions. We found that 73 lipid species changed among the three weight loss interventions. We screened 13 lipid species with better predictive accuracy in diagnosing weight loss situations in either Exercise, LSG, or Cushing cohorts (AUROC > 0.7). More importantly, we identified three phosphatidylcholine (PC) lipid species, PC (14:0_18:3), PC (31:1), and PC (32:2) that were significantly associated with weight change in three studies. Our results highlight potential lipidomic biomarkers that, in the future, could be used in personalized approaches involving weight loss interventions.
Collapse
Affiliation(s)
- Kaiqing Lin
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Cheng
- Department of Endocrinology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Qiwei Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Hui Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200433, China
| | - Ruwen Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Shanshan Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xianmin Wu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Peijie Chen
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yongfei Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Hongying Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Qiongyue Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Ru Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
21
|
Piontek MC, Roos WH. Lipoprotein particles exhibit distinct mechanical properties. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e68. [PMID: 38938600 PMCID: PMC11080718 DOI: 10.1002/jex2.68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/12/2022] [Accepted: 11/23/2022] [Indexed: 06/29/2024]
Abstract
Lipoproteins (LPs) are micelle-like structures with a similar size to extracellular vesicles (EVs) and are therefore often co-isolated, as intensively discussed within the EV community. LPs from human blood plasma are of particular interest as they are responsible for the deposition of cholesterol ester and other fats in the artery, causing lesions, and eventually atherosclerosis. Plasma lipoproteins can be divided according to their size, density and composition into chylomicrons (CM), very-low-density lipoproteins (VLDL), low-density lipoproteins (LDL) and high-density lipoproteins (HDL). Here, we use atomic force microscopy for mechanical characterization of LPs. We show that the nanoindentation approach used for EV analysis can also be used to characterize LPs, revealing specific differences between some of the particles. Comparing LPs with each other, LDL exhibit a higher bending modulus as compared to CM and VLDL, which is likely related to differences in cholesterol and apolipoproteins. Furthermore, CM typically collapse on the surface after indentation and HDL exhibit a very low height after surface adhesion both being indications for the presence of LPs in an EV sample. Our analysis provides new systematic insights into the mechanical characteristics of LPs.
Collapse
Affiliation(s)
- Melissa C. Piontek
- Moleculaire BiofysicaZernike Instituut, Rijksuniversiteit GroningenGroningenThe Netherlands
| | - Wouter H. Roos
- Moleculaire BiofysicaZernike Instituut, Rijksuniversiteit GroningenGroningenThe Netherlands
| |
Collapse
|
22
|
Amyloid β, Lipid Metabolism, Basal Cholinergic System, and Therapeutics in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms232012092. [PMID: 36292947 PMCID: PMC9603563 DOI: 10.3390/ijms232012092] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022] Open
Abstract
The presence of insoluble aggregates of amyloid β (Aβ) in the form of neuritic plaques (NPs) is one of the main features that define Alzheimer’s disease. Studies have suggested that the accumulation of these peptides in the brain significantly contributes to extensive neuronal loss. Furthermore, the content and distribution of cholesterol in the membrane have been shown to have an important effect on the production and subsequent accumulation of Aβ peptides in the plasma membrane, contributing to dysfunction and neuronal death. The monomeric forms of these membrane-bound peptides undergo several conformational changes, ranging from oligomeric forms to beta-sheet structures, each presenting different levels of toxicity. Aβ peptides can be internalized by particular receptors and trigger changes from Tau phosphorylation to alterations in cognitive function, through dysfunction of the cholinergic system. The goal of this review is to summarize the current knowledge on the role of lipids in Alzheimer’s disease and their relationship with the basal cholinergic system, as well as potential disease-modifying therapies.
