1
|
Kaiser L, Ondruš M, Poštová Slavětínská L, Raindlová V, Hocek M. Polymerase Synthesis of Hypermodified DNA Displaying a Combination of Thiol, Hydroxyl, Carboxylate, and Imidazole Functional Groups in the Major Groove. Chemistry 2025:e202501034. [PMID: 40327399 DOI: 10.1002/chem.202501034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/08/2025]
Abstract
We designed and synthesized a set of six 2'-deoxyribonucleoside 5'-O-triphosphates (dNTPs) bearing functional groups mimicking amino acid side chains in enzyme active sites (OH, SH, COOH, and imidazole) attached to position 5 of pyrimidines or position 7 of 7-deazapurines through different linkers. These modified dNTPs were studied as substrates in enzymatic synthesis of modified and hypermodified DNA using several DNA polymerases. In primer extension (PEX), all modified dNTPs provided DNA containing one, two, three, or, (all) four modified nucleotides each bearing a different modification, although the thiol-modified dNTPs were worse substrates compared to the others. In PCR, we observed exponential amplification for any combination of one, two, or three nonsulfur dNTPs but the thiol-modified dNTP did not work well in any combinations. Sequencing of the hypermodified DNA confirmed the good fidelity of the incorporation of all the modified nucleotides. This set of modified dNTPs extends the portfolio of building blocks for prospective use in selections of functional nucleic acids.
Collapse
Affiliation(s)
- Lukáš Kaiser
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6, Prague, CZ-16000, Czech Republic
- Department of Organic Chemistry, University of Chemistry and Technology, Technická 5, Prague 6, Prague, 166 28, Czech Republic
| | - Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6, Prague, CZ-16000, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6, Prague, CZ-16000, Czech Republic
| | - Veronika Raindlová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6, Prague, CZ-16000, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, Prague 6, Prague, CZ-16000, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, Prague, CZ-12843, Czech Republic
| |
Collapse
|
2
|
Ghosh P, Phadte A, Bhojappa B, Palani S, Srivatsan S. Template-independent enzymatic functionalization of DNA oligonucleotides with environment-sensitive nucleotide probes using terminal deoxynucleotidyl transferase. Nucleic Acids Res 2025; 53:gkaf108. [PMID: 40173016 PMCID: PMC11963764 DOI: 10.1093/nar/gkaf108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/10/2025] [Accepted: 02/12/2025] [Indexed: 04/04/2025] Open
Abstract
Given the emerging use of terminal deoxynucleotidyl transferase (TdT) in biotechnology and its clinical potential as a cancer marker and target, the development of a versatile probe system to study its processivity, substrate properties, and inhibition is highly desired. Here, we demonstrate a multilayered application of a series of environment-sensitive fluorescent 2'-deoxynucleotide probes that harness the activity of TdT in accessing site-specifically functionalized DNA oligonucleotides and devising a real-time fluorescence platform to monitor the enzyme activity and identify potential inhibitors. The nucleotides constructed by coupling heterocycles of progressively increasing chemical modifications (selenophene, benzothiophene, benzofuran, and fluorobenzofuran) at the C5 position of 2'-deoxyuridine serve as suitable substrates for TdT, albeit differences in incorporation efficiency. A battery of experiments provided valuable insights into the scope of this functionalization method. It revealed how a fine balance between steric hindrance and stacking interaction between the heterocycle moiety and primer 3'-end nucleobase in the active site modulates the recognition and processing of nucleotides based on their size. Remarkably, the excellent responsiveness of benzofuran-modified dUTP enabled the design of fluorescence assays to estimate TdT activity, and detect nucleotide and non-nucleotide inhibitors. The findings obtained using our probes should significantly advance TdT-based functionalization, diagnostic, and therapeutic strategies.
Collapse
Affiliation(s)
- Pulak Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Apeksha A Phadte
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Bindu Bhojappa
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, C.V. Raman Road, Bengaluru 560012, India
| | - Saravanan Palani
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, C.V. Raman Road, Bengaluru 560012, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
3
|
Dhara D, Mulard LA, Hollenstein M. Natural, modified and conjugated carbohydrates in nucleic acids. Chem Soc Rev 2025; 54:2948-2983. [PMID: 39936337 DOI: 10.1039/d4cs00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Storage of genetic information in DNA occurs through a unique ordering of canonical base pairs. However, this would not be possible in the absence of the sugar-phosphate backbone which is essential for duplex formation. While over a hundred nucleobase modifications have been identified (mainly in RNA), Nature is rather conservative when it comes to alterations at the level of the (deoxy)ribose sugar moiety. This trend is not reflected in synthetic analogues of nucleic acids where modifications of the sugar entity is commonplace to improve the properties of DNA and RNA. In this review article, we describe the main incentives behind sugar modifications in nucleic acids and we highlight recent progress in this field with a particular emphasis on therapeutic applications, the development of xeno-nucleic acids (XNAs), and on interrogating nucleic acid etiology. We also describe recent strategies to conjugate carbohydrates and oligosaccharides to oligonucleotides since this represents a particularly powerful strategy to improve the therapeutic index of oligonucleotide drugs. The advent of glycoRNAs combined with progress in nucleic acid and carbohydrate chemistry, protein engineering, and delivery methods will undoubtedly yield more potent sugar-modified nucleic acids for therapeutic, biotechnological, and synthetic biology applications.
Collapse
Affiliation(s)
- Debashis Dhara
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, Université Paris Cité, CNRS UMR 352328, rue du Docteur Roux, 75724 Paris Cedex 15, France.
- Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Laurence A Mulard
- Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Marcel Hollenstein
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, Université Paris Cité, CNRS UMR 352328, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
4
|
Kuprikova N, Ondruš M, Bednárová L, Kraus T, Slavětínská L, Sýkorová V, Hocek M. Zwitterionic DNA: enzymatic synthesis of hypermodified DNA bearing four different cationic substituents at all four nucleobases. Nucleic Acids Res 2025; 53:gkaf155. [PMID: 40057376 PMCID: PMC11890062 DOI: 10.1093/nar/gkaf155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/22/2025] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
We designed and synthesized a set of four 2'-deoxyribonucleoside 5'-O-triphosphates (dNTPs) bearing cationic substituents (protonated amino, methylamino, dimethylamino and trimethylammonium groups) attached to position 5 of pyrimidines or position 7 of 7-deazapurines through hex-1-ynyl or propargyl linker. These cationic dNTPs were studied as substrates in enzymatic synthesis of modified and hypermodified DNA using KOD XL DNA polymerase. In primer extension (PEX), we successfully obtained DNA containing one, two, three, or (all) four modified nucleotides, each bearing a different cationic modification. The cationic dNTPs were somewhat worse substrates compared to previously studied dNTPs bearing hydrophobic or anionic modifications, but the polymerase was still able to synthesize sequences up to 73 modified nucleotides. We also successfully combined one cationic modification with one anionic and two hydrophobic modifications in PEX. In polymerase chain reaction (PCR), we observed exponential amplification only in the case of one cationic modification, while the combination of more cationic nucleotides gave either very low amplification or no PCR product. The hypermodified oligonucleotides prepared by PEX were successfully re-PCRed and sequenced by Sanger sequencing. Biophysical studies of hybridization, denaturation, and circular dichroism spectroscopy showed that the presence of cationic modifications increases the stability of duplexes.
Collapse
Affiliation(s)
- Natalia Kuprikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague 2, Czech Republic
| | - Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague 2, Czech Republic
| |
Collapse
|
5
|
Ghosh P, Betz K, Gutfreund C, Pal A, Marx A, Srivatsan SG. Structures of a DNA Polymerase Caught while Incorporating Responsive Dual-Functional Nucleotide Probes. Angew Chem Int Ed Engl 2025; 64:e202414319. [PMID: 39428682 DOI: 10.1002/anie.202414319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Functionalizing nucleic acids using DNA polymerases is essential in biophysical and biotechnology applications. This study focuses on understanding how DNA polymerases recognize and incorporate nucleotides with diverse chemical modifications, aiming to develop advanced nucleotide probes. We present the crystal structures of ternary complexes of Thermus aquaticus DNA polymerase (KlenTaq) with C5-heterocycle-modified environment-sensitive 2'-deoxyuridine-5'-triphosphate (dUTP) probes. These nucleotides include SedUTP, BFdUTP and FBFdUTP, which bear selenophene, benzofuran and fluorobenzofuran, respectively, at the C5 position of uracil, and exhibit high conformational sensitivity. SedUTP and FBFdUTP serve as dual-app probes, combining a fluorophore with X-ray anomalous scattering Se or 19F NMR labels. Our study reveals that the size of the heterocycle influences how DNA polymerase families A and B incorporate these modified nucleotides during single nucleotide incorporation and primer extension reactions. Remarkably, the responsiveness of FBFdUTP enabled real-time monitoring of the binary complex formation and polymerase activity through fluorescence and 19F NMR spectroscopy. Comparative analysis of incorporation profiles, fluorescence, 19F NMR data, and crystal structures of ternary complexes highlights the plasticity of the enzyme. Key insight is provided into the role of gatekeeper amino acids (Arg660 and Arg587) in accommodating and processing these modified substrates, offering a structural basis for next-generation nucleotide probe development.