Collapse
|
23
|
Yang T, Tang S, Kuo S, Freitas D, Edwards M, Wang H, Sun Y, Yan X. Lipid Mass Tags via Aziridination for Probing Unsaturated Lipid Isomers and Accurate Relative Quantification**. Angew Chem Int Ed Engl 2022; 61:e202207098. [DOI: 10.1002/anie.202207098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Tingyuan Yang
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Shuli Tang
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Syuan‐Ting Kuo
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Dallas Freitas
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Madison Edwards
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| | - Hongying Wang
- Department of Nutrition Texas A&M University 373 Olsen Blvd. College Station TX 77845 USA
| | - Yuxiang Sun
- Department of Nutrition Texas A&M University 373 Olsen Blvd. College Station TX 77845 USA
| | - Xin Yan
- Department of Chemistry Texas A&M University 580 Ross St. College Station TX 77843 USA
| |
Collapse
|
24
|
Liang Q, Ofosuhene AP, Kiessling V, Liang B, Kreutzberger AJB, Tamm LK, Cafiso DS. Complexin-1 and synaptotagmin-1 compete for binding sites on membranes containing PtdInsP 2. Biophys J 2022; 121:3370-3380. [PMID: 36016497 PMCID: PMC9515229 DOI: 10.1016/j.bpj.2022.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/28/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Complexin-1 is an essential protein for neuronal exocytosis that acts to depress spontaneous fusion events while enhancing evoked neurotransmitter release. In addition to binding soluble N-ethylmaleimide-sensitive factor attachment protein receptors, it is well established that complexin associates with membranes in a manner that depends upon membrane curvature. In the present work, we examine the membrane binding of complexin using electron paramagnetic resonance spectroscopy, fluorescence anisotropy, and total internal reflection fluorescence microscopy. The apparent membrane affinity of complexin is found to strongly depend upon the concentration of protein used in the binding assay, and this is a result of a limited number of binding sites for complexin on the membrane interface. Although both the N- and C-terminal regions of complexin associate with the membrane interface, membrane affinity is driven by its C-terminus. Complexin prefers to bind liquid-disordered membrane phases and shows an enhanced affinity toward membranes containing phosphatidylinositol 4-5-bisphosphate (PI(4,5)P2). In the presence of PI(4,5)P2, complexin is displaced from the membrane surface by proteins that bind to or sequester PI(4,5)P2. In particular, the neuronal calcium sensor synaptotagmin-1 displaces complexin from the membrane but only when PI(4,5)P2 is present. Complexin and synaptotagmin compete on the membrane interface in the presence of PI(4,5)P2, and this interaction may play a role in calcium-triggered exocytosis by displacing complexin from its fusion-inhibiting state.
Collapse
Affiliation(s)
- Qian Liang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Akosua P Ofosuhene
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia; Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia; Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Alex J B Kreutzberger
- Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia; Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics University of Virginia, Charlottesville, Virginia; Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - David S Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, Virginia; Center for Membrane Biology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
25
|
Yang T, Tang S, Kuo ST, Freitas D, Edwards M, Wang H, Sun Y, Yan X. Lipid Mass Tags via Aziridination for Probing Unsaturated Lipid Isomers and Accurate Relative Quantification. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Shuli Tang
- Texas A&M University Chemistry UNITED STATES
| | | | | | | | - Hongying Wang
- Texas A&M University Department of Nutrition UNITED STATES
| | - Yuxiang Sun
- Texas A&M University Department of Nutrition UNITED STATES
| | - Xin Yan
- Texas A&M University Chemistry 580 Ross St 77840 College Station UNITED STATES
| |
Collapse
|
26
|
Constitutive Phenotypic Modification of Lipid A in Clinical Acinetobacter baumannii Isolates. Microbiol Spectr 2022; 10:e0129522. [PMID: 35861511 PMCID: PMC9431647 DOI: 10.1128/spectrum.01295-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The degree of polymyxin B (PMB) resistance was measured in 40 clinical Acinetobacter baumannii isolates obtained from health care facilities. All of the tested isolates possessed a multidrug-resistant (MDR) phenotype against four classes of antibiotics (meropenem, doxycycline, gentamicin, and erythromycin), except for PMB. The blaOXA-23 gene was detected throughout the genetic analysis and experimental assay, indicating that all of the MDR strains were carbapenem-resistant A. baumannii strains. Multilocus sequence typing-based genotyping revealed that nine selected strains belonged to the international clone II lineage. When matrix-assisted laser desorption ionization–time of flight mass spectrometry was performed, intrinsic lipid A modification by phosphoethanolamine (PEtN) incorporation was noticeable only in the PMB-resistant (PMBR) strains. However, the presence of hexa- and penta-acylated lipid A due to the loss of the laurate (C12) acyl chain was noted in all PMB-susceptible strains but not in the PMBR strains. The reduction of negative surface charges in the PMBR strains was assessed by zeta potential analysis. Fluorescence imaging using dansyl-PMB revealed that, in the PMBR strains, PMB was less likely to bind to the cell surface. IMPORTANCE The widespread presence of MDR pathogens, including A. baumannii, is causing serious hospital-acquired infections worldwide. Extensive surveillance of MDR clinical A. baumannii isolates has been conducted, but the underlying mechanisms for their development of MDR phenotypes are often neglected. Either lipid A modification or loss of lipopolysaccharide in Gram-negative bacteria leads to PMBR phenotypes. The prevalence of intrinsic lipid A modification in PMBR clinical strains was attributed to high levels of basal expression of pmrC and eptA-1. Our findings suggest that new therapeutic strategies are warranted to combat MDR pathogens due to the emergence of many PMBR clinical strains.