Collapse
Affiliation(s)
- Pulak Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Karin Betz
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Cédric Gutfreund
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Arindam Pal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
6
|
Šoltysová M, Güixens-Gallardo P, Sieglová I, Soldánová A, Krejčiříková V, Fábry M, Brynda J, Khoroshyy P, Hocek M, Řezáčová P. Using environment-sensitive tetramethylated thiophene-BODIPY fluorophores in DNA probes for studying effector-induced conformational changes of protein-DNA complexes. RSC Chem Biol 2025:d4cb00260a. [PMID: 39822774 PMCID: PMC11734750 DOI: 10.1039/d4cb00260a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
The LutR protein represses the transcription of genes encoding enzymes for the utilization of l-lactate in Bacillus subtilis through binding to a specific DNA region. In this study, we employed oligonucleotide probes modified by viscosity-sensitive tetramethylated thiophene-BODIPY fluorophores to investigate the impact of selected metabolites on the LutR-DNA complex. Our goal was to identify the effector molecule whose binding alters the protein-DNA affinity, thereby enabling gene transcription. The designed DNA probes exhibited distinctive responses to the binding and release of the protein, characterized by significant alterations in fluorescence lifetime. Through this method, we have identified l-lactate as the sole metabolite exerting a substantial modulating effect on the protein-DNA interaction and thus confirmed its role as an effector molecule. Moreover, we showed that our approach was able to follow conformation changes affecting affinity, which were not captured by other methods commonly used to study the protein-DNA interaction, such as electro-mobility shift assays and florescence anisotropy binding studies. This work underlines the potential of environment-sensitive fluorophore-linked nucleotide modifications, i.e. dCTBdp, for studying the dynamics and subtle changes of protein-DNA interactions.
Collapse
Affiliation(s)
- Markéta Šoltysová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Irena Sieglová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Anna Soldánová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Veronika Krejčiříková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Milan Fábry
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Petro Khoroshyy
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
- Department of Organic Chemistry, Faculty of Science, Charles University Hlavova 8 CZ-12843 Prague 2 Czechia
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
| |
Collapse
|
7
|
Wang X, Hu D, Wang PG, Yang S. Bioorthogonal Chemistry: Enzyme Immune and Protein Capture for Enhanced LC-MS Bioanalysis. Bioconjug Chem 2024; 35:1699-1710. [PMID: 39470173 DOI: 10.1021/acs.bioconjchem.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Immunocapture liquid chromatography-mass spectrometry (IC-LC-MS) bioanalysis has become an indispensable technique across various scientific disciplines, ranging from drug discovery to clinical diagnostics. While traditional immunocapture techniques have proven to be effective, they often encounter limitations in sensitivity, specificity, and compatibility with MS analysis. Chemoenzymatic immunocapture and protein capture (IPC) offers a promising solution, combining the high specificity of antibodies or proteins with the versatility of enzymatic and chemical modifications. This Review explores the foundational principles of chemoenzymatic IPC and examines various modification strategies including bioorthogonal click-chemistry, enzymatic-tagging, and HaloTag/CLIP-tag. Recent advancements in chemoenzymatic IPC techniques have significantly expanded their applicability to a diverse range of biomolecules including small molecules, peptides, RNAs, and proteins. This Review focuses on improvements in analytical performance achieved through these innovative approaches. Moreover, we discuss the broad applications of chemoenzymatic immunocapture in drug discovery, clinical diagnostics, and environmental analysis and explore its potential for future advancements in bioanalysis. We propose a novel solid-phase chemoenzymatic IPC assay (SCEIA) that effectively utilizes bioorthogonal click chemistry and chemoenzymatic approaches for efficient IPC and target analyte release. In summary, chemoenzymatic IPC represents a transformative paradigm shift in IC-LC-MS bioanalysis. By overcoming the limitations of traditional IPC techniques, this approach paves the way for more robust, sensitive, and versatile analytical workflows.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Hepatology and Gastroenterology, The Affiliated Infectious Hospital of Soochow University, Suzhou 215004, China
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Duanmin Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Perry G Wang
- Human Foods Program, U.S. Food and Drug Administration, College Park, Maryland 20740, United States
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu 215123, China
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
- Health Management Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
8
|
Feng J, Chen X, Li R, Xie Y, Zhang X, Guo X, Zhao L, Xu Z, Song Y, Song J, Bi H. Lactylome analysis reveals potential target modified proteins in the retina of form-deprivation myopia. iScience 2024; 27:110606. [PMID: 39246443 PMCID: PMC11379675 DOI: 10.1016/j.isci.2024.110606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/19/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024] Open
Abstract
The biological mechanisms underlying the development of myopia have not yet been completely elucidated. The retina is critical for visual signal processing, which primarily utilizes aerobic glycolysis to produce lactate as a metabolic end product. Lactate facilitates lysine lactylation (Kla), a posttranslational modification essential for transcriptional regulation. This study found increased glycolytic flux and lactate accumulation in the retinas of form-deprived myopic guinea pigs. Subsequently, a comprehensive analysis of Kla levels in retinal proteins revealed that Kla was upregulated at 124 sites in 92 proteins and downregulated at three sites in three proteins. Functional enrichment and protein interaction analyses showed significant enrichment in pathways related to energy metabolism, including glutathione metabolism, glycolysis, and the hypoxia-inducible factor-1 signaling pathway. Parallel-reaction monitoring confirmed data reliability. These findings suggest a connection between myopia and retinal energy metabolism imbalance, providing new insights into the pathogenesis of myopia.
Collapse
Affiliation(s)
- Jiaojiao Feng
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaoniao Chen
- Department of Ophthalmology, Chinese PLA General Hospital, Beijing 100853, China
| | - Runkuan Li
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yunxiao Xie
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, China
| | - Xiuyan Zhang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, China
| | - Xiaoxiao Guo
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Lianghui Zhao
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhe Xu
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yifan Song
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jike Song
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
- Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan 250002, China
| |
Collapse
|
9
|
Takezawa Y, Shionoya M. Enzymatic synthesis of ligand-bearing oligonucleotides for the development of metal-responsive DNA materials. Org Biomol Chem 2024; 22:7259-7270. [PMID: 38967487 DOI: 10.1039/d4ob00947a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Metal-mediated artificial base pairs are some of the most promising building blocks for constructing DNA-based supramolecules and functional materials. These base pairs are formed by coordination bonds between ligand-type nucleobases and a bridging metal ion and have been exploited to develop metal-responsive DNA materials and DNA-templated metal arrays. In this review, we provide an overview of methods for the enzymatic synthesis of DNA strands containing ligand-type artificial nucleotides that form metal-mediated base pairs. Conventionally, ligand-bearing DNA oligomers have been synthesized via solid-phase synthesis using a DNA synthesizer. In recent years, there has been growing interest in enzymatic methods as an alternative approach to synthesize ligand-bearing DNA oligomers, because enzymatic reactions proceed under mild conditions and do not require protecting groups. DNA polymerases are used to incorporate ligand-bearing unnatural nucleotides into DNA, and DNA ligases are used to connect artificial DNA oligomers to natural DNA fragments. Template-independent polymerases are also utilized to post-synthetically append ligand-bearing nucleotides to DNA oligomers. In addition, enzymatic replication of DNA duplexes containing metal-mediated base pairs has been intensively studied. Enzymatic methods facilitate the synthesis of DNA strands containing ligand-bearing nucleotides at both internal and terminal positions. Enzymatically synthesized ligand-bearing DNAs have been applied to metal-dependent self-assembly of DNA structures and the allosteric control of DNAzyme activity through metal-mediated base pairing. Therefore, the enzymatic synthesis of ligand-bearing oligonucleotides holds great potential in advancing the development of various metal-responsive DNA materials, such as molecular sensors and machines, providing a versatile tool for DNA supramolecular chemistry and nanotechnology.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.
| |
Collapse
|
10
|
Krömer M, Poštová Slavětínská L, Hocek M. Glyco-DNA: Enzymatic Synthesis of Base-Modified and Hypermodified DNA Displaying up to Four Different Monosaccharide Units in the Major Groove. Chemistry 2024; 30:e202402318. [PMID: 38896019 DOI: 10.1002/chem.202402318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
A portfolio of six modified 2'-deoxyribonucleoside triphosphate (dNTP) derivatives derived from 5-substituted pyrimidine or 7-substituted 7-deazapurine bearing different carbohydrate units (d-glucose, d-galactose, d-mannose, l-fucose, sialic acid and N-Ac-d-galactosamine) tethered through propargyl-glycoside linker was designed and synthesized via the Sonogashira reactions of halogenated dNTPs with the corresponding propargyl-glycosides. The nucleotides were found to be good substrates for DNA polymerases in enzymatic primer extension and PCR synthesis of modified and hypermodified DNA displaying up to four different sugars. Proof of concept binding study of sugar-modified oligonucleotides with concanavalin A showed positive effect of avidity and sugar units count.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
11
|
Li Y, Zhou Y, Zhou D, Jiang Y, Butt M, Yang H, Que Y, Li Z, Chen G. Regioselective Homolytic C 2-H Borylation of Unprotected Adenosine and Adenine Derivatives via Minisci Reaction. J Am Chem Soc 2024; 146:21428-21441. [PMID: 39051926 DOI: 10.1021/jacs.4c03865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A Minisci-type borylation of unprotected adenosine, adenine nucleotide, and adenosine analogues was successfully achieved through photocatalysis or thermal activation. Despite the challenges posed by the presence of two potential reactive sites (C2 and C8) in the purine motif, the unique nucleophilic amine-ligated boryl radicals effortlessly achieved excellent C2 site selectivity and simultaneously avoided the formation of multifunctionalized products. This protocol proved effective for the late-stage borylation of some important biomolecules as well as a few antiviral and antitumor drug molecules, such as AMP, cAMP, Vidarabine, Cordycepin, Tenofovir, Adefovir, GS-441524, etc. Theoretical calculations shed light on the site selectivity, revealing that the free energy barriers for the C2-Minisci addition are further lowered through the chelation of additive Mg2+ to N3 and furyl oxygen. This phenomenon has been confirmed by an IGMH analysis. Preliminary antitumor evaluation, derivation of the C2-borylated adenosine to other analogues with high-value functionalities, along with the CuAAC click reactions, suggest the potential application of this methodology in drug molecular optimization studies and chemical biology.