Collapse
|
27
|
Sikdar S, Banerjee M, Vemparala S. Role of Disulphide Bonds in Membrane Partitioning of a Viral Peptide. J Membr Biol 2022; 255:129-142. [PMID: 35218393 PMCID: PMC8881898 DOI: 10.1007/s00232-022-00218-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/02/2022] [Indexed: 01/22/2023]
Abstract
The importance of disulphide bond in mediating viral peptide entry into host cells is well known. In the present work, we elucidate the role of disulphide (SS) bond in partitioning mechanism of membrane-active Hepatitis A Virus-2B (HAV-2B) peptide, which harbours three cysteine residues promoting formation of multiple SS-bonded states. The inclusion of SS-bond not only results in a compact conformation but also induces distorted α-helical hairpin geometry in comparison to SS-free state. Owing to these, the hydrophobic residues get buried, restricting the insertion of SS-bonded HAV-2B peptide into lipid packing defects and thus the partitioning of the peptide is completely or partly abolished. In this way, the disulphide bond can potentially regulate the partitioning of HAV-2B peptide such that the membrane remodelling effects of this viral peptide are significantly reduced. The current findings may have potential implications in drug designing, targeting the HAV-2B protein by promoting disulphide bond formation within its membrane-active region.
Collapse
Affiliation(s)
- Samapan Sikdar
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, 600113, India. .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai, 600113, India. .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
28
|
Zhang O, Zhou W, Lu J, Wu T, Lew MD. Resolving the Three-Dimensional Rotational and Translational Dynamics of Single Molecules Using Radially and Azimuthally Polarized Fluorescence. NANO LETTERS 2022; 22:1024-1031. [PMID: 35073487 PMCID: PMC8893020 DOI: 10.1021/acs.nanolett.1c03948] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report a radially and azimuthally polarized (raPol) microscope for high detection and estimation performance in single-molecule orientation-localization microscopy (SMOLM). With 5000 photons detected from Nile red (NR) transiently bound within supported lipid bilayers (SLBs), raPol SMOLM achieves 2.9 nm localization precision, 1.5° orientation precision, and 0.17 sr precision in estimating rotational wobble. Within DPPC SLBs, SMOLM imaging reveals the existence of randomly oriented binding pockets that prevent NR from freely exploring all orientations. Treating the SLBs with cholesterol-loaded methyl-β-cyclodextrin (MβCD-chol) causes NR's orientational diffusion to be dramatically reduced, but curiously NR's median lateral displacements drastically increase from 20.8 to 75.5 nm (200 ms time lag). These jump diffusion events overwhelmingly originate from cholesterol-rich nanodomains within the SLB. These detailed measurements of single-molecule rotational and translational dynamics are made possible by raPol's high measurement precision and are not detectable in standard SMLM.
Collapse
|
29
|
Yang J, Wang M, Yang D, Yan H, Wang Z, Yan D, Guo N. Integrated lipids biomarker of the prediabetes and type 2 diabetes mellitus Chinese patients. Front Endocrinol (Lausanne) 2022; 13:1065665. [PMID: 36743922 PMCID: PMC9897314 DOI: 10.3389/fendo.2022.1065665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/30/2022] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Dyslipidemia is a hallmark of T2DM, and as such, analyses of lipid metabolic profiles in affected patients have the potential to permit the development of an integrated lipid metabolite-based biomarker model that can facilitate early patient diagnosis and treatment. METHODS Untargeted and targeted lipidomics approaches were used to analyze serum samples from newly diagnosed 93 Chinese participants in discovery cohort and 440 in validation cohort via UHPLC-MS and UHPLC-MS/MS first. The acid sphingomyelinase protein expression was analyzed by Western blot. RESULTS AND DISCUSSION Through these analyses, we developed a novel integrated biomarker signature composed of LPC 22:6, PC(16:0/20:4), PE(22:6/16:0), Cer(d18:1/24:0)/SM(d18:1/19:0), Cer(d18:1/24:0)/SM(d18:0/16:0), TG(18:1/18:2/18:2), TG(16:0/16:0/20:3), and TG(18:0/16:0/18:2). The area under the curve (AUC) values for this integrated biomarker signature for prediabetes and T2DM patients were 0.841 (cutoff: 0.565) and 0.894 (cutoff: 0.633), respectively. Furthermore, theresults of western blot analysis of frozen adipose tissue from 3 week (prediabetes) and 12 week (T2DM) Goto-Kakizaki (GK) rats also confirmed that acid sphingomyelinase is responsible for significant disruptions in ceramide and sphingomyelin homeostasis. Network analyses of the biomarkers associated with this biosignature suggested that the most profoundly affected lipid metabolism pathways in the context of diabetes include de novo ceramide synthesis, sphingomyelin metabolism, and additional pathways associated with phosphatidylcholine synthesis. Together, these results offer new biological insights regarding the role of serum lipids in the context of insidious T2DM development, and may offer new avenues for future diagnostic and/or therapeutic research.
Collapse
Affiliation(s)
- Jiaying Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Mei Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dawei Yang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Han Yan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhigang Wang
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
- *Correspondence: Zhigang Wang, ; Dan Yan, ; Na Guo,
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhigang Wang, ; Dan Yan, ; Na Guo,
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Zhigang Wang, ; Dan Yan, ; Na Guo,
| |
Collapse
|
30
|
Ohashi Y. Activation Mechanisms of the VPS34 Complexes. Cells 2021; 10:cells10113124. [PMID: 34831348 PMCID: PMC8624279 DOI: 10.3390/cells10113124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Phosphatidylinositol-3-phosphate (PtdIns(3)P) is essential for cell survival, and its intracellular synthesis is spatially and temporally regulated. It has major roles in two distinctive cellular pathways, namely, the autophagy and endocytic pathways. PtdIns(3)P is synthesized from phosphatidylinositol (PtdIns) by PIK3C3C/VPS34 in mammals or Vps34 in yeast. Pathway-specific VPS34/Vps34 activity is the consequence of the enzyme being incorporated into two mutually exclusive complexes: complex I for autophagy, composed of VPS34/Vps34-Vps15/Vps15-Beclin 1/Vps30-ATG14L/Atg14 (mammals/yeast), and complex II for endocytic pathways, in which ATG14L/Atg14 is replaced with UVRAG/Vps38 (mammals/yeast). Because of its involvement in autophagy, defects in which are closely associated with human diseases such as cancer and neurodegenerative diseases, developing highly selective drugs that target specific VPS34/Vps34 complexes is an essential goal in the autophagy field. Recent studies on the activation mechanisms of VPS34/Vps34 complexes have revealed that a variety of factors, including conformational changes, lipid physicochemical parameters, upstream regulators, and downstream effectors, greatly influence the activity of these complexes. This review summarizes and highlights each of these influences as well as clarifying key questions remaining in the field and outlining future perspectives.