Collapse
Affiliation(s)
- Yangyan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yutong Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, P. R. China
| | - Dazhi Zhou
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Yujie Jiang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Madiha Butt
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hui Yang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Department of Pharmacy, Zunyi Medical University, Zunyi 563000, P. R. China
| | - Yingchuan Que
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhiming Li
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Gang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Key Laboratory of Green and High-value Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai, P. R. China
| |
Collapse
|
12
|
Pichon M, Hollenstein M. Controlled enzymatic synthesis of oligonucleotides. Commun Chem 2024; 7:138. [PMID: 38890393 PMCID: PMC11189433 DOI: 10.1038/s42004-024-01216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Oligonucleotides are advancing as essential materials for the development of new therapeutics, artificial genes, or in storage of information applications. Hitherto, our capacity to write (i.e., synthesize) oligonucleotides is not as efficient as that to read (i.e., sequencing) DNA/RNA. Alternative, biocatalytic methods for the de novo synthesis of natural or modified oligonucleotides are in dire need to circumvent the limitations of traditional synthetic approaches. This Perspective article summarizes recent progress made in controlled enzymatic synthesis, where temporary blocked nucleotides are incorporated into immobilized primers by polymerases. While robust protocols have been established for DNA, RNA or XNA synthesis is more challenging. Nevertheless, using a suitable combination of protected nucleotides and polymerase has shown promises to produce RNA oligonucleotides even though the production of long DNA/RNA/XNA sequences (>1000 nt) remains challenging. We surmise that merging ligase- and polymerase-based synthesis would help to circumvent the current shortcomings of controlled enzymatic synthesis.
Collapse
Affiliation(s)
- Maëva Pichon
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue du Docteur Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
13
|
Stachelska-Wierzchowska A, Wierzchowski J. Chemo-Enzymatic Generation of Highly Fluorescent Nucleoside Analogs Using Purine-Nucleoside Phosphorylase. Biomolecules 2024; 14:701. [PMID: 38927104 PMCID: PMC11201700 DOI: 10.3390/biom14060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Chemo-enzymatic syntheses of strongly fluorescent nucleoside analogs, potentially applicable in analytical biochemistry and cell biology are reviewed. The syntheses and properties of fluorescent ribofuranosides of several purine, 8-azapurine, and etheno-purine derivatives, obtained using various types of purine nucleoside phosphorylase (PNP) as catalysts, as well as α-ribose-1-phosphate (r1P) as a second substrate, are described. In several instances, the ribosylation sites are different to the canonical purine N9. Some of the obtained ribosides show fluorescence yields close to 100%. Possible applications of the new analogs include assays of PNP, nucleoside hydrolases, and other enzyme activities both in vitro and within living cells using fluorescence microscopy.
Collapse
Affiliation(s)
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| |
Collapse
|
14
|
Tor Y. Isomorphic Fluorescent Nucleosides. Acc Chem Res 2024; 57:1325-1335. [PMID: 38613490 PMCID: PMC11079976 DOI: 10.1021/acs.accounts.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
In 1960, Weber prophesied that "There are many ways in which the properties of the excited state can be utilized to study points of ignorance of the structure and function of proteins". This has been realized, illustrating that an intrinsic and highly responsive fluorophore such as tryptophan can alter the course of an entire scientific discipline. But what about RNA and DNA? Adapting Weber's protein photophysics prophecy to nucleic acids requires the development of intrinsically emissive nucleoside surrogates as, unlike Trp, the canonical nucleobases display unusually low emission quantum yields, which render nucleosides, nucleotides, and oligonucleotides practically dark for most fluorescence-based applications.Over the past decades, we have developed emissive nucleoside surrogates that facilitate the monitoring of nucleoside-, nucleotide-, and nucleic acid-based transformations at a nucleobase resolution in real time. The premise underlying our approach is the identification of minimal atomic/structural perturbations that endow the synthetic analogs with favorable photophysical features while maintaining native conformations and pairing. As illuminating probes, the photophysical parameters of such isomorphic nucleosides display sensitivity to microenvironmental factors. Responsive isomorphic analogs that function similarly to their native counterparts in biochemical contexts are defined as isofunctional.Early analogs included pyrimidines substituted with five-membered aromatic heterocycles at their 5 position and have been used to assess the polarity of the major groove in duplexes. Polarized quinazolines have proven useful in assembling FRET pairs with established fluorophores and have been used to study RNA-protein and RNA-small-molecule binding. Completing a fluorescent ribonucleoside alphabet, composed of visibly emissive purine (thA, thG) and pyrimidine (thU, thC) analogs, all derived from thieno[3,4-d]pyrimidine as the heterocyclic nucleus, was a major breakthrough. To further augment functionality, a second-generation emissive RNA alphabet based on an isothiazolo[4,3-d]pyrimidine core (thA, tzG, tzU, and tzC) was fabricated. This single-atom "mutagenesis" restored the basic/coordinating nitrogen corresponding to N7 in the purine skeleton and elevated biological recognition.The isomorphic emissive nucleosides and nucleotides, particularly the purine analogs, serve as substrates for diverse enzymes. Beyond polymerases, we have challenged the emissive analogs with metabolic and catabolic enzymes, opening optical windows into the biochemistry of nucleosides and nucleotides as metabolites as well as coenzymes and second messengers. Real-time fluorescence-based assays for adenosine deaminase, guanine deaminase, and cytidine deaminase have been fabricated and used for inhibitor discovery. Emissive cofactors (e.g., SthAM), coenzymes (e.g., NtzAD+), and second messengers (e.g., c-di-tzGMP) have been enzymatically synthesized, using xyNTPs and native enzymes. Both their biosynthesis and their transformations can be fluorescently monitored in real time.Highly isomorphic and isofunctional emissive surrogates can therefore be fabricated and judiciously implemented. Beyond their utility, side-by-side comparison to established analogs, particularly to 2-aminopurine, the workhorse of nucleic acid biophysics over 5 decades, has proven prudent as they refined the scope and limitations of both the new analogs and their predecessors. Challenges, however, remain. Associated with such small heterocycles are relatively short emission wavelengths and limited brightness. Recent advances in multiphoton spectroscopy and further structural modifications have shown promise for overcoming such barriers.
Collapse
Affiliation(s)
- Yitzhak Tor
- Department of Chemistry and
Biochemistry, University of California,
San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Xia Z, Kondhare D, Chandankar SS, Ingale SA, Leonard P, Seela F. Nucleobase-Functionalized 7-Deazaisoguanine and 7-Deazapurin-2,6-diamine Nucleosides: Halogenation, Cross-Coupling, and Cycloaddition. J Org Chem 2024; 89:1807-1822. [PMID: 38227281 DOI: 10.1021/acs.joc.3c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The functionalization in position-7 of 7-deazaisoguanine and 7-deazapurin-2,6-diamine ribo- and 2'-deoxyribonucleosides by halogen atoms (chloro, bromo, iodo), and clickable alkynyl and vinyl side chains for copper-catalyzed and copper-free cycloadditions is described. Problems arising during the synthesis of the 7-iodinated isoguanine ribo- and 2'-deoxyribonucleosides were solved by the action of acetone. The impact of side chains and halogen atoms on the pKa values and hydrophobicity of nucleosides was investigated. Halogenated substituents increase the lipophilic character of nucleosides in the order Cl < Br < I and decrease the pK values of protonation. Photophysical properties (fluorescence, solvatochromism, and quantum yields) of azide-alkyne click adducts bearing pyrene as sensor groups were determined. Pyrene fluorescence was solvent-dependent and changed according to the linker lengths. Excimer emission was observed in dioxane for the long linker adduct. Bioorthogonal inverse-electron-demanding Diels-Alder cycloadditions (iEDDA) were conducted on the electron-rich vinyl groups of 7-deazaisoguanine and 7-deazapurin-2,6-diamine nucleosides as dienophiles and 3,6-dipyridyl-1,2,4,5-tetrazine as diene. The initially formed complex reaction mixture of isomers could be easily oxidized with iodine in tetrahydrofuran (THF)/pyridine leading to single aromatic tetrazine adducts within a short time and in excellent yields.
Collapse
Affiliation(s)
- Zhenqiang Xia
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Somnath Shivaji Chandankar
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Sachin A Ingale
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
16
|
Li X, Wang GA, Wei Z, Wang H, Zhu X. Protein-DNA interface hotspots prediction based on fusion features of embeddings of protein language model and handcrafted features. Comput Biol Chem 2023; 107:107970. [PMID: 37866116 DOI: 10.1016/j.compbiolchem.2023.107970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
The identification of hotspot residues at the protein-DNA binding interfaces plays a crucial role in various aspects such as drug discovery and disease treatment. Although experimental methods such as alanine scanning mutagenesis have been developed to determine the hotspot residues on protein-DNA interfaces, they are both inefficient and costly. Therefore, it is highly necessary to develop efficient and accurate computational methods for predicting hotspot residues. Several computational methods have been developed, however, they are mainly based on hand-crafted features which may not be able to represent all the information of proteins. In this regard, we propose a model called PDH-EH, which utilizes fused features of embeddings extracted from a protein language model (PLM) and handcrafted features. After we extracted the total 1141 dimensional features, we used mRMR to select the optimal feature subset. Based on the optimal feature subset, several different learning algorithms such as Random Forest, Support Vector Machine, and XGBoost were used to build the models. The cross-validation results on the training dataset show that the model built by using Random Forest achieves the highest AUROC. Further evaluation on the independent test set shows that our model outperforms the existing state-of-the-art models. Moreover, the effectiveness and interpretability of embeddings extracted from PLM were demonstrated in our analysis. The codes and datasets used in this study are available at: https://github.com/lixiangli01/PDH-EH.