Collapse
Affiliation(s)
- Yohei Ohashi
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
31
|
Hu J, Zhang L, Chen W, Shen L, Jiang J, Sun S, Chen Z. Role of Intra- and Extracellular Lipid Signals in Cancer Stemness and Potential Therapeutic Strategy. Front Pharmacol 2021; 12:730751. [PMID: 34603046 PMCID: PMC8479196 DOI: 10.3389/fphar.2021.730751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence showed that cancer stem cells (CSCs) play significant roles in cancer initiation, resistance to therapy, recurrence and metastasis. Cancer stem cells possess the ability of self-renewal and can initiate tumor growth and avoid lethal factors through flexible metabolic reprogramming. Abnormal lipid metabolism has been reported to be involved in the cancer stemness and promote the development of cancer. Lipid metabolism includes lipid uptake, lipolysis, fatty acid oxidation, de novo lipogenesis, and lipid desaturation. Abnormal lipid metabolism leads to ferroptosis of CSCs. In this review, we comprehensively summarized the role of intra- and extracellular lipid signals in cancer stemness, and explored the feasibility of using lipid metabolism-related treatment strategies for future cancer.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Leyi Zhang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Wuzhen Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Lesang Shen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jingxin Jiang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Shanshan Sun
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
32
|
Sikdar S, Banerjee M, Vemparala S. Effect of cholesterol on the membrane partitioning dynamics of hepatitis A virus-2B peptide. SOFT MATTER 2021; 17:7963-7977. [PMID: 34378608 DOI: 10.1039/d1sm01019k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding viral peptide detection and partitioning and the subsequent host membrane composition-based response is essential for gaining insights into the viral mechanism. Here, we probe the crucial role of the presence of membrane lipid packing defects, depending on the membrane composition, in allowing the viral peptide belonging to C-terminal Hepatitis A Virus-2B (HAV-2B) to detect, attach and subsequently partition into host cell membrane mimics. Using molecular dynamics simulations, we conclusively show that the hydrophobic residues in the viral peptide detect transiently present lipid packing defects, insert themselves into such defects, form anchor points and facilitate the partitioning of the peptide, thereby inducing membrane disruption. We also show that the presence of cholesterol significantly alters such lipid packing defects, both in size and in number, thus mitigating the partitioning of the membrane active viral peptide into cholesterol-rich membranes. Our results are in excellent agreement with previously published experimental data and further explain the role of lipid defects in understanding such data. These results show differential ways in which the presence and absence of cholesterol can alter the permeability of the host membranes to the membrane active peptide component of HAV-2B virus, via lipid packing defects, and can possibly be a part of the general membrane detection mechanism for viroporins.
Collapse
Affiliation(s)
- Samapan Sikdar
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.
| | | | | |
Collapse
|
33
|
Franco-Ulloa S, Guarnieri D, Riccardi L, Pompa PP, De Vivo M. Association Mechanism of Peptide-Coated Metal Nanoparticles with Model Membranes: A Coarse-Grained Study. J Chem Theory Comput 2021; 17:4512-4523. [PMID: 34077229 PMCID: PMC8280734 DOI: 10.1021/acs.jctc.1c00127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/28/2022]
Abstract
Functionalized metal nanoparticles (NPs) hold great promise as innovative tools in nanomedicine. However, one of the main challenges is how to optimize their association with the cell membrane, which is critical for their effective delivery. Recent findings show high cellular uptake rates for NPs coated with the polycationic cell-penetrating peptide gH625-644 (gH), although the underlying internalization mechanism is poorly understood. Here, we use extended coarse-grained simulations and free energy calculations to study systems that simultaneously include metal NPs, peptides, lipids, and sterols. In particular, we investigate the first encounter between multicomponent model membranes and 2.5 nm metal NPs coated with gH (gHNPs), based on the evidence from scanning transmission electron microscopy. By comparing multiple membrane and (membranotropic) NP models, we found that gHNP internalization occurs by forming an intermediate state characterized by specific stabilizing interactions formed by peptide-coated nanoparticles with multicomponent model membranes. This association mechanism is mainly characterized by interactions of gH with the extracellular solvent and the polar membrane surface. At the same time, the NP core interacts with the transmembrane (cholesterol-rich) fatty phase.