Collapse
Affiliation(s)
- Xiang Li
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Gang-Ao Wang
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhuoyu Wei
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hong Wang
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaolei Zhu
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
17
|
Rieger L, Pfeuffer B, Wagenknecht HA. Metabolic labelling of DNA in cells by means of the "photoclick" reaction triggered by visible light. RSC Chem Biol 2023; 4:1037-1042. [PMID: 38033731 PMCID: PMC10685802 DOI: 10.1039/d3cb00150d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 12/02/2023] Open
Abstract
Two pyrene-tetrazole conjugates were synthesized as photoreactive chromophores that allow for the first time the combination of metabolic labelling of DNA in cells and subsequent bioorthogonal "photoclick" modification triggered by visible light. Two strained alkenes and three alkene-modified nucleosides were used as reactive counterparts and revealed no major differences in their "photoclick" reactivity. This is a significant advantage because it allows 5-vinyl-2'-deoxyuridine to be applied as the smallest possible alkene-modified nucleoside for metabolic labelling of DNA in cells. Both pyrene-tetrazole conjugates show fluorogenicity during the "photoclick" reactions, which is a second advantage for cellular imaging. Living HeLa cells were incubated with 5-vinyl-2'-deoxyuridine for 48 h to ensure one cell division. After fixation, the newly synthesized genomic DNA was successfully labelled by irradiation with visible light at 405 nm and 450 nm. This method is an attractive tool for the visualization of genomic DNA in cells with full spatiotemporal control by the use of visible light as a reaction trigger.
Collapse
Affiliation(s)
- Lisa Rieger
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6 Karlsruhe 76131 Germany
| | - Bastian Pfeuffer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6 Karlsruhe 76131 Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6 Karlsruhe 76131 Germany
| |
Collapse
|
18
|
Kuprikova N, Ondruš M, Bednárová L, Riopedre-Fernandez M, Slavětínská L, Sýkorová V, Hocek M. Superanionic DNA: enzymatic synthesis of hypermodified DNA bearing four different anionic substituents at all four nucleobases. Nucleic Acids Res 2023; 51:11428-11438. [PMID: 37870471 PMCID: PMC10681718 DOI: 10.1093/nar/gkad893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
We designed and synthesized a set of four 2'-deoxyribonucleoside 5'-O-triphosphates (dNTPs) derived from 5-substituted pyrimidines and 7-substituted 7-deazapurines bearing anionic substituents (carboxylate, sulfonate, phosphonate, and phosphate). The anion-linked dNTPs were used for enzymatic synthesis of modified and hypermodified DNA using KOD XL DNA polymerase containing one, two, three, or four modified nucleotides. The polymerase was able to synthesize even long sequences of >100 modified nucleotides in a row by primer extension (PEX). We also successfully combined two anionic and two hydrophobic dNTPs bearing phenyl and indole moieties. In PCR, the combinations of one or two modified dNTPs gave exponential amplification, while most of the combinations of three or four modified dNTPs gave only linear amplification in asymmetric PCR. The hypermodified ONs were successfully re-PCRed and sequenced by Sanger sequencing. Biophysical studies including hybridization, denaturation, CD spectroscopy and molecular modelling and dynamics suggest that the presence of anionic modifications in one strand decreases the stability of duplexes while still preserving the B-DNA conformation, whilst the DNA hypermodified in both strands adopts a different secondary structure.
Collapse
Affiliation(s)
- Natalia Kuprikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Miguel Riopedre-Fernandez
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
19
|
Johnson RE, Murray MT, Bycraft LJ, Myler P, Wetmore SD, Manderville RA. Harnessing a 4-Formyl-Aniline Handle to Tune the Stability of a DNA Aptamer-Protein Complex via Fluorescent Surrogates. Bioconjug Chem 2023; 34:2066-2076. [PMID: 37857354 DOI: 10.1021/acs.bioconjchem.3c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Interactions between DNA aptamers and protein targets hold promise for the development of pharmaceuticals and diagnostics. As such, the utilization of fluorescent nucleobase surrogates in studying aptamer-protein interactions is a powerful tool due to their ability to provide site-specific information through turn-on fluorescence. Unfortunately, previously described turn-on probes serving as nucleobase replacements have only been strongly disruptive to the affinity of aptamer-protein interactions. Herein, we present a modified TBA15 aptamer for thrombin containing a fluorescent surrogate that provides site-specific turn-on emission with low nanomolar affinity. The modification, referred to as AnBtz, was substituted at position T3 and provided strong turn-on emission (Irel ≈ 4) and brightness (ε·Φ > 20 000 cm-1 M-1) with an apparent dissociation constant (Kd) of 15 nM to afford a limit of detection (LOD) of 10 nM for thrombin in 20% human serum. The probe was selected through a modular "on-strand" synthesis process that utilized a 4-formyl-aniline (4FA) handle. Using this platform, we were able to enhance the affinity of the final aptamer conjugate by ∼30-fold in comparison with the initial conjugate design. Molecular dynamics simulations provide insight into the structural basis for this phenomenon and highlight the importance of targeting hydrophobic protein binding sites with fluorescent nucleobase surrogates to create new contacts with protein targets.
Collapse
Affiliation(s)
- Ryan E Johnson
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Makay T Murray
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Lucas J Bycraft
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Peter Myler
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Richard A Manderville
- Departments of Chemistry & Toxicology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
20
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
21
|
Li J, Cui Z, Fan C, Zhou Y, Ren M, Zhou C. Photo-caged 2-butene-1,4-dial as an efficient, target-specific photo-crosslinker for covalent trapping of DNA-binding proteins. Chem Sci 2023; 14:10884-10891. [PMID: 37829010 PMCID: PMC10566456 DOI: 10.1039/d3sc03719c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Covalent trapping of DNA-binding proteins via photo-crosslinking is an advantageous method for studying DNA-protein interactions. However, traditional photo-crosslinkers generate highly reactive intermediates that rapidly and non-selectively react with nearby functional groups, resulting in low target-capture yields and high non-target background capture. Herein, we report that photo-caged 2-butene-1,4-dial (PBDA) is an efficient photo-crosslinker for trapping DNA-binding proteins. Photo-irradiation (360 nm) of PBDA-modified DNA generates 2-butene-1,4-dial (BDA), a small, long-lived intermediate that reacts selectively with Lys residues of DNA-binding proteins, leading in minutes to stable DNA-protein crosslinks in up to 70% yield. In addition, BDA exhibits high specificity for target proteins, leading to low non-target background capture. The high photo-crosslinking yield and target specificity make PBDA a powerful tool for studying DNA-protein interactions.
Collapse
Affiliation(s)
- Jiahui Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Zenghui Cui
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Chaochao Fan
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
22
|
Kohn EM, Konovalov K, Gomez CA, Hoover GN, Yik AKH, Huang X, Martell JD. Terminal Alkyne-Modified DNA Aptamers with Enhanced Protein Binding Affinities. ACS Chem Biol 2023; 18:1976-1984. [PMID: 37531184 DOI: 10.1021/acschembio.3c00183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Nucleic acid-based receptors, known as aptamers, are relatively fast to discover and manufacture but lack the diverse functional groups of protein receptors (e.g., antibodies). The binding properties of DNA aptamers can be enhanced by attaching abiotic functional groups; for example, aromatic groups such as naphthalene slow dissociation from proteins. Although the terminal alkyne is a π-electron-rich functional group that has been used in small molecule drugs to enhance binding to proteins through noncovalent interactions, it remains unexplored for enhancing DNA aptamer binding affinity. Here, we demonstrate the utility of the terminal alkyne for improving the binding of DNA to proteins. We prepared a library of 256 terminal-alkyne-bearing variants of HD22, a DNA aptamer that binds the protein thrombin with nanomolar affinity. After a one-step thrombin-binding selection, a high-affinity aptamer containing two alkynes was discovered, exhibiting 3.2-fold tighter thrombin binding than the corresponding unmodified sequence. The tighter binding was attributable to a slower rate of dissociation from thrombin (5.2-fold slower than HD22). Molecular dynamics simulations with enhanced sampling by Replica Exchange with Solute Tempering (REST2) suggest that the π-electron-rich alkyne interacts with an asparagine side chain N-H group on thrombin, forming a noncovalent interaction that stabilizes the aptamer-protein interface. Overall, this work represents the first case of terminal alkynes enhancing the binding properties of an aptamer and underscores the utility of the terminal alkyne as an atom economical π-electron-rich functional group to enhance binding affinity with minimal steric perturbation.
Collapse
Affiliation(s)
- Eric M Kohn
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kirill Konovalov
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Christian A Gomez
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gillian N Hoover
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew Kai-Hei Yik
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuhui Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey D Martell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| |
Collapse
|
23
|
Johnson RE, Murray MT, Bycraft LJ, Wetmore SD, Manderville RA. A modular aldol approach for internal fluorescent molecular rotor chalcone surrogates for DNA biosensing applications. Chem Sci 2023; 14:4832-4844. [PMID: 37181758 PMCID: PMC10171068 DOI: 10.1039/d3sc00772c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Fluorescent molecular rotors (FMRs) are critical tools for probing nucleic acid structure and function. Many valuable FMRs have been incorporated into oligonucleotides, although the methods of doing so can be cumbersome. Development of synthetically simple, high yielding modular methods to fine-tune dye performance is crucial to expand the biotechnological applications of oligonucleotides. Herein, we report the utility of 6-hydroxy-indanone (6HI) with a glycol backbone to serve as a handle for on-strand aldehyde capture as a modular aldol approach for site-specific insertion of internal FMR chalcones. Aldol reactions with aromatic aldehydes containing N-donors proceed in high yield to create modified DNA oligonucleotides, which in the duplex match the stability of the fully paired canonical B-form with strong stacking interactions between the planar probe and the flanking base pairs, as evidenced by molecular dynamics (MD) simulations. The FMR chalcones possess remarkable quantum yields (Φfl up to 76%) in duplex DNA, coupled with large Stokes shifts (Δν up to 155 nm), light-up emissions (Irel up to 60-fold) that span the visible region (λem 518-680 nm) with brightness up to 17 480 cm-1 M-1. The library also contains a FRET pair and dual emission probes, suitable for ratiometric sensing. The ease of aldol insertion coupled with the excellent performance of the FMR chalcones permits their future wide-spread use.