Collapse
Affiliation(s)
- Sebastian Franco-Ulloa
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Daniela Guarnieri
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, l-84084 Salerno, Italy
| | - Laura Riccardi
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Marco De Vivo
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
34
|
Zoni V, Campomanes P, Vanni S. Investigating the structural properties of hydrophobic solvent-rich lipid bilayers. SOFT MATTER 2021; 17:5329-5335. [PMID: 33969832 PMCID: PMC8170560 DOI: 10.1039/d0sm02270e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
In vitro reconstitutions of lipid membranes have proven to be an indispensable tool to rationalize their molecular complexity and to understand their role in countless cellular processes. However, amongst the various techniques used to reconstitute lipid bilayers in vitro, several approaches are not solvent-free, but rather contain residual hydrophobic solvents in between the two bilayer leaflets, generally as a consequence of the procedure used to generate the bilayer. To what extent the presence of these hydrophobic solvents modifies bilayer properties with respect to native, solvent-free, conditions remains an open question that has important implications for the appropriate interpretation of numerous experimental observations. Here, we thorouhgly characterize hydrophobic solvent-rich lipid bilayers using atomistic molecular dynamics simulations. Our data indicate that while the presence of hydrophobic solvents at high concentrations, such as hexadecane, has a significant effect on membrane thickness, their effects on surface properties, membrane order and lateral stress are quite moderate. Our results corroborate the validity of in vitro approaches as model systems for the investigations of biological membranes but raise a few cautionary aspects that must be considered when investigating specific membrane properties.
Collapse
Affiliation(s)
- Valeria Zoni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Pablo Campomanes
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland.
| |
Collapse
|
35
|
Zhang H, Xu M, Shi X, Liu Y, Li Z, Jagodinsky JC, Ma M, Welham NV, Morris ZS, Li L. Quantification and molecular imaging of fatty acid isomers from complex biological samples by mass spectrometry. Chem Sci 2021; 12:8115-8122. [PMID: 34194701 PMCID: PMC8208125 DOI: 10.1039/d1sc01614h] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Elucidating the isomeric structure of free fatty acids (FAs) in biological samples is essential to comprehend their biological functions in various physiological and pathological processes. Herein, we report a novel approach of using peracetic acid (PAA) induced epoxidation coupled with mass spectrometry (MS) for localization of the C[double bond, length as m-dash]C bond in unsaturated FAs, which enables both quantification and spatial visualization of FA isomers from biological samples. Abundant diagnostic fragment ions indicative of the C[double bond, length as m-dash]C positions were produced upon fragmentation of the FA epoxides derived from either in-solution or on-tissue PAA epoxidation of free FAs. The performance of the proposed approach was evaluated by analysis of FAs in human cell lines as well as mapping the FA isomers from cancer tissue samples with MALDI-TOF/TOF-MS. Merits of the newly developed method include high sensitivity, simplicity, high reaction efficiency, and capability of spatial characterization of FA isomers in tissue samples.
Collapse
Affiliation(s)
- Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison Madison WI 53705 USA
| | - Meng Xu
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
| | - Xudong Shi
- Division of Otolaryngology, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison Madison WI 53792 USA
| | - Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison Madison WI 53705 USA
| | - Zihui Li
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
| | - Justin C Jagodinsky
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison Madison WI 53705 USA
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison Madison WI 53705 USA
| | - Nathan V Welham
- Division of Otolaryngology, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison Madison WI 53792 USA
| | - Zachary S Morris
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison Madison WI 53705 USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison Madison WI 53705 USA
- Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
| |
Collapse
|
36
|
Srinivasan S, Zoni V, Vanni S. Estimating the accuracy of the MARTINI model towards the investigation of peripheral protein–membrane interactions. Faraday Discuss 2021; 232:131-148. [DOI: 10.1039/d0fd00058b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we investigate the ability of the MARTINI CG force field, specifically the 3 open-beta version, to reproduce known experimental observations regarding the membrane binding behavior of 12 peripheral membrane proteins and peptides.