Collapse
Affiliation(s)
- Ryan E Johnson
- Department of Chemistry & Toxicology, University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Makay T Murray
- Department of Chemistry & Biochemistry, University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - Lucas J Bycraft
- Department of Chemistry & Toxicology, University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge Lethbridge Alberta T1K 3M4 Canada
| | - Richard A Manderville
- Department of Chemistry & Toxicology, University of Guelph Guelph Ontario N1G 2W1 Canada
| |
Collapse
|
24
|
Salgado-Blanco D, Flores-Saldaña DSM, Jaimes-Miranda F, López-Urías F. Electronic and magnetic properties of TATA-DNA sequence driven by chemical functionalization. J Comput Chem 2023; 44:1199-1207. [PMID: 36704941 DOI: 10.1002/jcc.27079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/06/2022] [Accepted: 01/08/2023] [Indexed: 01/28/2023]
Abstract
The TATA box is a promoter sequence able to interact directly with the components of the basal transcription initiation machinery. We investigate the changes in the electronic and magnetic properties of a TATA-DNA sequence when functionalized with different chemical groups; using the first-principles density functional theory specifically, the TATA-DNA sequences were functionalized with methyl groups (CH3 , methylation), amino groups (NH2 , amination), imine groups (NH, imination), chloroamine groups (NCl2 , chloramination), H-adatom (hydrogenation), and Cl-adatom (chlorination). The functional groups were anchored at nitrogen atoms from adenine and oxygen atoms from thymine at sites pointed as reactive regions. We demonstrated that chemical functionalization induces significant changes in charge transfer, hydrogen bond distance, and hydrogen bond energy. The hydrogenation and imination increased the hydrogen bond energy. Results also revealed that the chemical functionalization of DNA molecules exhibit a ferromagnetic ground state, reaching magnetization up to 4.665 μB and complex magnetic ordering. We further demonstrated that the functionalization could induce tautomerism (proton migration in the base pair systems). The present study provides a theoretical basis for understanding the functionalization further into DNA molecules and visualizing possible future applications.
Collapse
Affiliation(s)
- Daniel Salgado-Blanco
- Cátedra-Conacyt, Centro Nacional de Supercómputo, IPICyT, San Luis Potosí, Mexico
- División de Materiales Avanzados, IPICyT, San Luis Potosí, Mexico
| | - Diana S M Flores-Saldaña
- Engineering in Nanotechnologies and Energies, San Luis Potosí Autonomous University, San Luis Potosí, Mexico
| | | | | |
Collapse
|
25
|
Mulholland C, Jestřábová I, Sett A, Ondruš M, Sýkorová V, Manzanares CL, Šimončík O, Muller P, Hocek M. The selection of a hydrophobic 7-phenylbutyl-7-deazaadenine-modified DNA aptamer with high binding affinity for the Heat Shock Protein 70. Commun Chem 2023; 6:65. [PMID: 37024672 PMCID: PMC10079658 DOI: 10.1038/s42004-023-00862-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Nucleic acids aptamers often fail to efficiently target some proteins because of the hydrophilic character of the natural nucleotides. Here we present hydrophobic 7-phenylbutyl-7-deaadenine-modified DNA aptamers against the Heat Shock Protein 70 that were selected via PEX and magnetic bead-based SELEX. After 9 rounds of selection, the pool was sequenced and a number of candidates were identified. Following initial screening, two modified aptamers were chemically synthesised in-house and their binding affinity analysed by two methods, bio-layer interferometry and fluorescent-plate-based binding assay. The binding affinities of the modified aptamers were compared with that of their natural counterparts. The resulting modified aptamers bound with higher affinity (low nanomolar range) to the Hsp70 than their natural sequence (>5 µM) and hence have potential for applications and further development towards Hsp70 diagnostics or even therapeutics.
Collapse
Affiliation(s)
- Catherine Mulholland
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Prague, Czech Republic
| | - Ivana Jestřábová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Prague, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2, Prague, 12843, Czech Republic
| | - Arghya Sett
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Prague, Czech Republic
| | - Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Prague, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2, Prague, 12843, Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Prague, Czech Republic
| | - C Lorena Manzanares
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Prague, Czech Republic
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377, München, Germany
| | - Oliver Šimončík
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Petr Muller
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague 6, Prague, Czech Republic.
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague 2, Prague, 12843, Czech Republic.
| |
Collapse
|
26
|
Meher S, Gade CR, Sharma NK. Tropolone-Conjugated DNA: A Fluorescent Thymidine Analogue Exhibits Solvatochromism, Enzymatic Incorporation into DNA and HeLa Cell Internalization. Chembiochem 2023; 24:e202200732. [PMID: 36510378 DOI: 10.1002/cbic.202200732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Tropolone is a non-benzenoid aromatic scaffold with unique photophysical and metal-chelating properties. Recently, it has been conjugated with DNA, and the photophysical properties of this conjugate have been explored. Tropolonyl-deoxyuridine (tr-dU) is a synthetic fluorescent DNA nucleoside analogue that exhibits pH-dependent emissions. However, its solvent-dependent fluorescence properties are unexplored owing to its poor solubility in most organic solvents. It would be interesting to incorporate it into DNA primer enzymatically. This report describes the solvent-dependent fluorescence properties of the silyl-derivative, and enzymatic incorporation of its triphosphate analogue. For practical use, its cell-internalization and cytotoxicity are also explored. tr-dU nucleoside was found to be a potential analogue to design DNA probes and can be explored for various therapeutic applications in the future.
Collapse
Affiliation(s)
- Sagarika Meher
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Chandrasekhar Reddy Gade
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Nagendra K Sharma
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
27
|
Chowdhury M, Hudson RHE. Exploring Nucleobase Modifications in Oligonucleotide Analogues for Use as Environmentally Responsive Fluorophores and Beyond. CHEM REC 2023; 23:e202200218. [PMID: 36344432 DOI: 10.1002/tcr.202200218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Indexed: 11/09/2022]
Abstract
Over the past two decades, it has become abundantly clear that nucleic acid biochemistry, especially with respect to RNA, is more convoluted and complex than previously appreciated. Indeed, the application and exploitation of nucleic acids beyond their predestined role as the medium for storage and transmission of genetic information to the treatment and study of diseases has been achieved. In other areas of endeavor, utilization of nucleic acids as a probe molecule requires that they possess a reporter group. The reporter group of choice is often a luminophore because fluorescence spectroscopy has emerged as an indispensable tool to probe the structural and functional properties of modified nucleic acids. The scope of this review spans research done in the Hudson lab at The University of Western Ontario and is focused on modified pyrimidine nucleobases and their applications as environmentally sensitive fluorophores, base discriminating fluorophores, and in service of antisense applications as well as tantalizing new results as G-quadruplex destabilizing agents. While this review is a focused personal account, particularly influential work of colleagues in the chemistry community will be highlighted. The intention is not to make a comprehensive review, citations to the existing excellent reviews are given, any omission of the wonderful and impactful work being done by others globally is not intentional. Thus, this review will briefly introduce the context of our work, summarize what has been accomplished and finish with the prospects of future developments.
Collapse
Affiliation(s)
- Mria Chowdhury
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| |
Collapse
|
28
|
Pospíšil Š, Panattoni A, Gracias F, Sýkorová V, Hausnerová VV, Vítovská D, Šanderová H, Krásný L, Hocek M. Epigenetic Pyrimidine Nucleotides in Competition with Natural dNTPs as Substrates for Diverse DNA Polymerases. ACS Chem Biol 2022; 17:2781-2788. [PMID: 35679536 PMCID: PMC9594043 DOI: 10.1021/acschembio.2c00342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Five 2'-deoxyribonucleoside triphosphates (dNTPs) derived from epigenetic pyrimidines (5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, 5-hydroxymethyluracil, and 5-formyluracil) were prepared and systematically studied as substrates for nine DNA polymerases in competition with natural dNTPs by primer extension experiments. The incorporation of these substrates was evaluated by a restriction endonucleases cleavage-based assay and by a kinetic study of single nucleotide extension. All of the modified pyrimidine dNTPs were good substrates for the studied DNA polymerases that incorporated a significant percentage of the modified nucleotides into DNA even in the presence of natural nucleotides. 5-Methylcytosine dNTP was an even better substrate for most polymerases than natural dCTP. On the other hand, 5-hydroxymethyl-2'-deoxyuridine triphosphate was not the best substrate for SPO1 DNA polymerase, which naturally synthesizes 5hmU-rich genomes of the SPO1 bacteriophage. The results shed light onto the possibility of gene silencing through recycling and random incorporation of epigenetic nucleotides and into the replication of modified bacteriophage genomes.
Collapse
Affiliation(s)
- Šimon Pospíšil
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic,Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Alessandro Panattoni
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Filip Gracias
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Veronika Sýkorová
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Viola Vaňková Hausnerová
- Lab.
of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Dragana Vítovská
- Lab.
of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Hana Šanderová
- Lab.
of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Libor Krásný
- Lab.
of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Michal Hocek
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic,Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic,E-mail:
| |
Collapse
|
29
|
Flamme M, Katkevica D, Pajuste K, Katkevics M, Sabat N, Hanlon S, Marzuoli I, Püntener K, Sladojevich F, Hollenstein M. Benzoyl and pivaloyl as efficient protecting groups for controlled enzymatic synthesis of DNA and XNA oligonucleotides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marie Flamme
- Institut Pasteur Structrual Biology and Chemistry FRANCE
| | - Dace Katkevica
- Latvian Institute of Organic Synthesis: Latvijas Organiskas sintezes instituts Chemistry LATVIA
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis: Latvijas Organiskas sintezes instituts Chemistry LATVIA
| | - Martins Katkevics
- Latvian Institute of Organic Synthesis: Latvijas Organiskas sintezes instituts Chemistry LATVIA
| | - Nazarii Sabat
- Institut Pasteur Structural Biology and Chemistry FRANCE
| | - Steven Hanlon
- Hoffmann-La Roche Ltd Synthetic Molecules Technical Development SWITZERLAND
| | - Irene Marzuoli
- Hoffmann-La Roche Ltd Synthetic Molecules Technical Development SWITZERLAND
| | - Kurt Püntener
- Hoffmann-La Roche Ltd Synthetic Molecules Technical Development SWITZERLAND
| | | | - Marcel Hollenstein
- Institut Pasteur Department of Structural Biology and Chemistry 28 Rue du Dr. Roux 75015 Paris FRANCE
| |
Collapse
|
30
|
Bollu A, Panda SS, Sharma NK. Fluorescent DNA analog: 2-aminotroponyl-pyrrolyl-2'-deoxyuridinyl DNA oligo enhance fluorescence in DNA-duplex as compared to 2-aminotroponyl-ethynyl-2'-deoxyuridinyl DNA oligo. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:119-133. [PMID: 36002436 DOI: 10.1080/15257770.2022.2111442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The nucleobase modified fluorescent DNA and RNA analogs are synthesized by the conjugation of aromatic scaffolds through linkers, comprising mostly ethyne/ethene or fused ring residues at the pyrimidine/purine ring. These scaffolds are mainly derived from the benzenoid aromatic molecules comprising electron withdrawing/donating characters. However, non-benzenoid aromatic scaffolds such as tropolone and related derivatives are constituents of various troponoid natural products. The conjugation of nucleobases with a troponyl moiety is underutilized for the synthesis of fluorescent DNA analogs. This report describes the synthesis and photophysical studies of 2-aminotroponyl conjugated deoxyuridine nucleosides and their DNA analogs. 2-Aminotropone derivatives are conjugated at the C-5 position of uridine through an ethynyl linker/pyrrolyl ring fusion and their DNA analogs. Their photophysical studies reveal that aminotroponyl deoxyuridine analogs exhibit solvent-dependent fluorescence properties. Moreover, pyrrolyl ring-fused aminotroponyl DNA oligonucleotides enhance the fluorescence after formation of duplexation with complementary sequences of native DNA oligonucleotides. Hence, these modified nucleosides and DNA are promising fluorescent analogs which could be useful to design the sequence-specific DNA probes.
Collapse
Affiliation(s)
- Amarnath Bollu
- School of Chemical Science, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI)-Mumbai, Mumbai, India
| | - Subhashree Subhadarshini Panda
- School of Chemical Science, National Institute of Science Education and Research, Bhubaneswar, India.,Homi Bhabha National Institute (HBNI)-Mumbai, Mumbai, India
| | | |
Collapse
|
31
|
Dziuba D. Environmentally sensitive fluorescent nucleoside analogues as probes for nucleic acid - protein interactions: molecular design and biosensing applications. Methods Appl Fluoresc 2022; 10. [PMID: 35738250 DOI: 10.1088/2050-6120/ac7bd8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are indispensable in studying the interactions of nucleic acids with nucleic acid-binding proteins. By replacing one of the poorly emissive natural nucleosides, FNAs enable real-time optical monitoring of the binding interactions in solutions, under physiologically relevant conditions, with high sensitivity. Besides that, FNAs are widely used to probe conformational dynamics of biomolecular complexes using time-resolved fluorescence methods. Because of that, FNAs are tools of high utility for fundamental biological research, with potential applications in molecular diagnostics and drug discovery. Here I review the structural and physical factors that can be used for the conversion of the molecular binding events into a detectable fluorescence output. Typical environmentally sensitive FNAs, their properties and applications, and future challenges in the field are discussed.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden, Grand Est, 67401, FRANCE
| |
Collapse
|
32
|
Ghosh P, Kropp HM, Betz K, Ludmann S, Diederichs K, Marx A, Srivatsan SG. Microenvironment-Sensitive Fluorescent Nucleotide Probes from Benzofuran, Benzothiophene, and Selenophene as Substrates for DNA Polymerases. J Am Chem Soc 2022; 144:10556-10569. [PMID: 35666775 DOI: 10.1021/jacs.2c03454] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA polymerases can process a wide variety of structurally diverse nucleotide substrates, but the molecular basis by which the analogs are processed is not completely understood. Here, we demonstrate the utility of environment-sensitive heterocycle-modified fluorescent nucleotide substrates in probing the incorporation mechanism of DNA polymerases in real time and at the atomic level. The nucleotide analogs containing a selenophene, benzofuran, or benzothiophene moiety at the C5 position of 2'-deoxyuridine are incorporated into oligonucleotides (ONs) with varying efficiency, which depends on the size of the heterocycle modification and the DNA polymerase sequence family used. KlenTaq (A family DNA polymerase) is sensitive to the size of the modification as it incorporates only one heterobicycle-modified nucleotide into the growing polymer, whereas it efficiently incorporates the selenophene-modified nucleotide analog at multiple positions. Notably, in the single nucleotide incorporation assay, irrespective of the heterocycle size, it exclusively adds a single nucleotide at the 3'-end of a primer, which enabled devising a simple two-step site-specific ON labeling technique. KOD and Vent(exo-) DNA polymerases, belonging to the B family, tolerate all the three modified nucleotides and produce ONs with multiple labels. Importantly, the benzofuran-modified nucleotide (BFdUTP) serves as an excellent reporter by providing real-time fluorescence readouts to monitor enzyme activity and estimate the binding events in the catalytic cycle. Further, a direct comparison of the incorporation profiles, fluorescence data, and crystal structure of a ternary complex of KlenTaq DNA polymerase with BFdUTP poised for catalysis provides a detailed understanding of the mechanism of incorporation of heterocycle-modified nucleotides.
Collapse
Affiliation(s)
- Pulak Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| | - Heike M Kropp
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karin Betz
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Samra Ludmann
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Kay Diederichs
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
33
|
Bollu A, Peters A, Rentmeister A. Chemo-Enzymatic Modification of the 5' Cap To Study mRNAs. Acc Chem Res 2022; 55:1249-1261. [PMID: 35420432 DOI: 10.1021/acs.accounts.2c00059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The central dogma of molecular biology hinges on messenger RNA (mRNA), which presents a blueprint of the genetic information encoded in the DNA and serves as a template for translation into proteins. In addition to its fundamental importance in basic research, this class of biomolecules has recently become the first approved Covid vaccine, underscoring its utility in medical applications.Eukaryotic mRNA is heavily processed, including the 5' cap as the primary hallmark. This 5' cap protects mRNA from degradation by exoribonucleases but also interacts specifically with several proteins and enzymes to ensure mRNA turnover and processing, like splicing, export from the nucleus to the cytoplasm, and initiation of translation. The absence of a 5' cap leads to a strong immune response, and the methylation status contributes to distinguishing self from non-self RNA.Non-natural modifications of the 5' cap provide an avenue to label mRNAs and make them accessible to analyses, which is important to study their cellular localization, trafficking, and binding partners. They bear potential to engineer mRNAs, e.g., more stable or immunogenic mRNAs that are still translated, by impacting select interactions in a distinct manner. The modification of the 5' cap itself is powerful as it can be applied to make long mRNAs (∼1000 nt, not directly accessible by solid-phase synthesis) by in vitro transcription.This Account describes our contribution to the field of chemo-enzymatic modification of mRNA at the 5' cap. Our approach relies on RNA methyltransferases (MTases) with promiscuous activity on analogues of their natural cosubstrate S-adenosyl-L-methionine (AdoMet). We will describe how RNA MTases in combination with non-natural cosubstrates provide access to site-specific modification of different positions of the 5' cap, namely, the N2 and N7 position of guanosine and the N6 position of adenosine as the transcription start nucleotide (TSN) and exemplify strategies to make long mRNAs with modified 5' caps.We will compare the chemical and enzymatic synthesis of the AdoMet analogues used for this purpose. We could overcome previous limitations in methionine adenosyltransferase (MAT) substrate scope by engineering variants (termed PC-MATs) with the ability to convert methionine analogues with benzylic and photocaging groups at the sulfonium ion.The final part of this Account will highlight applications of the modified mRNAs. Like in many chemo-enzymatic approaches, a versatile strategy is to install small functional groups enzymatically and use them as handles in subsequent bioorthogonal reactions. We showed fluorescent labeling of mRNAs via different types of click chemistry in vitro and in cells. In a second line of applications, we used the handles to make mRNAs amenable for analyses, most notably next-generation sequencing. In the case of extremely promiscuous enzymes, the direct installation of photo-cross-linking groups was successful also and provided a way to covalently bind protein-interaction partners. Finally, the non-natural modifications of mRNAs can also modulate the properties of mRNAs. Propargylation of Am as the transcription start nucleotide at its N6 position maintained the translation of mRNAs but increased their immunogenicity. The installation of photocaging groups provides a way to revert these effects and control interactions by light.
Collapse
Affiliation(s)
- Amarnath Bollu
- Department of Chemistry and Pharmacy, Institute of Biochemistry Westfälische Wilhelms-Universität Münster, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Aileen Peters
- Department of Chemistry and Pharmacy, Institute of Biochemistry Westfälische Wilhelms-Universität Münster, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Andrea Rentmeister
- Department of Chemistry and Pharmacy, Institute of Biochemistry Westfälische Wilhelms-Universität Münster, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| |
Collapse
|
34
|
Leone D, Pohl R, Hubálek M, Kadeřábková M, Krömer M, Sýkorová V, Hocek M. Glyoxal‐Linked Nucleotides and DNA for Bioconjugations and Crosslinking with Arginine‐Containing Peptides and Proteins. Chemistry 2022; 28:e202104208. [DOI: 10.1002/chem.202104208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Denise‐Liu' Leone
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University in Prague Hlavova 8 12843 Prague 2 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Marta Kadeřábková
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University in Prague Hlavova 8 12843 Prague 2 Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University in Prague Hlavova 8 12843 Prague 2 Czech Republic
| |
Collapse
|
35
|
Pirota V, Benassi A, Doria F. Lights on 2,5-diaryl tetrazoles: applications and limits of a versatile photoclick reaction. Photochem Photobiol Sci 2022; 21:879-898. [DOI: 10.1007/s43630-022-00173-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/13/2022] [Indexed: 01/14/2023]
Abstract
AbstractRecently, photoclick chemistry emerged as a powerful tool employed in several research fields, from medicinal chemistry and biology to material sciences. The growing interest in this type of chemical process is justified by the possibility to produce complex molecular systems using mild reaction conditions. However, the elevated spatio-temporal control offered by photoclick chemistry is highly intriguing, as it expands the range of applications. In this context, the light-triggered reaction of 2,5-diaryl tetrazoles with dipolarophiles emerged for its interesting features: excellent stability of the substrates, fast reaction kinetic, and the formation of a highly fluorescent product, fundamental for sensing applications. In the last years, 2,5-diaryl tetrazoles have been extensively employed, especially for bioorthogonal ligations, to label biomolecules and nucleic acids. In this review, we summarized recent applications of this interesting photoclick reaction, with a particular focus on biological fields. Moreover, we described the main limits that affect this system and current strategies proposed to overcome these issues. The general discussion here presented could prompt further optimization of the process and pave the way for the development of new original structures and innovative applications.