Collapse
Affiliation(s)
| | - Valeria Zoni
- Department of Biology, University of Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Switzerland
| |
Collapse
|
37
|
Buslaev P, Mustafin K, Gushchin I. Principal component analysis highlights the influence of temperature, curvature and cholesterol on conformational dynamics of lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183253. [PMID: 32142820 DOI: 10.1016/j.bbamem.2020.183253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 01/06/2023]
Abstract
Membrane lipids are inherently highly dynamic molecules. Currently, it is difficult to probe the structures of individual lipids experimentally at the timescales corresponding to atomic motions, and consequently molecular dynamics simulations are used widely. In our previous work, we have introduced the principal component analysis (PCA) as a convenient framework for comprehensive quantitative description of lipid motions. Here, we present a newly developed open source script, PCAlipids, which automates the analysis and allows us to refine the approach and test its limitations. We use PCAlipids to determine the influence of temperature, cholesterol and curvature on individual lipids, and show that the most prominent lipid tail scissoring motion is strongly affected by these factors and allows tracking of phase transition. Addition of cholesterol affects the conformations and selectively changes the dynamics of lipid molecules, impacting the large-amplitude motions. Introduction of curvature biases the conformational ensembles towards more extended structures. We hope that the developed approach will be useful for understanding the molecular basis of different processes occurring in lipid membrane systems and will stimulate development of complementary experimental techniques probing the conformations of individual lipid molecules.
Collapse
Affiliation(s)
- P Buslaev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - K Mustafin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - I Gushchin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
38
|
Kronenberger T, de Oliveira Fernades P, Drumond Franco I, Poso A, Gonçalves Maltarollo V. Ligand- and Structure-Based Approaches of Escherichia coli FabI Inhibition by Triclosan Derivatives: From Chemical Similarity to Protein Dynamics Influence. ChemMedChem 2019; 14:1995-2004. [PMID: 31670463 PMCID: PMC6916556 DOI: 10.1002/cmdc.201900415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/03/2019] [Indexed: 12/20/2022]
Abstract
Enoyl-acyl carrier protein reductase (FabI) is the limiting step to complete the elongation cycle in type II fatty acid synthase (FAS) systems and is a relevant target for antibacterial drugs. E. coli FabI has been employed as a model to develop new inhibitors against FAS, especially triclosan and diphenyl ether derivatives. Chemical similarity models (CSM) were used to understand which features were relevant for FabI inhibition. Exhaustive screening of different CSM parameter combinations featured chemical groups, such as the hydroxy group, as relevant to distinguish between active/decoy compounds. Those chemical features can interact with the catalytic Tyr156. Further molecular dynamics simulation of FabI revealed the ionization state as a relevant for ligand stability. Also, our models point the balance between potency and the occupancy of the hydrophobic pocket. This work discusses the strengths and weak points of each technique, highlighting the importance of complementarity among approaches to elucidate EcFabI inhibitor's binding mode and offers insights for future drug discovery.
Collapse
Affiliation(s)
- Thales Kronenberger
- Department of Medical Oncology and Pneumology, Internal Medicine VIIIUniversity Hospital of TübingenOtfried-Müller-Strasse 1472076TübingenGermany
- School of PharmacyUniversity of Eastern Finland Faculty of Health SciencesKuopio70211Finland
| | - Philipe de Oliveira Fernades
- Departamento de Produtos Farmacêuticos, Faculdade de FarmáciaUniversidade Federal de Minas GeraisAv. Antônio Carlos6627Pampulha, Belo Horizonte, MG, 31270-901Brazil
- Departamento de Química, Instituto de Ciências ExatasUniversidade Federal de Minas GeraisAv. Antônio Carlos6627 –Pampulha, Belo Horizonte, MG, 31270-901Brazil
| | - Isabella Drumond Franco
- Departamento de Produtos Farmacêuticos, Faculdade de FarmáciaUniversidade Federal de Minas GeraisAv. Antônio Carlos6627Pampulha, Belo Horizonte, MG, 31270-901Brazil
| | - Antti Poso
- Department of Medical Oncology and Pneumology, Internal Medicine VIIIUniversity Hospital of TübingenOtfried-Müller-Strasse 1472076TübingenGermany
- School of PharmacyUniversity of Eastern Finland Faculty of Health SciencesKuopio70211Finland
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de FarmáciaUniversidade Federal de Minas GeraisAv. Antônio Carlos6627Pampulha, Belo Horizonte, MG, 31270-901Brazil
| |
Collapse
|