Graphical abstract
Collapse
|
36
|
Abstract
Two sets of bioorthogonally applicable, double fluorogenic probes, capable of sensing DNA–protein interactions, were prepared by installing an azide or tetrazine motif onto structurally fluorogenic, DNA sensitive frames. Installation of these bioorthogonal functions onto DNA intercalating dyes furnished these scaffolds with reactivity based fluorogenicity, rendering these probes double-fluorogenic, AND-type logic switches that require the simultaneous occurrence of a bioorthogonal reaction and interaction with DNA to trigger high intensity fluorescence. The probes were evaluated for double fluorogenic behavior in the presence/absence of DNA and a complementary bioorthogonal function. Our studies revealed that azide and tetrazine appending thiazole orange frames show remarkable double fluorogenic features. One of these probes, a membrane permeable tetrazine modified thiazole orange derivative was further tested in live cell labeling studies. Cells expressing bioorthogonalized DNA-binding proteins showed intensive fluorescence characteristics of the localization of the proteins upon treatment with our double fluorogenic probe. On the contrary, labeling similarly bioorthogonalized cytosolic proteins did not result in the appearance of the fluorescence signal. These studies suggest that such double-fluorogenic probes are indeed capable of sensing DNA–protein interactions in cells.
Collapse
|
37
|
Figazzolo C, Ma Y, Tucker JHR, Hollenstein M. Ferrocene as a potential electrochemical reporting surrogate of abasic sites in DNA. Org Biomol Chem 2022; 20:8125-8135. [DOI: 10.1039/d2ob01540d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have evaluated the possibility of replacing abasic sites with ferrocene for enzymatic synthesis of canonical and modified DNA.
Collapse
Affiliation(s)
- Chiara Figazzolo
- Institut Pasteur, Université Paris Cité, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
- Learning Planet Institute, 8, rue Charles V, 75004 Paris, France
| | - Yifeng Ma
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
38
|
Perrin D, Paul S, Wong AAWL, Liu LT. Selection of M2+-independent RNA-cleaving DNAzymes with Sidechains Mimicking Arginine and Lysine. Chembiochem 2021; 23:e202100600. [PMID: 34881502 DOI: 10.1002/cbic.202100600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/04/2021] [Indexed: 11/07/2022]
Abstract
Sequence-specific cleavage of RNA by nucleic acid catalysts in the absence of a divalent metal cation (M 2+ ) has remained an important goal in biomimicry with potential therapeutic applications. Given the lack of functional group diversity in canonical nucleotides, modified nucleotides with amino acid-like side chains were used to enhance self-cleavage rates at a single embedded ribonucleoside site. Previous works relied on three functional groups: an amine, a guanidine and an imidazole ensconced on three different nucleosides. However, to date, few studies have systematically addressed the necessity of all three modifications, as the value of any single modified nucleoside is contextualized at the outset of selection. Herein, we report on the use of only two modified dNTPs, excluding an imidazole, i.e. 5-(3-guanidinoallyl)-2'-dUTP (dU ga TP) and 5-aminoallyl-2'-dCTP (dC aa TP), to select in-vitro self-cleaving DNAzymes that cleave in the absence of M 2+ in a pH-independent fashion. Cleavage shows biphasic kinetics with rate constants that are significantly higher than in unmodified DNAzymes and compare favorably to certain DNAzymes involving an imidazole. This work is the first report of a M2+-independent DNAzyme with two cationic modifications; as such it shows appreciable self-cleaving activity in the absence of an imidazole modification.
Collapse
Affiliation(s)
- David Perrin
- U. British Columbia, Chemistry, 2036 Main Mall, V6T-1Z1, Vancouver, CANADA
| | - Somdeb Paul
- The University of British Columbia, Chemistry, 2036 Main Mall, Vancouver, V6T1Z1, Vancouver, CANADA
| | - Antonio A W L Wong
- The University of British Columbia, Chemistry, 2036 Main Mall, Vancouver, V6T1Z1, Vancouver, CANADA
| | - Leo T Liu
- The University of British Columbia, Chemistry, 2036 Main Mall, UBC, Vancouver, V6T-1Z1, Vancouver, CANADA
| |
Collapse
|
39
|
Chardet C, Payrastre C, Gerland B, Escudier JM. Convertible and Constrained Nucleotides: The 2'-Deoxyribose 5'-C-Functionalization Approach, a French Touch. Molecules 2021; 26:5925. [PMID: 34641475 PMCID: PMC8512084 DOI: 10.3390/molecules26195925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Many strategies have been developed to modulate the biological or biotechnical properties of oligonucleotides by introducing new chemical functionalities or by enhancing their affinity and specificity while restricting their conformational space. Among them, we review our approach consisting of modifications of the 5'-C-position of the nucleoside sugar. This allows the introduction of an additional chemical handle at any position on the nucleotide chain without disturbing the Watson-Crick base-pairing. We show that 5'-C bromo or propargyl convertible nucleotides (CvN) are accessible in pure diastereoisomeric form, either for nucleophilic displacement or for CuAAC conjugation. Alternatively, the 5'-carbon can be connected in a stereo-controlled manner to the phosphate moiety of the nucleotide chain to generate conformationally constrained nucleotides (CNA). These allow the precise control of the sugar/phosphate backbone torsional angles. The consequent modulation of the nucleic acid shape induces outstanding stabilization properties of duplex or hairpin structures in accordance with the preorganization concept. Some biological applications of these distorted oligonucleotides are also described. Effectively, the convertible and the constrained approaches have been merged to create constrained and convertible nucleotides (C2NA) providing unique tools to functionalize and stabilize nucleic acids.
Collapse
Affiliation(s)
| | | | - Béatrice Gerland
- Laboratoire de Synthèse et Physico-Chimie de Molécules d′Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (C.C.); (C.P.)
| | - Jean-Marc Escudier
- Laboratoire de Synthèse et Physico-Chimie de Molécules d′Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (C.C.); (C.P.)
| |
Collapse
|
40
|
Leone D, Hubálek M, Pohl R, Sýkorová V, Hocek M. 1,3-Diketone-Modified Nucleotides and DNA for Cross-Linking with Arginine-Containing Peptides and Proteins. Angew Chem Int Ed Engl 2021; 60:17383-17387. [PMID: 34107150 PMCID: PMC8362068 DOI: 10.1002/anie.202105126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Indexed: 12/28/2022]
Abstract
Linear or branched 1,3-diketone-linked thymidine 5'-O-mono- and triphosphate were synthesized through CuAAC click reaction of diketone-alkynes with 5-azidomethyl-dUMP or -dUTP. The triphosphates were good substrates for KOD XL DNA polymerase in primer extension synthesis of modified DNA. The nucleotide bearing linear 3,5-dioxohexyl group (HDO) efficiently reacted with arginine-containing peptides to form stable pyrimidine-linked conjugates, whereas the branched 2-acetyl-3-oxo-butyl (PDO) group was not reactive. Reaction with Lys or a terminal amino group formed enamine adducts that were prone to hydrolysis. This reactive HDO modification in DNA was used for bioconjugations and cross-linking with Arg-containing peptides or proteins (e.g. histones).
Collapse
Affiliation(s)
- Denise‐Liu' Leone
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| |
Collapse
|
41
|
Ravi Kumara GS, Seo YJ. Polymerase-mediated synthesis of p-vinylaniline-coupled fluorescent DNA for the sensing of nucleolin protein- c-myc G-quadruplex interactions. Org Biomol Chem 2021; 19:5788-5793. [PMID: 34085078 DOI: 10.1039/d1ob00863c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this paper we report the synthesis of two deoxyuridine derivatives (dUCN2, dUPy)-featuring p-vinylaniline-based fluorophores linked through a propargyl unit at the 5' position-that function as molecular rotors. This probing system proved to be useful for the sensing of gene regulation arising from interactions between this G-quadruplex and nucleolin.
Collapse
Affiliation(s)
| | - Young Jun Seo
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
42
|
Leone D, Hubálek M, Pohl R, Sýkorová V, Hocek M. 1,3‐Diketone‐Modified Nucleotides and DNA for Cross‐Linking with Arginine‐Containing Peptides and Proteins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Denise‐Liu' Leone
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University in Prague Hlavova 8 12843 Prague 2 Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University in Prague Hlavova 8 12843 Prague 2 Czech Republic
| |
Collapse
|
43
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
44
|
Abstract
The field of epigenetics has exploded over the last two decades, revealing an astonishing level of complexity in the way genetic information is stored and accessed in eukaryotes. This expansion of knowledge, which is very much ongoing, has been made possible by the availability of evermore sensitive and precise molecular tools. This review focuses on the increasingly important role that chemistry plays in this burgeoning field. In an effort to make these contributions more accessible to the nonspecialist, we group available chemical approaches into those that allow the covalent structure of the protein and DNA components of chromatin to be manipulated, those that allow the activity of myriad factors that act on chromatin to be controlled, and those that allow the covalent structure and folding of chromatin to be characterized. The application of these tools is illustrated through a series of case studies that highlight how the molecular precision afforded by chemistry is being used to establish causal biochemical relationships at the heart of epigenetic regulation.
Collapse
Affiliation(s)
- John D Bagert
- Frick Chemistry Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA; ,
| | - Tom W Muir
- Frick Chemistry Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA; ,
| |
Collapse
|
45
|
Baraniak D, Boryski J. Triazole-Modified Nucleic Acids for the Application in Bioorganic and Medicinal Chemistry. Biomedicines 2021; 9:628. [PMID: 34073038 PMCID: PMC8229351 DOI: 10.3390/biomedicines9060628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
This review covers studies which exploit triazole-modified nucleic acids in the range of chemistry and biology to medicine. The 1,2,3-triazole unit, which is obtained via click chemistry approach, shows valuable and unique properties. For example, it does not occur in nature, constitutes an additional pharmacophore with attractive properties being resistant to hydrolysis and other reactions at physiological pH, exhibits biological activity (i.e., antibacterial, antitumor, and antiviral), and can be considered as a rigid mimetic of amide linkage. Herein, it is presented a whole area of useful artificial compounds, from the clickable monomers and dimers to modified oligonucleotides, in the field of nucleic acids sciences. Such modifications of internucleotide linkages are designed to increase the hybridization binding affinity toward native DNA or RNA, to enhance resistance to nucleases, and to improve ability to penetrate cell membranes. The insertion of an artificial backbone is used for understanding effects of chemically modified oligonucleotides, and their potential usefulness in therapeutic applications. We describe the state-of-the-art knowledge on their implications for synthetic genes and other large modified DNA and RNA constructs including non-coding RNAs.
Collapse
Affiliation(s)
- Dagmara Baraniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | | |
Collapse
|
46
|
Krömer M, Brunderová M, Ivancová I, Poštová Slavětínská L, Hocek M. 2-Formyl-dATP as Substrate for Polymerase Synthesis of Reactive DNA Bearing an Aldehyde Group in the Minor Groove. Chempluschem 2021; 85:1164-1170. [PMID: 32496002 DOI: 10.1002/cplu.202000287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/15/2020] [Indexed: 12/16/2022]
Abstract
2-Formyl-2'-deoxyadenosine triphosphate (dCHO ATP) was synthesized and tested as a substrate in enzymatic synthesis of DNA modified in the minor groove with a reactive aldehyde group. The multistep synthesis of dCHO ATP was based on the preparation of protected 2-dihydroxyethyl-2'-deoxyadenosine intemediate, which was triphosphorylated and converted to aldehyde through oxidative cleavage. The dCHO ATP triphosphate was a moderate substrate for KOD XL DNA polymerase, and was used for enzymatic synthesis of some sequences using primer extension (PEX). On the other hand, longer sequences (31-mer) with higher number of modifications, or sequences with modifications at adjacent positions did not give full extension. Single-nucleotide extension followed by PEX was used for site-specific incorporation of one aldehyde-linked adenosine into a longer 49-mer sequence. The reactive formyl group was used for cross-linking with peptides and proteins using reductive amination and for fluorescent labelling through oxime formation with an AlexaFluor647-linked hydroxylamine.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Mária Brunderová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Ivana Ivancová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| |
Collapse
|
47
|
Güixens-Gallardo P, Hocek M. Acetophenyl-thienyl-aniline-Linked Nucleotide for Construction of Solvatochromic Fluorescence Light-Up DNA Probes Sensing Protein-DNA Interactions. Chemistry 2021; 27:7090-7093. [PMID: 33769635 DOI: 10.1002/chem.202100575] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Indexed: 12/20/2022]
Abstract
The synthesis of 2'-deoxycytidine and its 5'-O-triphosphate bearing solvatochromic acetophenyl-thienyl-aniline fluorophore was developed using the Sonogashira cross-coupling reaction as the key step. The triphosphate was used for polymerase synthesis of labelled DNA. The labelled nucleotide or DNA exerted weak red fluorescence when excited at 405 nm, but a significant colour change (to yellow or green) and light-up (up to 20 times) was observed when the DNA probes interacted with proteins or lipids.
Collapse
Affiliation(s)
- Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
48
|
Baladi T, Nilsson JR, Gallud A, Celauro E, Gasse C, Levi-Acobas F, Sarac I, Hollenstein MR, Dahlén A, Esbjörner EK, Wilhelmsson LM. Stealth Fluorescence Labeling for Live Microscopy Imaging of mRNA Delivery. J Am Chem Soc 2021; 143:5413-5424. [PMID: 33797236 PMCID: PMC8154517 DOI: 10.1021/jacs.1c00014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Methods for tracking
RNA inside living cells without perturbing
their natural interactions and functions are critical within biology
and, in particular, to facilitate studies of therapeutic RNA delivery.
We present a stealth labeling approach that can efficiently, and with
high fidelity, generate RNA transcripts, through enzymatic incorporation
of the triphosphate of tCO, a fluorescent tricyclic cytosine
analogue. We demonstrate this by incorporation of tCO in
up to 100% of the natural cytosine positions of a 1.2 kb mRNA encoding
for the histone H2B fused to GFP (H2B:GFP). Spectroscopic characterization
of this mRNA shows that the incorporation rate of tCO is
similar to cytosine, which allows for efficient labeling and controlled
tuning of labeling ratios for different applications. Using live cell
confocal microscopy and flow cytometry, we show that the tCO-labeled mRNA is efficiently translated into H2B:GFP inside human
cells. Hence, we not only develop the use of fluorescent base analogue
labeling of nucleic acids in live-cell microscopy but also, importantly,
show that the resulting transcript is translated into the correct
protein. Moreover, the spectral properties of our transcripts and
their translation product allow for their straightforward, simultaneous
visualization in live cells. Finally, we find that chemically transfected
tCO-labeled RNA, unlike a state-of-the-art fluorescently
labeled RNA, gives rise to expression of a similar amount of protein
as its natural counterpart, hence representing a methodology for studying
natural, unperturbed processing of mRNA used in RNA therapeutics and
in vaccines, like the ones developed against SARS-CoV-2.
Collapse
Affiliation(s)
- Tom Baladi
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.,Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Audrey Gallud
- Department of Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Emanuele Celauro
- Department of Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Cécile Gasse
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Fabienne Levi-Acobas
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Ivo Sarac
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Marcel R Hollenstein
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Anders Dahlén
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elin K Esbjörner
- Department of Biology and Biological Engineering, Chemical Biology, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
49
|
Mattay J, Dittmar M, Rentmeister A. Chemoenzymatic strategies for RNA modification and labeling. Curr Opin Chem Biol 2021; 63:46-56. [PMID: 33690011 DOI: 10.1016/j.cbpa.2021.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
RNA is a central molecule in numerous cellular processes, including transcription, translation, and regulation of gene expression. To reveal the numerous facets of RNA function and metabolism in cells, labeling has become indispensable and enables the visualization, isolation, characterization, and even quantification of certain RNA species. In this review, we will cover chemoenzymatic approaches for covalent RNA labeling. These approaches rely on an enzymatic step to introduce an RNA modification before conjugation with a label for detection or isolation. We start with in vitro manipulation of RNA, sorted according to the enzymatic reaction exploited. Then, metabolic approaches for co- and post-transcriptional RNA labeling will be treated. We focus on recent advances in the field and highlight the most relevant applications for cellular imaging, RNA isolation and sequencing.
Collapse
Affiliation(s)
- Johanna Mattay
- Department of Chemistry, Institute of Biochemistry, University of Münster, Correnstr. 36, 48149, Münster, Germany
| | - Maria Dittmar
- Department of Chemistry, Institute of Biochemistry, University of Münster, Correnstr. 36, 48149, Münster, Germany
| | - Andrea Rentmeister
- Department of Chemistry, Institute of Biochemistry, University of Münster, Correnstr. 36, 48149, Münster, Germany; Cells in Motion Interfaculty Center, University of Münster, 48149, Münster, Germany.
| |
Collapse
|
50
|
Lineros-Rosa M, Cuquerella MC, Francés-Monerris A, Monari A, Miranda MA, Lhiaubet-Vallet V. Triplet stabilization for enhanced drug photorelease from sunscreen-based photocages. Org Biomol Chem 2021; 19:1752-1759. [PMID: 33355577 DOI: 10.1039/d0ob02244f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recently, sunscreen-based drug photocages have been introduced to provide UV protection to photoactive drugs, thus increasing their photosafety. Here, combined experimental and theoretical studies performed on a photocage based on the commercial UVA filter avobenzone (AB) and on the photosensitizing non-steroidal anti-inflammatory drug ketoprofen (KP) are presented unveiling the photophysical processes responsible for the light-triggered release. Particular attention is paid to solvent stabilization of the drug and UV filter excited states, respectively, which leads to a switching between the triplet excited state energies of the AB and KP units. Most notably, we show that the stabilization of the AB triplet excited state in ethanol solution is the key requirement for an efficient photouncaging. By contrast, in apolar solvents, in particular hexane, KP has the lowest triplet excited state, hence acting as an energy acceptor quenching the AB triplet manifold, thus inhibiting the desired photoreaction.
Collapse
Affiliation(s)
- Mauricio Lineros-Rosa
- Instituto Universitario Mixto de Tecnologia Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022 Valencia, Spain.
| | - M Consuelo Cuquerella
- Instituto Universitario Mixto de Tecnologia Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022 Valencia, Spain.
| | - Antonio Francés-Monerris
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France. and Departament de Química Física Universitat de València, 46100 Burjassot, Spain
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France.
| | - Miguel A Miranda
- Instituto Universitario Mixto de Tecnologia Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022 Valencia, Spain.
| | - Virginie Lhiaubet-Vallet
- Instituto Universitario Mixto de Tecnologia Química UPV-CSIC, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avda de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|